

Protection Systems

SIPROTEC 4, SIPROTEC easy,

SIPROTEC 600 Series, Communication, Accessories

Catalog SIP · Edition No. 6

Answers for infrastructure.

SIPROTEC 4, SIPROTEC series 600, SIPROTEC easy, communication and accessories:

This catalog describes the features of the device series SIPROTEC 4, SIPROTEC series 600 and SIPROTEC easy, as well as their devices. In further chapters, the accessories of the complete SIPROTEC family for communication, auxiliary relays and test equipment are described.

Application catalog – Siemens protection technology:

This catalog gives an overview of the features for the complete Siemens protection system family, and describes typical protection applications and communication solutions. Furthermore it contains practical configuring aids for, e.g., instrument transformer layouts.

Protection selection guide:

The selection guide offers an overview of the device series of the Siemens protection devices, and a device selection table.

SIPROTEC Compact catalog:

The SIPROTEC Compact catalog describes the features of the SIPROTEC Compact series and presents the available devices and their application possibilities.

SIPROTEC 5 catalogs:

The system catalog describes the features of the SIPROTEC 5 system. The SIPROTEC 5 device catalogs describe device-specific features such as scope of functions, hardware and application.

SIEMENS

SIPROTEC 4, SIPROTEC easy, SIPROTEC 600 Series, Communication, Accessories

Contents

Product Selection	1
Overview/Applications	2
Operating Programs	3
Communication	4
Overcurrent Protection	5
Distance Protection	б
Line Differential Protection	7
Transformer Differential Protection	8
Busbar Differential Protection	9
Relays for Various Protection Applications	10
Generator Protection	11
Substation Automation	12
Relay Communication Equipment	13
Test Equipment and Accessories	14
Appendix	15

Catalog SIP · Edition No. 6

Supersedes Catalog SIP \cdot 2008

Product Index

Туре	Description	Page
DIGSI 4	Operating software for SIPROTEC devices	3/3
SIGRA 4	Evaluation software for fault records	3/9
3RV1	Voltage transformer mini circuit-breaker	14/17
4AM	Auxiliary current transformer	14/21
6MD61	IO-box	12/3
6MD63	Bay control unit	12/11
6MD66	High-voltage bay control unit	12/13
7PA22/23	Auxiliary relay	14/5
7PA26/27	Auxiliary relay	14/9
7PA30	Trip circuit supervision	14/12
7RW6	Voltage, frequency and overexcitation relay	11/71
7SA522	Distance protection relay for transmission lines	6/45
7SA6	Distance protection relay for all voltage levels	6/3
7SD5	Multi-end differential protection relay	7/43
7SD60	Pilot-wire current differential protection relay	7/3
7SD61	Differential protection relay for 2 line ends	7/17
7SJ45 easy	Overcurrent protection relay powered by CT	5/3
7SJ46 easy	Overcurrent protection relay	5/11
7SJ600	Overcurrent, motor and overload protection relay	5/19
7SJ602	Overcurrent, motor and overload protection relay	5/31
7SJ61	Multifunction protection relay	5/55
7SJ62	Multifunction protection relay	5/83
7SJ63	Multifunction protection relay	5/121
7SJ64	Multifunction protection relay with synchronization	5/161
7SN60	Transient earth-fault protection relay	10/31
7SS52	Distributed busbar and breaker failure protection	9/19
75560	Centralized busbar protection	9/3
7SV6	Numerical circuit-breaker failure protection relay	10/21
7TS 16	Annunciation relay	14/15
7UM61	Multifunction generator and motor protection relay	11/3
7UM62	Multifunction generator, motor and transformer protection relay	11/33

Product Index

Туре	Description	Page
7UT6	Differential protection relay for transformers, generators, motors and busbars	8/3
7UW5	Tripping matrix	11/69
7VE6	Multifunction paralleling device	11/81
7VK61	Breaker management relay	10/3
7XR	Isolating transformer	14/21
7XV5101	RS232 FO connector modules	13/3
7XV5103	RS485 Bus system	13/5
7XV5104	Bus cables for time synchronization	13/13
7XV5105	Bus cables for time synchronization for 7SD5	13/15
7XV5450	Mini star-coupler	13/17
7XV5461	Two-channel serial optical repeater for duplex-mono-mode FO cable	13/21
7XV5461	Two-channel serial optical repeater for 1 mono-mode FO cable	13/25
7XV5461	Two-channel serial optical repeater for duplex-multi-mode FO cables	13/29
7XV5550	Active mini star-coupler	13/33
7XV5650/5651	RS485 – FO converter	13/37
7XV5652	RS232 – FO converter	13/41
7XV5653	Two-channel binary transducer	13/45
7XV5654	GPS/DCF77 Time synchronization unit	13/81
7XV5655	Ethernet modem	13/49
7XV5655	Ethernet serial hub for substations	13/53
7XV5662	Communication converter for X.21/RS422 and G.703.1	13/57
7XV5662	Communication converter for pilot wires	13/61
7XV5662	Two-channel serial communication converter	13/65
7XV5662	Resistance temperature detector (RTD) box	13/69, 13/77
7XV5662	Universal relay, RTD-/20 mA-Box	13/73
7XV5664	GPS/DCF77 Time signal receiver	13/81
7XV5673	I/O-Unit with 6 binary in-/outputs	13/85
7XV57	RS232 – RS485 converter	13/93
7XV5710	USB – RS485 converter cable	13/97
7XV5820	Industrial modem and modem-router with switch	13/101
7XV5850/51	Ethernet modems for office applications	13/103
7XV75	Test switch	14/3

Product Selection Page

Relay Functions

Relay Selection Guide

	Device application					Distance protection Line differential protection								'n				
			Device family			SIPROIEC 4			SIPROTEC 5		SIPROTEC 600 Series	SIPROTEC Compact		SIFRUIEL 4		SIPROTEC 5		
ANSI	Functions	Abbr.	Type	7SA522	7SA61	7SA63	7SA64	7SA84 ¹⁾	7SA86 ¹⁾	75A87 ¹⁾	7SD60	7SD80	7SD610	7SD5	7SD84 ¹⁾	7SD86 ¹⁾	75D87 ¹⁾	
	Protection functions for 3-pole tripping	3-pole																
	Protection functions for 1-pole tripping	1-pole						-	-		-	-			-	-		
14	Locked rotor protection	I > + V <		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
21	Distance protection	Z<									-	-	-		-	-	-	
FL	Fault locator	FL									-	-	-					
24	Overexcitation protection	V/f		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
25	Synchrocheck, synchronizing function	Sync									-	-	_	-				
27	Undervoltage protection	$V \!\!<\!$									-							
27TN/59TN	Stator ground fault 3 rd harmonics	V0<,>(3 rd Harm.)		_	-	-	-	-	-	-	-	-	-	-	-	-	-	
32	Directional power supervision	<i>P>, P<</i>									-	-						
37	Undercurrent, underpower	I< , P<		_	-	-	-	-	-	-	-	-	_	-	-	-	-	
38	Temperature supervision	θ>		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
40	Underexcitation protection	1/X _D		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
46	Unbalanced-load protection	I2>		-	-	-	-				-	-	-	-				
47	Phase-sequence-voltage supervision	LA, LB, LC									-	-	-	-				
48	Start-time supervision	I ² start		_	-	-	-	-	-	-	-	-	-	-	-	-	-	
49	Thermal overload protection	θ , I^2 t		-							-							
50	Definite time-overcurrent protection	<i>I></i>																
50Ns	Sensitive ground-current protection	I _{Ns} >									_	-	-					
50L	Load-jam protection	I>L		-	-	-	-	-	-	-	_	-	-	-	-	-	-	
50BF	Circuit-breaker failure protection	CBFP																
51	Inverse time-overcurrent protection	Ip									-							
55	Power factor	cos φ									_	-						
59	Overvoltage protection	V>									-							
59R, 27R	Rate-of-voltage-change protection	dV/dt		_	-	-	-	-	-	-	-	-	-	-	-	-	-	
64	Sensitive ground-fault protection (machine)			-	-	-	-	-	-	-	-	-	-	-	-	-	-	
66	Restart inhibit	I ² t		-	-	-	-	-	-	-	_	-	-	-	-	-	-	
67	Directional overcurrent protection	I>, < (V,I)									-			-				
= basic	e optional (additional price) - = not	available																

1) in preparation

2) via CFC

More functions on page 1/6

Combir differ and di prote	ned line ential stance ction		Overcurrent and feeder protection/ feeder automation								G aı p	ienerati nd mot rotectio	or or on	Tra pi	ansform rotectic	Busbar protection					
CIDDOTTEC E			SIPROI EC easy		SIPRUI EL 600 Series	SIPROTEC Compact						SIPROTEC Compact		SIPROI EC 4		SIPROTEC 4		SIPROTEC 600 Series	SIPROTEC 4		
7SL86 ¹⁾	7SL87 ¹⁾	7SJ45	7SJ46	75J600	75J602	75,180	75J81	75C80 ¹⁾	7SJ61	75162	75J63	7SJ64	75J86 ¹⁾	75K80	7UM61	7UM62	7UT612	7UT613	7UT63	75S60	7SS52
-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
-	-	-	-	-	-	-	-	-					-				-	_	-	-	-
		-	_	-	-	_	-	-	-	-	-	-	-	-	-		-	_	-	-	-
		-	-	-	-		-		-					-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-			-	-
		-	-	-	-		-	-	-		-			-	-	-	-	-	-	-	-
		-	-	-	-		-		-								-			-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-
		-	-	-	-		-		-		-						-			-	-
-	-	-	-	-				-			2)		2)				-	-	-	-	-
-	-	-	_	-		_	-	-					-							-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-
		-	-																	-	-
		-	-	-	-		-	-												-	-
-	-	-	-	-	-	_	-	-					-				-	-	-	-	-
		-	_					-												-	-
																				-	
		-	-	-				-					-				-	-	-	-	-
-	-	-	-	-	-	_	-	-					-		-	-	-	-	-	-	-
		-	-												-	-				-	
								1)												-	
		-	-	-	-		-		-		2)		2)							-	-
		-	-	-			-		-								-			-	-
-	-	-	-	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-
_	_	_	-	-		_	_	-					-				-	-	-	-	-
		-	-	-	-		-		-								-	-	-	-	-

Relay Selection Guide

	Device application		Ba	y con	troller		Brea man me	aker age- ent	Syn- chro- nizing	Voltag frequ prote	je and iency oction		
			Device family		SIPROTEC 4			SIPRULEL 5	SIPROTEC 4	SIPROTEC 5	SIPROTEC 4	SIPROTEC 600 Series	SIPROTEC Compact
ANSI	Functions	Abbr.	Type	6MD61	6MD63	6MD66	6MD85 ¹⁾	6MD86 ¹⁾	7VK61	7VK87 ¹⁾	7VE6	7RW60	7RW80
	Protection functions for 3-pole tripping	3-pole		-	-	-							
	Protection functions for 1-pole tripping	1-pole		-	-	-	—	_			-	-	-
14	Locked rotor protection	I > + V <		-	-	-	_	-	-	-	-	-	-
21	Distance protection	<i>Z</i> <		-	-	-	-	-	-	-	-	-	-
FL	Fault locator	FL		_	-	-	_	_	-	-	-	_	-
24	Overexcitation protection	V/f		-	-	_	_	_	_	-	-		
25	Synchrocheck, synchronizing function	Sync		_	-							_	
27	Undervoltage protection	<i>V</i> <		-	-	-							
27TN/59TN	Stator ground fault 3 rd harmonics	V0<,>(3rd Harm.)		-	-	_	-	-	_	-	_	_	-
32	Directional power supervision	P>, P<		-	-	-			_		-	_	-
37	Undercurrent, underpower	I< , P<		-	-	_	_	-	-	-	-	-	-
38	Temperature supervision	θ>		-	-	-	_	-	_	-	-	_	-
40	Underexcitation protection	1/X _D		-	_	_	-	-	-	-	_	-	-
46	Unbalanced-load protection	<i>I</i> 2>		-	_	_	-	-	_	-	_	-	-
47	Phase-sequence-voltage supervision	LA, LB, LC		_	-	-	_	_	_	-	-		
48	Start-time supervision	I ² start		-	-	-	-	-	-	-	_	-	-
49	Thermal overload protection	θ, <i>I</i> ² t		-	-	-	_	_	-	-	-	-	-
50	Definite time-overcurrent protection	<i>I></i>		-	-	-					-	-	-
50Ns	Sensitive ground-current protection	$I_{\rm Ns}$ >		-	-	-	-	-	-		-	-	-
50L	Load-jam protection	I>L		-	-	-	-	-	-	-	-	-	-
50BF	Circuit-breaker failure protection	CBFP		-	-		—				-	-	-
51	Inverse time-overcurrent protection	IP		-	-	-					-	-	-
55	Power factor	cos φ		-	-	-	-	-	-	-	-	-	-
59	Overvoltage protection	V>		-	-	-							
59R, 27R	Rate-of-voltage-change protection	dV/dt		-	-	-	—	_	-	-	-	-	
64	Sensitive ground-fault protection (machine)			-	-	-	-	-	-	-	-	-	-
66	Restart inhibit	I ² t		-	-	-	-	-	-	-	_	-	-
67	Directional overcurrent protection	I>, < (V,I)		-	-	-			-		-	-	-
= basic	e optional (additional price) - = not	available											

1) in preparation

2) via CFC

More functions on page 1/8

Table continued on next page

Relay Selection Guide

	Device application		Distance protection Line differential protection										'n					
			Device family			SIPRULEC 4			SIPROTEC 5		SIPROTEC 600 Series	SIPROTEC Compact		SIPROI EC 4		SIPROTEC 5		
ANSI	Functions	Abbr.	Type	7SA522	7SA61	7SA63	7SA64	75A84 ¹⁾	75A86 ¹⁾	75A87 ¹⁾	7SD60	7SD80	7SD610	7SD5	75D84 ¹⁾	7SD86 ¹⁾	75D87 ¹⁾	
67Ns	Sensitive ground-fault detection for systems with resonant or isolated neutral	$I_{\rm N}$ >, \angle (V,I)		•				•1)	1)	•1)	_	-	_		1)	1)	1)	
68	Power-swing blocking	$\Delta Z / \Delta t$			•		•	•	•	•	_	_	_		-	_	_	
74TC	Trip-circuit supervision	TCS									_							
78	Out-of-step protection	$\Delta Z / \Delta t$									_	_	_		_	_	_	
79	Automatic reclosing	AR									_							
81	Frequency protection	<i>f</i> <, <i>f</i> >									_							
	Vector-jump protection	$\Delta \phi_U >$		-	_	_	_	_	-	_	_	-	_	_	-	-	-	
81LR	Load restoration	LR		-	-	_	_	-	-	_	_	_	-	_	-	-	-	
85	Teleprotection														-	-	-	
86	Lockout										_							
87	Differential protection	ΔI		-	-	-	_	-	-	_								
87N	Differential ground-fault protection	$\Delta I_{ m N}$		-	-	-	-	-	-	-			-	-	-	-	-	
	Broken-wire detection for differential protection			-	-	-	-	-	-	-	-	-						
90V	Automatic voltage control			-	-	-	-	-	-	-	-	-	-	-	-	-	-	
PMU	Synchrophasor measurement	PMU		-	-	-	-	•1)	•1)	•1)	-	-	-	-	•1)	•1)	•1)	
	Further functions																	
	Measured values																	
	Switching-statistic counters										-							
	Logic editor										-							
	Inrush-current detection			-	-	-	-											
	External trip initiation																	
	Control										-							
	Fault recording of analog and binary signals																	
	Monitoring and supervision																	
	Protection interface, serial										_							
	No. Setting groups			4	4	4	4	8	8	8	-	4	4	4	8	8	8	
	Battery charger/-monitor			-	-	-	-	-	-	-	-	-	-	-	-	-	-	

■ = basic ● = optional (additional price) - = not available

1) in preparation

2) via CFC

Combir differ and di prote	ned line ential stance ection		Overcurrent and feeder protection/ feeder automation									G ar pı	enerato nd mot rotectio	or or on	Tra pr	insform otectic	Busbar protection				
			JIPRUIEL Edsy		SIPRUIEL 600 Series	siPROTEC Compact						SIPROTEC Compact SIPROTEC 4				SIPROTEC 4		SIPROTEC 600 Series	SIPROTEC 4		
7SL86 ¹⁾	7SL87 ¹⁾	7SJ45	7SJ46	75J600	751602	75,80	7SJ81	75C80 ¹⁾	75J61	75J62	75J63	7SJ64	75J86 ¹⁾	75K80	7UM61	7UM62	7UT612	7UT613	7UT63	75560	7SS52
1)	1)	-	-	-		•	-	_	-				-	•			-	-	-	_	_
		_	-	_	-	-	-	-	_	_	_	_	_	_	_	•	_	_	_	_	_
		-	-					-												-	_
		_	-	-	-	_	_	_	_	-	_	-	-	_	_		_	-	-	_	_
		_	-				_	_						_	-	-	-	-	-	_	-
		-	-	-	-		_		-								-			-	_
-	_	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	_
-	-	_	-	_	-	_	_	_	-	-	-	-	-	_	-	-	-	-	-	-	_
		-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
		-	-	-	-			-									-	-	-		-
		-	-	-	-	-	-	-	-	-	-	-	-	-	-						
-	-	-	-	-			-	-					-	-						-	-
		_	-	-	-	-	-	-	-	-	_	-	-	_	-	-				_	-
_	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1)	1)	-	-	-	-	-	—	-	-	-	-	-		-	-	-	-	-	-	-	-
		-	-																		
		-	-	-	-															_	-
		-	-	-	-															_	
		-	-	-	-										-					_	-
		-	-								2)									-	
		-	-	-	-															-	-
		-	-												-	-					
		-	-																		
		-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	_	-
8	8	1	1	1	1	4	4	4	4	4	4	4	8	4	4	4	4	4	4	1	1
-	-	-	-	-	-	-	-	1)	-	-	-	-	-	-	-	-	-	-	-	-	-

Relay Selection Guide

	Device application				Ba	ıy con	troller		Brea man me	aker age- ent	Syn- chro- nizing	Voltag frequ prote	le and lency ction
			Device family		SIPROTEC 4				SIPROTEC 4	SIPROTEC 5	SIPROTEC 4	SIPROTEC 600 Series	SIPROTEC Compact
ANSI	Functions	Abbr.	Type	6MD61	6MD63	6MD66	6MD85 ¹⁾	6MD86 ¹⁾	7VK61	7VK87 ¹⁾	7VE6	7RW60	7RW80
67Ns	Sensitive ground-fault detection for systems with resonant or isolated neutral	$I_{\rm N}$ >, \angle (V,I)		-	-	-	_	_	_	_	-	_	_
68	Power-swing blocking	$\Delta Z / \Delta t$		-	_	_	_	_	_	-	_	_	_
74TC	Trip-circuit supervision	TCS		_	-	_							
78	Out-of-step protection	$\Delta Z / \Delta t$		_	-	-	-	_	_	-	_	_	-
79	Automatic reclosing	AR		-	_		-				_	_	-
81	Frequency protection	<i>f</i> <, <i>f</i> >		-	-	_			_				
	Vector-jump protection	$\Delta \phi_U >$		_	-	-	-	-	_	-		_	
81LR	Load restoration	LR		-	-	-	_	_	_	-	-	_	
85	Teleprotection			-	-	-	-	-	_	-	_	-	-
86	Lockout			-	-	-	-	-			_	-	
87	Differential protection	ΔI		-	-	-	-	-	-	-	-	-	-
87N	Differential ground-fault protection	$\Delta I_{ m N}$		-	-	-	-	-	-	-	_	-	-
	Broken-wire detection for differential protection			-	-	-	-	-	-	-	-	-	-
90V	Automatic voltage control			-	-	-	-	-	_	-	-	_	-
PMU	Synchrophasor measurement	PMU		-	-	-	•1)	•1)	_	•1)	-	_	-
	Further functions												
	Measured values												
	Switching-statistic counters											-	
	Logic editor			-								-	
	Inrush-current detection			-	-	-			-		-	-	-
	External trip initiation			-	-	-	-	-					
	Control											-	
	Fault recording of analog and binary signals												
	Monitoring and supervision												
	Protection interface, serial			-	-	-			-		-	-	_
	No. Setting groups			4	4	4	8	8	4	8	4	1	4
	Battery charger/-monitor			-	-	-	-	-	-	-	-	-	-

■ = basic ● = optional (additional price) - = not available

1) in preparation

2) via CFC

Overview/Applications

SIPROTEC Relay Families	2 /3
Typical Protection Schemes	2/17
Protection Coordination	2 /39

Page

Solutions for today's and future power supply systems – for more than 100 years

SIPROTEC has established itself on the energy market for decades as a powerful and complete system family of numerical protection relays and bay controllers from Siemens.

SIPROTEC protection relays from Siemens can be consistently used throughout all applications in medium and high voltage. With SIPROTEC, operators have their systems firmly and safely under control, and have the basis to implement cost-efficient solutions for all duties in modern, intelligent and "smart" grids. Users can combine the units of the different SIPROTEC device series at will for solving manifold duties – because SIPROTEC stands for continuity, openness and future-proof design.

As the innovation driver and trendsetter in the field of protection systems for 100 years, Siemens helps system operators to design their grids in an intelligent, ecological, reliable and efficient way, and to operate them economically. As a pioneer, Siemens has decisively influenced the development of numerical protection systems (Fig. 2/2). The first application went into operation in Würzburg, Germany, in 1977. Consistent integration of protection and control functions for all SIPROTEC devices was the innovation step in the 90ies. After release of the communication standard IEC 61850 in the year 2004, Siemens was the first manufacturer worldwide to put a system with this communication standard into operation.

Fig. 2/1

How can system operators benefit from this experience?

- Proven and complete applications
- Easy integration into your system
- Highest quality of hardware and software
- Excellent operator friendliness of devices and tools
- · Easy data exchange between applications
- Extraordinary consistency between product- and systemengineering
- Reduced complexity by easy operation
- Siemens as a reliable, worldwide operating partner.

Fig. 2/2 SIPROTEC – Pioneer over generations

SIPROTEC easy

SIPROTEC easy are CT power supplied or auxiliary power supplied, numerical overcurrent-time protection relays, which can be used as line and transformer protection (back-up protection) in electrical power supply systems with single-ended supply. They offer definite-time and inversetime overcurrent protection functions according to IEC and ANSI. The comfortable operation via DIP switch is selfexplanatory and simple.

- Two-stage overcurrent-time protection
- Saving the auxiliary power supply by operation via integrated current transformer supply
- Cost-efficient due to the use of instrument transformers with low ratings
- Tripping via pulse output (24 V DC / 0.1 Ws) or tripping relay output
- Simple, self-explanatory parameterization and operation via DIP switch directly at the device
- Easy installation due to compact assembly on DIN rail.

SIPROTEC Compact (series 600)

The devices of the SIPROTEC Compact series (series 600) are compact, numerical protection devices for application in medium-voltage or industrial power supply systems. The corresponding device types are available for the different applications such as overcurrent-time protection, line differential protection, transient earth-fault relay or busbar protection.

- Space-saving due to compact design
- Reliable process connections by means of solid terminal blocks
- Effective fault evaluation by means of integrated fault recording and SIGRA 4
- Communication interface
- Operable and evaluable via DIGSI 4
- Different device types available for directional and nondirectional applications.

Fig. 2/3 SIPROTEC easy

Fig. 2/4 SIPROTEC Compact (series 600)

SIPROTEC Compact – Maximum protection-minimum space

Perfect protection, smallest space reliable and flexible protection for energy distribution and industrial systems with minimum space requirements. The devices of the SIPROTEC Compact family offer an extensive variety of functions in a compact and thus space-saving 1/6 x 19" housing. The devices can be used as main protection in medium-voltage applications or as back-up protection in high-voltage systems.

SIPROTEC Compact provides suitable devices for many applications in energy distribution, such as the protection of feeders, lines or motors. Moreover, it also performs tasks such as system decoupling, load shedding, load restoration, as well as voltage and frequency protection.

The SIPROTEC Compact series is based on millions of operational experience with SIPROTEC 4 and a furtherdeveloped, compact hardware, in which many customer suggestions were integrated. This offers maximum reliability combined with excellent functionality and flexibility.

- Simple installation by means of pluggable current and voltage terminal blocks
- Thresholds adjustable via software (3 stages guarantee a safe and reliable recording of input signals)
- Easy adjustment of secondary current transformer values (1 A/5 A) to primary transformers via DIGSI 4
- Quick operations at the device by means of 9 freely programmable function keys
- Clear overview with six-line display
- Easy service due to buffer battery replaceable at the front side
- Use of standard cables via USB port at the front
- Integration in the communication network by means of two further communication interfaces
- High availability due to integrated redundancy (electrical or visual) for IEC 61850 communication
- Reduction of wiring between devices by means of crosscommunication via Ethernet (IEC 61850 GOOSE)
- Time synchronization to the millisecond via Ethernet with SNTP for targeted fault evaluation
- Adjustable to the protection requirements by means of "flexible protection functions"
- Comfortable engineering and evaluation via DIGSI 4.

Fig. 2/5 SIPROTEC Compact

Fig. 2/6 SIPROTEC Compact - rear view

Fig. 2/7 Feeder automation relay 7SC80

SIPROTEC 5 – the new benchmark for protection, automation and monitoring of transmission grids

The SIPROTEC 5 series is based on the long field experience of the SIPROTEC device series, and has been especially designed for the new requirements of modern high-voltage systems. For this purpose, SIPROTEC 5 is equipped with extensive functionalities and device types. With the holistic and consistent engineering tool DIGSI 5, a solution has also been provided for the increasingly complex processes, from the design via the engineering phase up to the test and operation phase.

Thanks to the high modularity of hardware and software, the functionality and hardware of the devices can be tailored to the requested application and adjusted to the continuously changing requirements throughout the entire life cycle.

Besides the reliable and selective protection and the complete automation function, SIPROTEC 5 offers an extensive database for operation and monitoring of modern power supply systems. Synchrophasors (PMU), power quality data and extensive operational equipment data are part of the scope of supply.

- Powerful protection functions guarantee the safety of the system operator's equipment and employees
- Individually configurable devices save money on initial investment as well as storage of spare parts, maintenance, expansion and adjustment of your equipment
- Clear and easy-to-use of devices and software thanks to user-friendly design
- Increase of reliability and quality of the engineering process
- High reliability due to consequent implementation of safety and security
- Powerful communication components guarantee safe and effective solutions
- Full compatibility between IEC 61850 Editions 1 and 2
- Efficient operating concepts by flexible engineering of IEC 61850 Edition 2
- Comprehensive database for monitoring of modern power grids
- Optimal smart automation platform for transmission grids based on integrated synchrophasor measurement units (PMU) and power quality functions.

Fig. 2/8 SIPROTEC 5 – modular hardware

Fig. 2/9 SIPROTEC 5 - rear view

Fig. 2/10 Application in the high-voltage system

SIPROTEC 4 – the proven, reliable and future-proof protection for all applications

SIPROTEC 4 represents a worldwide successful and proven device series with more than 1 million devices in field use.

Due to the homogenous system platform, the unique engineering program DIGSI 4 and the great field experience, the SIPROTEC 4 device family has gained the highest appreciation of users all over the world. Today, SIPROTEC 4 is considered the standard for numerical protection systems in all fields of application.

SIPROTEC 4 provides suitable devices for all applications from power generation and transmission up to distribution and industrial systems.

SIPROTEC 4 is a milestone in protection systems. The SIPROTEC 4 device series implements the integration of protection, control, measuring and automation functions optimally in one device. In many fields of application, all tasks of the secondary systems can be performed with one single device. The open and future-proof concept of SIPROTEC 4 has been ensured for the entire device series with the implementation of IEC 61850.

- Proven protection functions guarantee the safety of the systems operator's equipment and employees
- Comfortable engineering and evaluation via DIGSI 4
- Simple creation of automation solutions by means of the integrated CFC
- Targeted and easy operation of devices and software thanks to user-friendly design
- Powerful communication components guarantee safe and effective solutions
- Maximum experience worldwide in the use of SIPROTEC 4 and in the implementation of IEC 61850 projects
- Future-proof due to exchangeable communication interfaces and integrated CFC.

Fig. 2/11 SIPROTEC 4

Fig. 2/12 SIPROTEC 4 rear view

Fig. 2/13 SIPROTEC 4 in power plant application

To fulfill vital protection redundancy requirements, only those functions that are interdependent and directly associated with each other are integrated into the same unit. For backup protection, one or more additional units should be provided.

All relays can stand fully alone. Thus, the traditional protection principle of separate main and backup protection as well as the external connection to the switchyard remain unchanged.

"One feeder, one relay" concept

Analog protection schemes have been engineered and assembled from individual relays. Interwiring between these relays and scheme testing has been carried out manually in the workshop.

Data sharing now allows for the integration of several protection and protection-related tasks into one single numerical relay. Only a few external devices may be required for completion of the total scheme. This has significantly lowered the costs of engineering, assembly, panel wiring, testing and commissioning. Scheme failure probability has also been lowered.

Engineering has moved from schematic diagrams toward a parameter definition procedure. The powerful user-definable logic of SIPROTEC 4 allows flexible customized design for protection, control and measurement.

Measuring included

For many applications, the accuracy of the protection current transformer is sufficient for operational measuring. The additional measuring current transformer was required to protect the measuring instruments under short-circuit conditions. Due to the low thermal withstand capability of the measuring instruments, they could not be connected to the protection current transformer. Consequently, additional measuring core current transformers and measuring instruments are now only necessary where high accuracy is required, e.g., for revenue metering.

Corrective rather than preventive maintenance

Numerical relays monitor their own hardware and software. Exhaustive self-monitoring and failure diagnostic routines are not restricted to the protection relay itself but are methodically carried through from current transformer circuits to tripping relay coils.

Equipment failures and faults in the current transformer circuits are immediately reported and the protection relay is blocked.

Thus, service personnel are now able to correct the failure upon occurrence, resulting in a significantly upgraded availability of the protection system.

Fig. 2/14 Numerical relays offer increased information availability

Adaptive relaying

Numerical relays now offer reliable, convenient and comprehensive matching to changing conditions. Matching may be initiated either by the relay's own intelligence or from other systems via contacts or serial telegrams. Modern numerical relays contain a number of parameter sets that can be pretested during commissioning of the scheme. One set is normally operative. Transfer to the other sets can be controlled via binary inputs or a serial data link (Fig. 2/15).

There are a number of applications for which multiple setting groups can upgrade the scheme performance, for example:

- For use as a voltage-dependent control of overcurrent-time relay pickup values to overcome alternator fault current decrement to below normal load current when the automatic voltage regulator (AVR) is not in automatic operation
- For maintaining short operation times with lower fault currents, e.g., automatic change of settings if one supply transformer is taken out of service
- For "switch-onto-fault" protection to provide shorter time settings when energizing a circuit after maintenance so that normal settings can be restored automatically after a time delay
- For auto-reclosure programs, that is, instantaneous operation for first trip and delayed operation after unsuccessful reclosure
- For cold load pickup problems where high starting currents may cause relay operation
- For "ring open" or "ring closed" operation.

Implemented functions

SIPROTEC relays are available with a variety of protective functions (please refer to Fig. 2/17). The high processing power of modern numerical units allows further integration of non-protective add-on functions.

The question as to whether separate or combined relays should be used for protection and control cannot be unambiguously answered. In transmission-type substations, separation into independent hardware units is still preferred, whereas a trend toward higher function integration can be observed on the distribution level. Here, the use of combined feeder / line relays for protection, monitoring and control is becoming more common (Fig. 2/16).

Relays with protection functions only and relays with combined protection and control functions are being offered. SIPROTEC 4 relays offer combined protection and control functions. SIPROTEC 4 relays support the "one relay one feeder" principle, and thus contribute to a considerable reduction in space and wiring requirements.

With the well-proven SIPROTEC 4 family, Siemens supports both stand-alone and combined solutions on the basis of a single hardware and software platform. The user can decide within wide limits on the configuration of the control and protection, and the reliability of the protection functions (Fig. 2/17).

The following solutions are available within one relay family:

- Separate control and protection relays
- Feeder protection and remote control of the line circuitbreaker via the serial communication link
- Combined relays for protection, monitoring and control.

Fig. 2/15 Alternate parameter groups

Fig. 2/16 Left: switchgear with numerical relay (7SJ62) and traditional control; right: switchgear with combined protection and control relay (7SJ64)

Fig. 2/17 SIPROTEC 4 relays 7SJ61/62/63,64 implemented functions

Terminals: Standard relay version with screw-type terminals

$W_{max} = 12 \text{ mm}$
<i>d1</i> =5 mm
2.7-4 mm ² (AWG 13-11)
Solid conductor, flexible lead, connector sleeve
2.7-4 mm ² (AWG 13-11)
W _{max} =10 mm
d1 = 4 mm
1.0-2.6 mm ² (AWG 17-13)
Solid conductor, flexible lead, connector sleeve
0.5–2.5 mm ² (AWG 20–13)
le with plug-in voltage terminals
$0.5 - 1.0 \text{ mm}^2$
$0.75 - 1.5 \text{ mm}^2$
$1.0 - 2.5 \text{ mm}^2$

Mechanical Design

SIPROTEC 4 relays are available in 1/3 to 1/1 of 19" wide housings with a standard height of 243 mm. Their size is compatible with that of other relay families. Therefore, compatible exchange is always possible (Fig. 2/18 to Fig. 2/20).

All wires (cables) are connected at the rear side of the relay with or without ring cable lugs. A special relay version with a detached cable-connected operator panel (Fig. 2/21) is also available. It allows, for example, the installation of the relay itself in the low-voltage compartment, and of the operator panel separately in the door of the switchgear.

Fig. 2/18 1/1 of 19" housing

- On the backlit LCD display, process and device information can be displayed as text.
- Preely assignable LEDs are used to display process or device information. The LEDs can be labeled according to user requirements. An LED reset key resets the LEDs and can be used for LED testing.
- 8 Keys for navigation
- 4 RS232 operator interface (for DIGSI)
- 6 4 configurable function keys permit the user to execute
- frequently used actions simply and fast.
- 6 Numerical keys
- **Fig. 2/22** Local operation: All operator actions can be executed and information displayed via an integrated user interface. Two alternatives for this interface are available.

- 1 Process and relay information can be displayed on the large illuminated LC display either graphically in the form of a mimic diagram or as text in various lists.
- 2 The keys mainly used for control of the switchgear are located on the "control axis" directly below the display.
- 3 Two key-operated switches ensure rapid and reliable changeover between "local" and "remote" control, and between "interlocked" and "non-interlocked" operation.

Fig. 2/23 Additional features of the interface with graphic display

- Fig. 2/19 1/2 of 19" housing
- Fig. 2/20 1/3 of 19" housing

Fig. 2/21 SIPROTEC 4 combined protection, control and monitoring relay with detached operator panel

Apart from the relay-specific protection functions, the SIPROTEC 4 units have a multitude of additional functions that

- provide the user with information for the evaluation of faults
- facilitate adaptation to customer-specific application
- facilitate monitoring and control of customer installations.

Operational measured values

The large scope of measured and limit values permits improved power system management as well as simplified commissioning.

The r.m.s. values are calculated from the acquired current and voltage along with the power factor, frequency, active and reactive power. The following functions are available depending on the relay type

- Currents I_{L1} , I_{L2} , I_{L3} , I_N , I_{EE} (67Ns)
- Voltages V_{L1}, V_{L2}, V_{L3}, V_{L1-L2}, V_{L2-L3}, V_{L3-L1}
- Symmetrical components I_1 , I_2 , $3I_0$; V_1 , V_2 , $3V_0$
- Power Watts, V_{ars} , V_A / P , Q, S
- Power factor p.f. $(\cos \varphi)$
- Frequency
- Energy \pm kWh \pm kVarh, forward and reverse power flow
- Mean as well as minimum and maximum current and voltage values
- Operating hours counter
- Mean operating temperature of overload function
- Limit value monitoring Limit values are monitored using programmable logic in the CFC. Commands can be derived from this limit value indication.
- Zero suppression

In a certain range of very low measured values, the value is set to zero to suppress interference.

Metered values (some types)

For internal metering, the unit can calculate energy metered values from the measured current and voltage values. If an external meter with a metering pulse output is available, some SIPROTEC 4 types can obtain and process metering pulses via an indication input.

The metered values can be displayed and passed on to a control center as an accumulation with reset. A distinction is made between forward, reverse, active and reactive energy.

Operational indications and fault indications with time stamp

The SIPROTEC 4 units provide extensive data for fault analysis as well as control. All indications listed here are stored, even if the power supply is disconnected.

- Fault event log The last eight network faults are stored in the unit. All fault recordings are time-stamped with a resolution of 1 ms.
- Operational indications All indications that are not directly associated with a fault (e.g., operating or switching actions) are stored in the status indication buffer. The time resolution is 1 ms (Fig. 2/24, Fig. 2/25).

I1 U1 P Q	L:400.9A L:12.22k :+8.03M :+2.64M	f:6 J J cosy Ja	60.0Hz p:0.95
ABCN	402.1A 401.2A 401.0A 00.0A	Max4 Max4 Max4	450.1A 421.2A 431.4A
X A B C	IPh 100.0 100.4 100.1	UPHN 100.4 100.3 100.1	UPHPH 100.1 100.0 100.4

5TH LAST FAULT 0	91/32
31.01.02 05:12:56 Pow.Sys.Flt 2280	,894 ON
Fault Event 2380	0 ms ON
Dis.Pickup L23	1 ms ON
Dis.Loop L2-3 f	1 ms ON
Dis.Trip 3p	1 ms ON
AR 1stCyc. run.	1 ms ON
AR in progress	1 ms ON
IL1 = 4.88k	3 ms A
IL2 = 5.19k	3 ms A

Fig. 2/25 Fault event log on graphical display of the device

Display editor

A display editor is available to design the display on SIPROTEC 4 units with graphic display. The predefined symbol sets can be expanded to suit the user. The drawing of a single-line diagram is extremely simple. Load monitoring values (analog values) and any texts or symbols can be placed on the display where required.

Four predefined setting groups for adapting relay settings

The settings of the relays can be adapted quickly to suit changing network configurations. The relays include four setting groups that can be predefined during commissioning or even changed remotely via a DIGSI 4 modem link. The setting groups can be activated via binary inputs, via DIGSI 4 (local or remote), via the integrated keypad or via the serial substation control interface.

Fault recording up to five or more seconds

The sampled values for phase currents, earth (ground) currents, line and zero-sequence currents are registered in a fault record. The record can be started using a binary input, on pickup or when a trip command occurs. Up to eight fault records may be stored. For test purposes, it is possible to start fault recording via DIGSI 4. If the storage capacity is exceeded, the oldest fault record in each case is overwritten.

For protection functions with long delay times in generator protection, the RMS value recording is available. Storage of relevant calculated variables (V_1 , V_E , I_1 , I_2 , I_{EE} , P, Q, f- f_n) takes place at increments of one cycle. The total time is 80 s.

Time synchronization

A battery-backed clock is a standard component and can be synchronized via a synchronization signal (DCF77, IRIG B via satellite receiver), binary input, system interface or SCADA (e.g., SICAM). A date and time is assigned to every indication.

Selectable function keys

Four function keys can be assigned to permit the user to perform frequently recurring actions very quickly and simply.

Typical applications are, for example, to display the list of operating indications or to perform automatic functions such as "switching of circuit-breaker".

Continuous self-monitoring

The hardware and software are continuously monitored. If abnormal conditions are detected, the unit immediately signals. In this way, a great degree of safety, reliability and availability is achieved.

Reliable battery monitoring

The battery provided is used to back up the clock, the switching statistics, the status and fault indications, and the fault recording in the event of a power supply failure. Its function is checked by the processor at regular intervals. If the capacity of the battery is found to be declining, an alarm is generated. Regular replacement is therefore not necessary.

All setting parameters are stored in the Flash EPROM and are not lost if the power supply or battery fails. The SIPROTEC 4 unit remains fully functional.

Commissioning support

Special attention has been paid to commissioning. All binary inputs and output contacts can be displayed and activated directly. This can significantly simplify the wiring check for the user. Test telegrams to a substation control system can be initiated by the user as well.

CFC: Programming logic

With the help of the CFC (Continuous Function Chart) graphic tool, interlocking schemes and switching sequences can be configured simply via drag and drop of logic symbols; no special knowledge of programming is required. Logical elements, such as AND, OR, flip-flops and timer elements are available. The user can also generate user-defined annunciations and logical combinations of internal or external signals.

Communication interfaces

With respect to communication, particular emphasis has been placed on high levels of flexibility, data integrity and utilization of standards commonly used in energy automation. The design of the communication modules permits interchangeability on the one hand, and on the other hand provides openness for future standards.

Local PC interface

The PC interface accessible from the front of the unit permits quick access to all parameters and fault event data. Of particular advantage is the use of the DIGSI 4 operating program during commissioning.

Retrofitting: Communication modules

It is possible to supply the relays directly with two communication modules for the service and substation control interfaces, or to retrofit the communication modules at a later stage. The modules are mounted on the rear side of the relay. As a standard, the time synchronization interface is always supplied.

The communication modules are available for the entire SIPROTEC 4 relay range. Depending on the relay type, the following protocols are available: IEC 60870-5-103, PROFIBUS DP, MODBUS RTU, DNP 3.0 and Ethernet with IEC 61850. No external protocol converter is required.

With respect to communication, particular emphasis is placed on the requirements in energy automation:

- Every data item is time-stamped at the source, that is, where it originates.
- The communication system automatically handles the transfer of large data blocks (e.g., fault records or parameter data files). The user can apply these features without any additional programming effort.
- For reliable execution of a command, the relevant signal is first acknowledged in the unit involved. When the command has been enabled and executed, a check-back indication is issued. The actual conditions are checked at every command-handling step. Whenever they are not satisfactory, controlled interruption is possible.

The following interfaces can be applied:

Service interface (optional)

Several protection relays can be centrally operated with DIGSI 4, e.g., via a star coupler or RS485 bus. On connection of a modem, remote control is possible. This provides advantages in fault clearance, particularly in unmanned power stations. (Alternatively, the external temperature monitoring box can be connected to this interface.)

2 System interface (optional)

This is used to carry out communication with a control system and supports, depending on the module connected, a variety of communication protocols and interface designs.

3 Time synchronization interface

A synchronization signal (DCF 77, IRIG B via satellite receiver) may be connected to this input if no time synchronization is executed on the system interface. This offers a high-precision time tagging.

Fig. 2/30 Rear view with wiring, terminal safety cover and serial interfaces

Fig. 2/26 Protection relay

Fig. 2/28 Communication module RS232,RS485

Fig. 2/29 Communication module, optical ring

Safe bus architecture

- Fiber-optic double ring circuit via Ethernet The fiber-optic double ring circuit is immune to electromagnetic interference. Upon failure of a section between two units, the communication system continues to operate without interruption. If a unit were to fail, there is no effect on the communication with the rest of the system (Fig. 2/31).
- RS485 bus

With this data transmission via copper wires, electromagnetic interference is largely eliminated by the use of twisted-pair conductors. Upon failure of a unit, the remaining system continues to operate without any faults (Fig. 2/32).

• Star structure

The relays are connected with a fiber-optic cable with a star structure to the control unit. The failure of one relay/connection does not affect the others (Fig. 2/33).

Depending on the relay type, the following protocols are available:

• IEC 61850 protocol

Since 2004, the Ethernet-based IEC 61850 protocol is the worldwide standard for protection and control systems used by power supply corporations. Siemens is the first manufacturer to support this standard. By means of this protocol, information can also be exchanged directly between feeder units so as to set up simple masterless systems for feeder and system interlocking. Access to the units via the Ethernet bus will also be possible with DIGSI.

• IEC 60870-5-103

IEC 60870-5-103 is an internationally standardized protocol for efficient communication between the protection relays and a substation control system. Specific extensions that are published by Siemens can be used.

PROFIBUS DP

For connection to a SIMATIC PLC, the PROFIBUS DP protocol is recommended. With the PROFIBUS DP, the protection relay can be directly connected to a SIMATIC S5 / S7. The transferred data are fault data, measured values and control commands.

Substation automation system

Fig. 2/31 Ring bus structure for station bus with Ethernet and IEC 61850

Fig. 2/32 PROFIBUS: Electrical RS485 bus wiring

Fig. 2/33 IEC 60870-5-103: Star structure with fiber-optic cables

MODBUS RTU

MODBUS is also a widely utilized communication standard and is used in numerous automation solutions.

DNP 3.0

DNP 3.0 (Distributed Network Protocol, version 3) is a messaging-based communication protocol. The SIPROTEC 4 units are fully Level 1 and Level 2-compliant with DNP 3.0, which is supported by a number of protection unit manufacturers.

Control

In addition to the protection functions, the SIPROTEC 4 units also support all control and monitoring functions required for operating medium-voltage or high-voltage substations. The main application is reliable control of switching and other processes. The status of primary equipment or auxiliary devices can be obtained from auxiliary contacts and communicated to the relay via binary inputs.

Therefore, it is possible to detect and indicate both the OPEN and CLOSED positions or a faulty or intermediate breaker position. The switchgear can be controlled via:

- Integrated operator panel
- Binary inputs
- Substation control system
- DIGSI 4.

Automation

With the integrated logic, the user can set specific functions for the automation of the switchgear or substation by means of a graphic interface (CFC). Functions are activated by means of function keys, binary inputs or via the communication interface.

Switching authority

The following hierarchy of switching authority is applicable: LOCAL, DIGSI 4 PC program, REMOTE. The switching authority is determined according to parameters or by DIGSI 4. If the LOCAL mode is selected, only local switching operations are possible. Every switching operation and change of breaker position is stored in the status indication memory with detailed information and time tag.

Fig. 2/34 Protection engineer at work

Command processing

The SIPROTEC 4 protection relays offer all functions required for command processing, including the processing of single and double commands, with or without feedback, and sophisticated monitoring. Control actions using functions, such as runtime monitoring and automatic command termination after output check of the external process, are also provided by the relays. Typical applications are:

- Single and double commands using 1, 1 plus 1 common or 2 trip contacts
- User-definable feeder interlocking
- Operating sequences combining several switching operations, such as control of circuit-breakers, disconnectors (isolators) and earthing switches
- Triggering of switching operations, indications or alarms by logical combination of existing information (Fig. 2/34).

The positions of the circuit-breaker or switching devices are monitored by feedback signals. These indication inputs are logically assigned to the corresponding command outputs. The unit can therefore distinguish whether the indication changes as a consequence of a switching operation or due to a spontaneous change of state.

Indication derivation

A further indication (or a command) can be derived from an existing indication. Group indications can also be formed. The volume of information to the system interface can thus be reduced and restricted to the most important signals.

Typical Protection Schemes

1. Cables and overhead lines

Radial systems

Notes:

- 1) Auto-reclosure (ANSI 79) only with overhead lines.
- 2) Negative sequence overcurrent protection 46 as sensitive backup protection against asymmetrical faults.

General notes:

- The relay at the far end (D) is set with the shortest operating time. Relays further upstream have to be time-graded against the next downstream relay in steps of about 0.3 s.
- Inverse time or definite time can be selected according to the following criteria:
 - Definite time:

Source impedance is large compared to the line impedance, that is, there is small current variation between near and far end faults.

– Inverse time:

Longer lines, where the fault current is much less at the far end of the line than at the local end.

- Strong or extreme inverse-time:
- Lines where the line impedance is large compared to the source impedance (high difference for close-in and remote faults), or lines where coordination with fuses or reclosers is necessary. Steeper characteristics also provide higher stability on service restoration (cold load pickup and transformer inrush currents).

^{*)} Alternatives: 7SJ45/46, 7SJ60/61

Ring-main circuit

- Operating time of overcurrent relays to be coordinated with downstream fuses of load transformers (preferably with strong inverse-time characteristic with about 0.2 s grading-time delay)
- Thermal overload protection for the cables (option)
- Negative sequence overcurrent protection (46) as sensitive protection against asymmetrical faults (option).

Fig. 2/36 Ring-main circuit

Typical Protection Schemes

Switch-onto-fault protection

If switched onto a fault, instantaneous tripping can be effected. If the internal control function is used (local, via binary input or via serial interface), the manual closing function is available without any additional wiring. If the control switch is connected to a circuit-breaker bypassing the internal control function, manual detection using a binary input is implemented.

Fig. 2/37 Switch-onto-fault protection

Directional comparison protection (cross-coupling)

Cross-coupling is used for selective protection of sections fed from two sources with instantaneous tripping, that is, without the disadvantage of time coordination. The directional comparison protection is suitable if the distances between the protection stations are not significant and pilot wires are available for signal transmission. In addition to the directional comparison protection, the directional coordinated overcurrent-time protection is used for complete selective backup protection. If operated in a closed-circuit connection, an interruption of the transmission line is detected.

Distribution feeder with reclosers

- The feeder relay operating characteristics, delay times and auto-reclosure cycles must be carefully coordinated with downstream reclosers, sectionalizers and fuses. The 50 / 50N instantaneous zone is normally set to reach out to the first main feeder sectionalizing point. It has to ensure fast clearing of close-in faults and prevent blowing of fuses in this area ("fuse saving"). Fast auto-reclosure is initiated in this case. Further time-delayed tripping and reclosure steps (normally two or three) have to be graded against the recloser.
- The overcurrent relay should automatically switch over to less sensitive characteristics after long breaker interruption times in order to enable overriding of subsequent cold load pickup and transformer inrush currents.

Fig. 2/39 Distribution feeder with reclosers

3-pole multishot auto-reclosure (AR, ANSI 79)

Auto-reclosure (AR) enables 3-phase auto-reclosing of a feeder that has previously been disconnected by overcurrent protection.

SIPROTEC 7SJ61 allows up to nine reclosing shots. The first four dead times can be set individually. Reclosing can be blocked or initiated by a binary input or internally. After the first trip in a reclosing sequence, the high-set instantaneous elements (I>>>, I>>, I_E >>) can be blocked. This is used for fuse-saving applications and other similar transient schemes using simple overcurrent relays instead of fuses. The low-set definite-time (I>, I_E >) and the inverse-time (I_p , I_{Ep}) overcurrent elements remain operative during the entire sequence.

Fig. 2/40 3-pole multishot auto-reclosure (AR, ANSI 79)

Parallel feeder circuit

- The preferred application of this circuit is in the reliable supply of important consumers without significant infeed from the load side.
- The 67/67N directional overcurrent protection trips instantaneously for faults on the protected line. This saves one time-grading interval for the overcurrent relays at the infeed.
- The 51/51N overcurrent relay functions must be timegraded against the relays located upstream.

Fig. 2/41 Parallel feeder circuit

Typical Protection Schemes

Reverse-power monitoring at double infeed

If a busbar is fed from two parallel infeeds and a fault occurs on one of them, only the faulty infeed should be tripped selectively in order to enable supply to the busbar to continue from the remaining supply. Unidirectional devices that can detect a short-circuit current or energy flow from the busbar toward the incoming feeder should be used. Directional time-overcurrent protection is usually set via the load current. However, it cannot clear weak-current faults. The reverse-power protection can be set much lower than the rated power, thus also detecting the reverse-power flow of weak-current faults with fault currents significantly below the load current.

Fig. 2/42 Reverse-power monitoring at double infeed

Synchronization function

Note:

Also available in relays 7SA6, 7SD5, 7SA522, 7VK61.

- When two subsystems must be interconnected, the synchronization function monitors whether the subsystems are synchronous and can be connected without risk of losing stability.
- This synchronization function can be applied in conjunction with the auto-reclosure function as well as with the control function CLOSE commands (local/remote).

Fig. 2/43 Synchronization function

Cables or short overhead lines with infeed from both ends

Notes:

Notes:

- 1) Auto-reclosure only with overhead lines
- 2) Differential protection options:
- Type 7SD5 or 7SD610 with direct fiber-optic connection up to about 100 km or via a 64 kbit/s channel (optical fiber, microwave)
- Type 7SD52 or 7SD610 with 7XV5662 (CC-CC) with 2 and 3 pilot wires up to about 30 km
- Type 7SD80 with pilot wire and/or fibre optic protection data interface.

Overhead lines or longer cables with infeed from both ends

1) Teleprotection logic (85) for transfer trip or blocking

schemes. Signal transmission via pilot wire, power line carrier, digital network or optical fiber (to be provided separately). The teleprotection supplement is only

necessary if fast fault clearance on 100 % line length is

required, that is, second zone tripping (about 0.3 s delay)

cannot be accepted for far end faults. For further applica-

tion notes on teleprotection schemes, refer to the table on

2) Directional earth-fault protection 67N with inverse-time

3) Single or multishot auto-reclosure (79) only with overhead

Fig. 2/44 Cables or short overhead lines with infeed from both ends

Fig. 2/45 Overhead lines or longer cables with infeed from both ends

Subtransmission line

the following page.

delay against high-resistance faults

Note:

lines.

Connection to open delta winding if available. Relays 7SA6/522 and 7SJ62 can, however, also be set to calculate the zero-sequence voltage internally.

General notes:

Siemens SIP · Edition No.6

- Distance teleprotection is proposed as main protection and time-graded directional overcurrent as backup protection.
- The 67N function of 7SA6/522 provides additional high-resistance earth-fault protection. It can be used in parallel with the 21/21N function.
- Recommended teleprotection schemes: PUTT on medium and long lines with phase shift carrier or other secure communication channel POTT on short lines. BLOCKING with On / Off carrier (all line lengths).

Typical Protection Schemes

		Permissive underreach transfer trip (PUTT)	Permissive overreach transfer trip (POTT)	Blocking	Unblocking
Preferred application	Signal transmission system	Dependable and secure commu • Power line carrier with freque HF signal coupled to 2 phases better, to a parallel circuit to a signal through the fault locati • Microwave radio, especially di • Fiber-optic cables	inication channel: ncy shift modulation. of the protected line, or even void transmission of the HF on. gital (PCM)	Reliable communication channel (only required during external faults) • Power line carrier with amplitude modulation (ON / OFF). The same frequency may be used on all terminals)	Dedicated channel with continuous signal transfer • Power line carrier with frequency shift keying. Continuous signal transmission must be permitted.
	Characteristic of line	Best suited for longer lines – where the underreach zone provides sufficient resistance coverage	 Excellent coverage on short lines in the presence of fault resistance. Suitable for the protection of multi-terminal lines with intermediate infeed 	All line types – preferred practice in the US	Same as POTT
Advantages		 Simple technique No coordination of zones and times with the opposite end required. The combination of different relay types therefore presents no problems 	 Can be applied without underreaching zone 1 stage (e.g., overcompensated series uncompensated lines) Can be applied on extremely short lines (impedance less than minimum relay setting) Better for parallel lines as mutual coupling is not critical for the overreach zone Weak infeed terminals are no problem (Echo and Weak Infeed logic is included) 	Same as POTT	Same as POTT but: • If no signal is received (no block and no uncompensated block) then tripping by the overreach zone is released after 20 ms
Drawbacks		 Overlapping of the zone 1 reaches must be ensured. On parallel lines, teed feeders and tapped lines, the influence of zero sequence coupling and intermediate infeeds must be carefully considered to make sure a minimum overlapping of the zone 1 reach is always present. Not suitable for weak infeed terminals 	• Zone reach and signal timing coordination with the remote end is necessary (current reversal)	Same as POTT • Slow tripping – all teleprotection trips must be delayed to wait for the eventual blocking signal • Continuous channel monitoring is not possible	Same as POTT

 Table 2/1
 Application criteria for frequently used teleprotection schemes
Transmission line with reactor (Fig. 2/47)

Notes:

- 1) 51N only applicable with earthed reactor neutral.
- 2) If phase CTs at the low-voltage reactor side are not available, the high-voltage phase CTs and the CT in the neutral can be connected to a restricted earth-fault protection using one 7VH60 high-impedance relay.

General notes:

- Distance relays are proposed as main 1 and main 2 protection. Duplicated 7SA6 is recommended for series-compensated lines.
- Operating time of the distance relays is in the range of 15 to 25 ms depending on the particular fault condition. These tripping times are valid for faults in the underreaching distance zone (80 to 85 % of the line length). Remote end faults must be cleared by the superimposed teleprotection scheme. Its overall operating time depends on the signal transmission time of the channel, typically 15 to 20 ms for frequency shift audio-tone PLC or microwave channels, and lower than 10 ms for ON/OFF PLC or digital PCM signaling via optical fibers.

Teleprotection schemes based on distance relays therefore have operating times on the order of 25 to 30 ms with digital PCM coded communication. With state-of-the-art two-cycle circuit-breakers, fault clearing times well below 100 ms (4 to 5 cycles) can normally be achieved.

- Dissimilar carrier schemes are recommended for main 1 and main 2 protection, for example, PUTT, and POTT or Blocking/Unblocking.
- Both 7SA522 and 7SA6 provide selective 1-pole and/or 3-pole tripping and auto-reclosure. The earth-current directional comparison protection (67N) of the 7SA6 relay uses phase selectors based on symmetrical components. Thus, 1-pole auto-reclosure can also be executed with high-resistance faults. The 67N function of the 7SA522 relay can also be used as time-delayed directional overcurrent backup.
- The 67N functions are provided as high-impedance fault protection. 67N is often used with an additional channel as a separate carrier scheme. Use of a common channel with distance protection is only possible if the mode is compatible (e.g., POTT with directional comparison). The 67N may be blocked when function 21/21N picks up. Alternatively, it can be used as time-delayed backup protection.

Fig. 2/47 Transmission line with reactor

Transmission line or cable (with wide-band communication)

General notes:

• Digital PCM-coded communication (with n × 64 kbit/s channels) between line ends is becoming more and more frequently available, either directly by optical or microwave point-to-point links, or via a general-purpose digital communication network.

In both cases, the relay-type current differential protection 7SD52/61 can be applied. It provides absolute phase and zone selectivity by phase-segregated measurement, and is not affected by power swing or parallel line zero-sequence coupling effects. It is, furthermore, a current-only protection that does not need a VT connection. For this reason, the adverse effects of CVT transients are not applicable. This makes it particularly suitable for double and multicircuit lines where complex fault situations can occur. The 7SD5/61 can be applied to lines up to about 120 km in direct relay-to-relay connections via dedicated optical fiber cores (see also application "Cables or short overhead lines with infeed from both ends", page 2/21), and also to much longer distances of up to about 120 km by using separate PCM devices for optical fiber or microwave transmission. The 7SD5/61 then uses only a small part (64 to 512 kbit/s) of the total transmission capacity (on the order of Mbits/s).

• The 7SD52/61 protection relays can be combined with the distance relay 7SA52 or 7SA6 to form a redundant protection system with dissimilar measuring principles complementing each other (Fig. 2/48). This provides the highest degree of availability. Also, separate signal transmission ways should be used for main 1 and main 2 line protection, e.g., optical fiber or microwave, and power line carrier (PLC).

The current comparison protection has a typical operating time of 15 ms for faults on 100 % line length, including signaling time.

General notes for Fig. 2/49:

- SIPROTEC 7SD5 offers fully redundant differential and distance relays accommodated in one single bay control unit, and provides both high-speed operation of relays and excellent fault coverage, even under complicated conditions. Precise distance-to-fault location avoids time-consuming line patrolling, and reduces the downtime of the line to a minimum.
- The high-speed distance relay operates fully independently from the differential relay. Backup zones provide remote backup for upstream and downstream lines and other power system components

Fig. 2/48 Redundant transmission line protection

Fig. 2/49 Transmission line protection with redundant algorithm in one device

Transmission line, one-breaker-and-a-half terminal

Notes:

When the line is switched off and the line line disconnector (isolator) is open, high through-fault currents in the diameter may cause maloperation of the distance relay due to unequal CT errors (saturation).
 Normal practice is therefore to block the distance protection (21/21N) and the directional earth-fault protection (67N) under this condition via an auxiliary contact of the line line disconnector (isolator). A standby overcurrent function (50/51N, 51/51N) is released instead to protect

the remaining stub between the breakers ("stub" protec-

tion).2) Overvoltage protection only with 7SA6/52.

General notes:

- The protection functions of one diameter of a breaker-anda-half arrangement are shown.
- The currents of two CTs have each to be summed up to get the relevant line currents as input for main 1 and 2 line protection.
- The location of the CTs on both sides of the circuit-breakers is typical for substations with dead-tank circuit-breakers. Live-tank circuit-breakers may have CTs only on one side to reduce cost. A fault between circuit-breakers and CT (end fault) may then still be fed from one side even when the circuit-breaker has opened. Consequently, final fault clearing by cascaded tripping has to be accepted in this case.
- The 7VK61 relay provides the necessary end fault protection function and trips the circuit-breakers of the remaining infeeding circuits.

Fig. 2/50 Transmission line, one-breaker-and-a-half terminal, using 3 breaker management relays 7VK61

General notes for Fig. 2/50 and 2/51:

- For the selection of the main 1 and main 2 line protection schemes, the comments of application examples "Transmission with reactor", page 2/23 and "Transmission line or cable", page 2/24 apply.
- Auto-reclosure (79) and synchrocheck function (25) are each assigned directly to the circuit-breakers and controlled by main 1 and 2 line protection in parallel. In the event of a line fault, both adjacent circuit-breakers have to be tripped by the line protection. The sequence of auto-reclosure of both circuit-breakers or, alternatively, the auto-reclosure of only one circuit-breaker and the manual closure of the other circuit-breaker, may be made selectable by a control switch.
- A coordinated scheme of control circuits is necessary to ensure selective tripping interlocking and reclosing of the two circuit-breakers of one line (or transformer feeder).

• The voltages for synchrocheck have to be selected according to the circuit-breaker and disconnector (isolator) position by a voltage replica circuit.

General notes for Fig. 2/51:

• In this optimized application, the 7VK61 is only used for the center breaker. In the line feeders, functions 25, 79 and BF are also performed by transmission line protection 7SA522 or 7SA6.

Fig. 2/51 Tranmission line, breaker-and-a-half terminal, using 1 breaker management relay 7VK61

2. Transformers

Small transformer infeed

General notes:

- Earth faults on the secondary side are detected by current relay 51N. However, it has to be time-graded against downstream feeder protection relays.
- The restricted earth-fault relay 87N can optionally be applied to achieve fast clearance of earth faults in the transformer secondary winding. Relay 7VH60 is of the high-impedance type and requires class × CTs with equal transformation ratios.
- Primary circuit-breaker and relay may be replaced by fuses.

Fig. 2/52 Small transformer infeed

Large or important transformer infeed

General note:

• Relay 7UT612 provides numerical ratio and vector group adaptation. Matching transformers as used with traditional relays are therefore no longer applicable.

Notes:

- If an independent high-impedance-type earth-fault function is required, the 7VH60 earth-fault relay can be used instead of the 87N inside the 7UT612. However, class × CT cores would also be necessary in this case (see small transformer protection).
- 2) 51 and 51N may be provided in a separate 7SJ60 if required.

Fig. 2/53 Large or important transformer infeed

Dual infeed with single transformer

Parallel incoming transformer feeders

differential relays 87T.

Note:

General notes:

- Line CTs are to be connected to separate stabilizing inputs of the differential relay 87T in order to ensure stability in the event of line through-fault currents.
- Relay 7UT613 provides numerical ratio and vector group adaptation. Matching transformers, as used with traditional relays, are therefore no longer applicable.

The directional functions 67 and 67N do not apply for cases

where the transformers are equipped with the transformer

Fig. 2/54 Dual infeed with single transformer

HV infeed 1 HV infeed 2 52 *I>>* $I>, t I_E>, t$ ϑ> $I_2 >$, 7SJ60, 7SJ61 or 7SJ80 Protection \wedge same as I>. t $\overline{\uparrow} I > \underline{\uparrow} I_E >$ $I_E >, t$ infeed 1 75J62 $|_{r}>$ t 7SJ80 52 1) / \ Load bus 52 52 52 Load Load Load

Fig. 2/55 Parallel incoming transformer feeders

Parallel incoming transformer feeders with bus tie

General notes:

• Overcurrent relay 51, 51N each connected as a partial differential scheme. This provides simple and fast busbar protection and saves one time-grading step.

Fig. 2/56 Parallel incoming transformer feeders with bus tie

Three-winding transformer

Notes:

- 1) The zero-sequence current must be blocked before entering the differential relay with a delta winding in the CT connection on the transformer side with earthed starpoint. This is to avoid false operation during external earth faults (numerical relays provide this function by calculation). About 30 % sensitivity, however, is then lost in the event of internal faults. Optionally, the zerosequence current can be regained by introducing the winding neutral current in the differential relay (87T). Relay type 7UT613 provides two current inputs for this purpose. By using this feature, the earth-fault sensitivity can be upgraded again to its original value. Restricted earth-fault protection (87T) is optional. It provides backup protection for earth faults and increased earth-fault sensitivity (about 10 % IN, compared to about 20 to 30 % IN of the transformer differential relay). Separate class × CT-cores with equal transmission ratio are also required for this protection.
- 2) High impedance and overcurrent in one 7SJ61.

General notes:

- In this example, the transformer feeds two different distribution systems with cogeneration. Restraining differential relay inputs are therefore provided at each transformer side.
- If both distribution systems only consume load and no through-feed is possible from one MV system to the other, parallel connection of the CTs of the two MV transformer windings is admissible, which allows the use of a two-winding differential relay (7UT612).

Fig. 2/57 Three-winding transformer

Fig. 2/58 Autotransformer

Autotransformer

Notes:

- 1) 87N high-impedance protection requires special class × current transformer cores with equal transformation ratios.
- 2) The 7SJ60 relay can alternatively be connected in series with the 7UT613 relay to save this CT core.

General note:

• Two different protection schemes are provided: 87T is chosen as the low-impedance three-winding version (7UT613). 87N is a 1-phase high-impedance relay (7VH60) connected as restricted earth-fault protection. (In this example, it is assumed that the phase ends of the transformer winding are not accessible on the neutral side, that is, there exists a CT only in the neutral earthing connection.).

Large autotransformer bank

General notes:

- The transformer bank is connected in a breaker-and-a-half arrangement.
- Duplicated differential protection is proposed:
- <u>Main 1:</u> Low-impedance differential protection 87TL (7UT613) connected to the transformer bushing CTs.
- <u>Main 2:</u> High-impedance differential overall protection 87TL (7VH60). Separate class × cores and equal CT ratios are required for this type of protection.
- Backup protection is provided by distance protection relay (7SA52 and 7SA6), each "looking" with an instantaneous first zone about 80 % into the transformer and with a time-delayed zone beyond the transformer.
- The tertiary winding is assumed to feed a small station supply system with isolated neutral.

3. Motors

Small and medium-sized motors < about 1 MW

a) With effective or low-resistance earthed infeed $(I_E \ge I_{N Motor})$

General note:

- Applicable to low-voltage motors and high-voltage motors with low-resistance earthed infeed ($I_E \ge I_{N Motor}$)
- b) With high-resistance earthed infeed ($I_E \leq I_{NMotor}$)

Notes:

- 1) Core-balance CT.
- Sensitive directional earth-fault protection (67N) only applicable with infeed from isolated or Petersen coil earthed system (for dimensioning of the sensitive directional earth-fault protection, see also application circuit page 2/33 and Fig. 2/68)
- 3) The 7SJ602 relay can be applied for isolated and compensated systems.

Fig. 2/61 Motor protection with high-resistance earthed infeed

Large HV motors > about 1 MW

Notes:

- 1) Core-balance CT.
- 2) Sensitive directional earth-fault protection (67N) only applicable with infeed from isolated or Petersen coil earthed system.
- 3) This function is only needed for motors where the startup time is longer than the safe stall time tE. According to IEC 60079-7, the tE time is the time needed to heat up AC windings, when carrying the starting current I_A , from the temperature reached in rated service and at maximum ambient air temperature to the limiting temperature. A separate speed switch is used to supervise actual starting of the motor. The motor circuit-breaker is tripped if the motor does not reach speed in the preset time. The speed switch is part of the motor supply itself.
- 4) Pt100, Ni100, Ni120
- 5) 49T only available with external temperature detector device (RTD-box 7XV5662)

Fig. 2/62 Protection of large HV motors > about 1 MW

Cold load pickup

By means of a binary input that can be wired from a manual close contact, it is possible to switch the overcurrent pickup settings to less sensitive settings for a programmable amount of time. After the set time has expired, the pickup settings automatically return to their original setting. This can compensate for initial inrush when energizing a circuit without compromising the sensitivity of the overcurrent elements during steady-state conditions.

Fig. 2/63 Cold load pickup

4. Generators

Generators < 500 kW (Fig. 2/64 and Fig. 2/65)

Note:

If a core-balance CT is provided for sensitive earth-fault protection, relay 7SJ602 with separate earth-current input can be used.

Generators, typically 1–3 MW

(Fig. 2/66)

Note:

Two VTs in V connection are also sufficient.

Generators > 1-3 MW

(Fig. 2/67)

Notes:

1) Functions 81 and 59 are required only where prime mover can assume excess speed and the voltage regulator may permit rise of output voltage above upper limit.

2) Differential relaying options:

- Low-impedance differential protection 87.
- Restricted earth-fault protection with low-resistance earthed neutral (Fig. 2/66).

Fig. 2/66 Protection for generators 1–3 MW

Fig. 2/64 Generator with solidly earthed neutral

Fig. 2/65 Generator with resistance-earthed neutral

Fig. 2/67 Protection for generators >1-3 MW

Generators > 5-10 MW feeding into a system with isolated neutral

(Fig. 2/68)

General notes:

- The setting range of the directional earth-fault protection (67N) in the 7UM6 relay is 2–1,000 mA. Depending on the current transformer accuracy, a certain minimum setting is required to avoid false operation on load or transient currents.
- In practice, efforts are generally made to protect about 90 % of the machine winding, measured from the machine terminals. The full earth current for a terminal fault must then be ten times the setting value, which corresponds to the fault current of a fault at 10 % distance from the machine neutral.

Relay earth-current input connected to:	Minimum relay setting:	Comments:
Core-balance CT 60 / 1 A: 1 single CT 2 parallel CTs 3 parallel Cts 4 parallel CTs	2 mA 5 mA 8 mA 12 mA	
Three-phase CTs in residual (Holmgreen) connection	1 A CT: 50 mA 5 A CT: 200 mA	In general not suitable for sensitive earth- fault protection
Three-phase CTs in residual (Holmgreen) connection with special factory calibration to minimum residual false currents (≤ 2 mA)	2–3 ‰ of secondary rated CT current $I_{n SEC}$ 10–15 mA with 5 A CTs	1 A CTs are not recommended in this case

For the most sensitive setting of 2 mA, we therefore need 20 mA secondary earth current, corresponding to $(60/1) \times 20$ mA = 1.2 A primary.

If sufficient capacitive earth current is not available, an earthing transformer with resistive zero-sequence load can be installed as earth-current source at the station busbar. The smallest standard earthing transformer TGAG 3541 has a 20 s short-time rating of input connected to: $S_G = 27$ kVA

In a 5 kV system, it would deliver:

$$I_{G \, 20 \, \text{s}} = \frac{\sqrt{3} \cdot S_G}{U_N} = \frac{\sqrt{3} \cdot 27,000 \text{ VA}}{5,000 \text{ V}} = 9.4 \text{ A}$$

corresponding to a relay input current of $9.4 \text{ A} \times 1/60 \text{ A} = 156 \text{ mA}$. This would provide a 90 % protection range with a setting of about 15 mA, allowing the use of 4 parallel connected core-balance CTs. The resistance at the 500 V open-delta winding of the earthing transformer would then have to be designed for

$$R_B = U_{SEC}^2 / S_G = 500 \ U^2 / 27,000 \ VA = 9.26 \ \Omega \ (27 \ kW, 20 \ s)$$

For a 5 MVA machine and 600/5 A CTs with special calibration for minimum residual false current, we would get a secondary current of $I_{G SEC} = 9.4 \text{ A} / (600/5) = 78 \text{ mA}.$

With a relay setting of 12 mA, the protection range would in

this case be
$$100\left(1-\frac{12}{78}\right) = 85$$
 %.

Fig. 2/68 Protection for generators > 5-10 MW

Notes (Fig. 2/68):

- 1) The standard core-balance CT 7XR96 has a transformation ratio of 60/1 A.
- 2) Instead of an open-delta winding at the terminal VT, a 1-phase VT at the machine neutral could be used as zero-sequence polarizing voltage.
- 3) The earthing transformer is designed for a short-time rating of 20 s. To prevent overloading, the load resistor is automatically switched off by a time-delayed zero-sequence voltage relay (59N + 62) and a contactor (52).
- 4) During the startup time of the generator with the open circuit-breaker, the earthing source is not available. To ensure earth-fault protection during this time interval, an auxiliary contact of the circuit-breaker can be used to change over the directional earth-fault relay function (67N) to a zero-sequence voltage detection function via binary input.

Generators > 50–100 MW in generator transformer unit connection

(Fig. 2/69)

Notes:

- 1) 100 % stator earth-fault protection based on 20 Hz voltage injection
- 2) Sensitive rotor earth-fault protection based on 1–3 Hz voltage injection
- 3) Non-electrical signals can be incoupled in the protection via binary inputs (BI)
- 4) Only used functions shown; further integrated functions available in each relay type; for more information, please refer to part 1 of this catalog.

Fig. 2/69 Protections for generators > 50 MW

Relay type	Functions ⁴⁾	Number of relays required
7UM62	21 24 32 40 46 49 51GN 59GN 59 64R 64R ²⁾ 78	2
7UM61 o 7UM62	(81) (87G) via BI: (71) (63) r 51 61N optionally 21 59 81 via BI: (71)	63 1
7UT612	87T 51N or	otionally 1 2
7UT613	871	1

Fig. 2/70 Assignment for functions to relay type

Synchronization of a generator

Fig. 2/71 shows a typical connection for synchronizing a generator. Paralleling device 7VE6 acquires the line and generator voltage, and calculates the differential voltage, frequency and phase angle. If these values are within a permitted range, a CLOSE command is issued after a specified circuit-breaker make time. If these variables are out of range, the paralleling device automatically sends a command to the voltage and speed controller. For example, if the frequency is outside the range, an actuation command is sent to the speed controller. If the voltage is outside the range, the voltage controller is activated.

Fig. 2/71 Synchronization of a generator

5. Busbars

Busbar protection by overcurrent relays with reverse interlocking

General note:

• Applicable to distribution busbars without substantial $(< 0.25 \times I_N)$ backfeed from the outgoing feeders.

Fig. 2/72 Busbar protection by O/C relays with reverse interlocking

High-impedance busbar protection

General notes:

- Normally used with single busbar, and one-breaker-and-a-half schemes.
- Requires separate class X current transformer cores. All CTs must have the same transformation ratio.

Note:

A varistor is normally applied across the relay input terminals to limit the voltage to a value safely below the insulation voltage of the secondary circuits.

Low-impedance busbar protection 7SS60

General notes:

- Normally used with single busbar, one-breaker-and-a-half, and double busbar schemes, different transformation ratios can be adapted by matching transformers.
- Unlimited number of feeders.
- Feeder protection can be connected to the same CT core.

Fig. 2/74 Low-impedance busbar protection 7SS60

Distributed busbar protection 7SS52

General notes:

- Suitable for all types of busbar schemes.
- Preferably used for multiple busbar schemes where a disconnector (isolator) replica is necessary.
- The numerical busbar protection 7SS52 provides additional breaker failure protection.
- Different CT transformation ratios can be adapted numerically.
- The protection system and the disconnector (isolator) replica are continuously self-monitored by the 7SS52.
- Feeder protection can be connected to the same CT core.

Fig. 2/75 Distributed busbar protection 7SS52

6. Power systems

Load shedding

In unstable power systems (e.g., isolated systems, emergency power supply in hospitals), it may be necessary to isolate selected loads from the power system to prevent overload of the overall system. The overcurrent-time protection functions are effective only in the case of a short-circuit.

Overloading of the generator can be measured as a frequency or voltage drop.

(Protection functions 27 and 81 available in 7RW600, 7SJ6 and 7SJ8.)

Fig. 2/76 Load shedding

Load shedding with rate-of-frequency-change protection

The rate-of-frequency-change protection calculates, from the measured frequency, the gradient or frequency change df/dt. It is thus possible to detect and record any major active power loss in the power system, to disconnect certain consumers accordingly and to restore the system to stability. Unlike frequency protection, rate-of-frequency-change protection reacts before the frequency threshold is undershot. To ensure effective protection settings, it is recommended to consider requirements throughout the power system as a whole. The rate-of-frequency-change protection function can also be used for the purposes of system decoupling. Rate-of-frequency-change protection can also be enabled by an underfrequency state.

Fig. 2/77 Load shedding with rate-of-frequency-change protection

Trip circuit supervision (ANSI 74TC)

One or two binary inputs can be used for the trip circuit supervision.

Fig. 2/78 Trip circuit supervision (ANSI 74TC)

Disconnecting facility with flexible protection function

General note:

The SIPROTEC protection relay 7SJ64 disconnects the switchgear from the utility power system if the generator feeds energy back into the power system (protection function P reverse>). This functionality is achieved by using flexible protection. Disconnection also takes place in the event of frequency or voltage fluctuations in the utility power system (protection functions

f<, *f*>, *U*<, *U*>, *I*_{dir}>, *I*_{Edir}>/ 81, 27, 59, 67, 67N).

Notes:

- 1) The transformer is protected by differential protection and inverse or definite-time overcurrent protection functions for the phase currents. In the event of a fault, the circuitbreaker CB1 on the utility side is tripped by a remote link. Circuit-breaker CB2 is also tripped.
- 2) Overcurrent-time protection functions protect feeders 1 and 2 against short-circuits and overload caused by the connected loads. Both the phase currents and the zero currents of the feeders can be protected by inverse and definite-time overcurrent stages. The circuit-breakers CB4 and CB5 are tripped in the event of a fault.

Fig. 2/79 Example of a switchgear with autonomous generator supply

Typical applications and functions

Relay operating characteristics and their settings must be carefully coordinated in order to achieve selectivity. The aim is basically to switch off only the faulty component and to leave the rest of the power system in service in order to minimize supply interruptions and to ensure stability.

Sensitivity

Protection should be as sensitive as possible in order to detect faults at the lowest possible current level. At the same time, however, it should remain stable under all permissible load, overload and through-fault conditions. For more information: http://www.siemens.com/systemplanning. The Siemens engineering programs SINCAL and SIGRADE are especially designed for selective protection grading of protection relay systems. They provide short-circuit calculations, international standard characteristics of relays, fuses and circuit-breakers for easy protection grading with respect to motor starting, inrush phenomena, and equipment damage curves.

Phase-fault overcurrent relays

The pickup values of phase overcurrent relays are normally set 30 % above the maximum load current, provided that sufficient short-circuit current is available. This practice is recommended particularly for mechanical relays with reset ratios of 0.8 to 0.85. Numerical relays have high reset ratios near 0.95 and allow, therefore, about a 10 % lower setting. Feeders with high transformer and / or motor load require special consideration.

Transformer feeders

The energizing of transformers causes inrush currents that may last for seconds, depending on their size (Fig. 2/79). Selection of the pickup current and assigned time delay have to be coordinated so that the inrush current decreases below the relay overcurrent reset value before the set operating time has elapsed. The inrush current typically contains only about a 50 % fundamental frequency component. Numerical relays that filter out harmonics and the DC component of the inrush current peak values of Fig. 2/80 will be reduced to more than one half in this case. Some digital relay types have an inrush detection function that may block the trip of the overcurrent protection resulting from inrush currents.

Time constant of inrush current						
Nominal power (MVA)	0.5 1.0	1.0 10	> 10			
Time constant (s)	0.16 0.2	0.2 1.2	1.2 720			

Fig. 2/80 Peak value of inrush current

Earth-fault protection relays

Earth-current relays enable a much more sensitive setting, because load currents do not have to be considered (except 4-wire circuits with 1-phase load). In solidly and low-resistance earthed systems, a setting of 10 to 20 % rated load current can generally be applied. High-resistance earthing requires a much more sensitive setting, on the order of some amperes primary. The earth-fault current of motors and generators, for example, should be limited to values below 10 A in order to avoid iron burning. In this case, residualcurrent relays in the start point connection of CTs cannot be used; in particular, with rated CT primary currents higher than 200 A. The pickup value of the zero-sequence relay would be on the order of the error currents of the CTs. A special core-balance CT is therefore used as the earth-current sensor. The core-balance CT 7XR96 is designed for a ratio of 60/1 A. The detection of 6 A primary would then require a relay pickup setting of 0.1 A secondary. An even more sensitive setting is applied in isolated or Petersen coil earthed systems where very low earth currents occur with 1-phase-toearth faults. Settings of 20 mA and lower may then be required depending on the minimum earth-fault current. Sensitive directional earth-fault relays (integrated into the relays 7SJ62, 63, 64, 7SJ80, 7SK80, 7SA6) allow settings as low as 5 mA.

Motor feeders

The energization of motors causes a starting current of initially 5 to 6 times the rated current (locked rotor current).

A typical time-current curve for an induction motor is shown in Fig. 2/81.

In the first 100 ms, a fast-decaying asymmetrical inrush current also appears. With conventional relays, it was common practice to set the instantaneous overcurrent stage of the short-circuit protection 20 to 30 % above the locked rotor current with a short-time delay of 50 to 100 ms to override the asymmetrical inrush period.

Numerical relays are able to filter out the asymmetrical current component very rapidly so that the setting of an additional time delay is no longer applicable.

The overload protection characteristic should follow the thermal motor characteristic as closely as possible. The adaptation is made by setting the pickup value and the thermal time constant, using the data supplied by the motor manufacturer. Furthermore, the locked-rotor protection timer has to be set according to the characteristic motor value.

Time grading of overcurrent relays (51)

The selectivity of overcurrent protection is based on time grading of the relay operating characteristics. The relay closer to the infeed (upstream relay) is time-delayed against the relay further away from the infeed (downstream relay). The calculation of necessary grading times is shown in Fig. 2/81 by an example for definite-time overcurrent relays.

The overshoot times take into account the fact that the measuring relay continues to operate due to its inertia, even if when the fault current is interrupted. This may be high for mechanical relays (about 0.1 s) and negligible for numerical relays (20 ms).

Inverse-time relays (51)

For the time grading of inverse-time relays, in principle the same rules apply as for the definite-time relays. The time grading is first calculated for the maximum fault level and then checked for lower current levels (Fig. 2/82).

If the same characteristic is used for all relays, or if when the upstream relay has a steeper characteristic (e.g., very much over normal inverse), then selectivity is automatically fulfilled at lower currents.

Differential relay (87)

Transformer differential relays are normally set to pickup values between 20 and 30 % of the rated current. The higher value has to be chosen when the transformer is fitted with a tap changer.

Restricted earth-fault relays and high-resistance motor/generator differential relays are, as a rule, set to about 10 % of the rated current.

Fig. 2/81 Typical motor current-time characteristics

Instantaneous overcurrent protection (50)

This is typically applied on the final supply load or on any protection relay with sufficient circuit impedance between itself and the next downstream protection relay. The setting at transformers, for example, must be chosen about 20 to 30 % higher than the maximum through-fault current. The relay must remain stable during energization of the transformer.

Calculation example

The feeder configuration of Fig. 2/84 and the associated load and short-circuit currents are given. Numerical overcurrent relays 7SJ60 with normal inverse-time characteristics are applied.

The relay operating times, depending on the current, can be derived from the diagram or calculated with the formula given in Fig. 2/85.

The I_p/I_N settings shown in Fig. 2/84 have been chosen to get pickup values safely above maximum load current.

This current setting should be lowest for the relay farthest downstream. The relays further upstream should each have equal or higher current settings.

The time multiplier settings can now be calculated as follows:

Station C:

• For coordination with the fuses, we consider the fault in location F1.

The short-circuit current $I_{scc.}$ max. related to 13.8 kV is 523 A.

This results in 7.47 for I/I_p at the overcurrent relay in location C.

• With this value and $T_p = 0.05$, an operating time of $t_A = 0.17$ s can be derived from Fig. 2/85.

This setting was selected for the overcurrent relay to get a safe grading time over the fuse on the transformer low-voltage side. Safety margin for the setting values for the relay at station C are therefore:

- Pickup current: $I_p/I_N = 0.7$
- Time multiplier: $T_p = 0.05$.

Station B:

The relay in B has a primary protection function for line B-C and a backup function for the relay in C. The maximum through-fault current of 1.395 A becomes effective for a fault in location F2. For the relay in C, an operating time time of 0.11 s ($I/I_p = 19.93$) is obtained.

It is assumed that no special requirements for short operating times exist and therefore an average time grading interval of 0.3 s can be chosen. The operating time of the relay in B can then be calculated.

- $t_{\rm B} = 0.11 + 0.3 = 0.41 \, {\rm s}$
- Value of $I_p/I_N = \frac{1,395 \text{ A}}{220 \text{ A}} = 6.34 \text{ (Fig. 2/84)}$
- With the operating time 0.41 s and $I_p/I_N = 6.34$, $T_p = 0.11$ can be derived from Fig. 2/85.

	*also called overtravel or coasting time
ing	
$t_{51F} = t_{52F} + t_{OS} + t_{OS}$	t_M
	$t_{TG} = 0.10 \text{ s} + 0.15 \text{ s} + 0.15 \text{ s} = 0.40 \text{ s}$

Example 1	$t_{TG} = 0.10 \text{ s} + 0.15 \text{ s} + 0.15 \text{ s} = 0.40 \text{ s}$
Oil circuit-breaker	$t_{52F} = 0.10 \text{ s}$
Mechanical relays	$t_{OS} = 0.15 \text{ s}$
Safety margin for measuring errors, etc.	<i>t</i> _M = 0.15 s
Example 2	$t_{TG} = 0.08 + 0.02 + 0.10 = 0.20$ s
Vacuum circuit-breaker	$t_{52F} = 0.08 \text{ s}$
Numerical relays	$t_{OS} = 0.02 \text{ s}$
Safety margin	$t_M = 0.10 \text{ s}$

Time grad

 $t_{rs} = t_{51M} -$

Station	Max. load A	I _{SCC.} max* A	CT ratio	I_p/I_N^{**}	I _{prim} *** A	$I/I_p = \frac{I_{scc.\ max}}{I_{prim}}$	
А	300	4,500	400/5	1.0	400	11.25	
В	170	2,690	200/5	1.1	220	12.23	
С	50	1,395	100/5	0.7	70	19.93	
D	-	523	-	-	-	-	
 *) I_{SCC}, max = Maximum short-circuit current **) L₂/L₃ = Relay current multiplier setting 							

***) I_{prim} = Primary setting current corresponding to I_p/I_N

Fig. 2/84 Time grading of inverse-time relays for a radial feeder

The setting values for the relay at station B are:

- Pickup current: $I_p/I_N = 1.1$
- Time multiplier $T_p = 0.11$

Given these settings, the operating time of the relay in B for a close fault in F3 can also be checked: The short-circuit current increases to 2,690 A in this case (Fig. 2/84). The corresponding I/I_p value is 12.23.

• With this value and the set value of $T_p = 0.11$, an operating time of 0.3 s is obtained again (Fig. 2/85).

Station A:

• Adding the time grading interval of 0.3 s, the desired operating itme is $t_A = 0.3 + 0.3 = 0.6$ s.

Following the same procedure as for the relay in station B, the following values are obtained for the relay in station A:

- Pickup current: $I_p / I_N = 1.0$
- Time multiplier $\dot{T}_p = 0.17$
- For the close-in fault at location F4, an operating time of 0.48 s is obtained.

The normal way

To prove the selectivity over the whole range of possible short-circuit currents, it is normal practice to draw the set of operating curves in a common diagram with double log scales. These diagrams can be calculated manually and drawn point-by-point or constructed by using templates.

Today, computer programs are also available for this purpose. Fig. 2/86 shows the relay coordination diagram for the selected example, as calculated by the Siemens program SIGRADE (Siemens Grading Program). For further information: http://www.siemens.com/systemplanning.

Note:

To simplify calculations, only inverse-time characteristics have been used for this example. About 0.1 s shorter operating times could have been reached for high-current faults by additionally applying the instantaneous zones *I*>> of the 7SJ60 relays.

Coordination of overcurrent relays with fuses and low-voltage trip devices

The procedure is similar to the above-described grading of overcurrent relays. A time interval of between 0.1 and 0.2 s is usually sufficient for a safe time coordination.

Strong and extremely inverse characteristics are often more suitable than normal inverse characteristics in this case. Fig. 2/87 shows typical examples.

Simple distribution substations use a power fuse on the secondary side of the supply transformers (Fig. 2/87a).

In this case, the operating characteristic of the overcurrent relay at the infeed has to be coordinated with the fuse curve.

Fig. 2/85 Normal inverse-time characteristic of the 7SJ60 relay

Normal inverse

$$t = \frac{0.14}{(I/I_p)^{0.02} - 1} \cdot T_p(s)$$

Strong inverse characteristics may be used with expulsiontype fuses (fuse cutouts), while extremely inverse versions adapt better to current limiting fuses.

In any case, the final decision should be made by plotting the curves in the log-log coordination diagram.

Electronic trip devices of LV breakers have long-delay, short-delay and instantaneous zones. Numerical overcurrent relays with one inverse-time and two definite-time zones can closely be adapted to this (Fig. 2/87b).

Fig. 2/86 Overcurrent-time grading diagram

Fig. 2/87 Coordination of an overcurrent relay with an MV fuse and low-voltage breaker trip device

Coordination of distance relays

The distance relay setting must take into account the limited relay accuracy, including transient overreach (5 %, according to IEC 60255-6), the CT error (1 % for class 5P and 3 % for class 10P) and a security margin of about 5 %. Furthermore, the line parameters are often only calculated, not measured. This is a further source of errors. A setting of 80 to 85 % is therefore common practice; 80 % is used for mechanical relays, while 85 % can be used for the more accurate numerical relays.

Where measured line or cable impedances are available, the protected zone setting may be extended to 90 %. The second and third zones have to keep a safety margin of about 15 to 20 % to the corresponding zones of the following lines. The shortest following line always has to be considered (Fig. 2/88).

As a general rule, the second zone should at least reach 20 % over the next station to ensure backup for busbar faults, and the third zone should cover the longest following line as backup for the line protection.

Grading of zone times

The first zone normally operates undelayed. For the grading of the time delays of the second and third zones, the same rules as for overcurrent relays apply (Fig. 2/83, page 41). For the quadrilateral characteristics (relays 7SA6 and 7SA5), only the reactance values (X values) have to be considered for the protected zone setting. The setting of the R values should cover the line resistance and possible arc or fault resistances. The arc resistance can be roughly estimated as follows:

$$R_{Arc} = \frac{2.5 \cdot l_{arc}}{I_{SCC Min}} [\Omega]$$

 l_{arc} = Arc length in mm

I_{SCC Min} = Minimum short-circuit current in kA

- Typical settings of the ratio R/X are:
- Short lines and cables (≤ 10 km): R/X = 2 to 6
- Medium line lengths < 25 km: R/X = 2
- Longer lines 25 to 50 km: R/X = 1

Shortest feeder protectable by distance relays

The shortest feeder that can be protected by underreaching distance zones without the need for signaling links depends on the shortest settable relay reactance.

$$X_{Prim Min} = X_{Relay Min} \cdot \frac{VT_{ratio}}{CT_{ratio}}$$
$$l_{min} = \frac{X_{Prim Min}}{X'_{Line}}$$

The shortest setting of the numerical Siemens relays is 0.05 Ω for 1 A relays, corresponding to 0.01 Ω for 5 A relays. This allows distance protection of distribution cables down to the range of some 500 meters.

Breaker failure protection setting

Most numerical relays in this guide provide breaker failure (BF) protection as an integral function. The initiation of the BF protection by the internal protection functions then takes place via software logic. However, the BF protection function may also be initiated externally via binary inputs by an alternate protection. In this case, the operating time of intermediate relays (BFI time) may have to be considered. Finally, the tripping of the infeeding breakers requires auxiliary relays, which add a small time delay (BFI) to the overall fault clearing time. This is particularly the case with one-breaker-and-a-half or ring bus arrangements where a separate breaker failure relay (7SV600 or 7VK61) is used per breaker (Fig. 2/83, Fig. 2/84).

The decisive criterion of BF protection time coordination is the reset time of the current detector (50BF), which must not be exceeded under any condition during normal current interruption. The reset times specified in the Siemens numerical relay manuals are valid for the worst-case condition: interruption of a fully offset short-circuit current and low current pickup setting (0.1 to 0.2 times rated CT current).

 $Z_{IA} = 0.85 \cdot ZL_{A-B}$ $Z_{2A} = 0.85 \cdot (ZL_{A-B} + Z_{IB})$ $Z_{2A} = 0.85 \cdot (ZL_{A-B} + Z_{2B})$

Fig. 2/88 Grading of distance zones

Fig. 2/89 Operating characteristics of Siemens distance relays

The reset time is 1 cycle for EHV relays (7SA6/52, 7VK61) and 1.5 to 2 cycles for distribution type relays (7SJ**).

Fig. 2/90 (next page) shows the time chart for a typical breaker failure protection scheme. The stated times in parentheses apply for transmission system protection and the times in square brackets for distribution system protection.

High-impedance differential protection; verification of design

The following design data must be established: CT data

The prerequisite for high-impedance scheme is that all CTs used for that scheme must have the same ratio. They should also be of low leakage flux design according to Class PX of IEC 60044-1 (former Class X of BS 3938) or TPS of IEC 60044-6, when used for high-impedance busbar protection scheme. When used for restricted earth-fault differential protection of e.g. a transformer winding especially in solidly grounded networks, CTs of Class 5P according to IEC 60044-1 can be used as well. In each case the excitation characteristic and the secondary winding resistance are to be provided by the manufacturer. The knee-point voltage of the CT must be at least twice the relay pickup voltage to ensure operation on internal faults.

The relay

The relay can be either:

a) dedicated design high-impedance relay, e.g., designed as a sensitive current relay 7VH60 or 7SG12 (DAD-N) with external series resistor R_{stab} . If the series resistor is integrated into the relay, the setting values may be directly applied in volts, as with the relay 7VH60 (6 to 60V or 24 to 240 V); or b) digital overcurrent protection relay with sensitive current input, like 7SJ6 or 7SR1 (Argus-C). To the input of the relay a series stabilizing resistor R_{stab} will be then connected as a rule in order to obtain enough stabilization for the highimpedance scheme. Typically, a non-linear resistor V (varistor) will be also connected to protect the relay and wiring against overvoltages.

Sensitivity of the scheme

For the relay to operate in the event of an internal fault, the primary current must reach a minimum value to supply the relay pickup current (I_{set}), the varistor leakage current (I_{var}) and the magnetizing currents of all parallel-connected CTs at the set pickup voltage. A low relay voltage setting and CTs with low magnetizing current therefore increase the protection sensitivity

Stability during external faults

This check is made by assuming an external fault with maximum through-fault current and full saturation of the CT in the faulty feeder. The saturated CT is then substituted with its secondary winding resistance R_{CT} , and the appearing relay voltage VR corresponds to the voltage drop of the in-feeding currents (through-fault current) across R_{CT} and R_{lead} . The current (voltage) at the relay must, under this condition, stay reliably below the relay pickup value.

In practice, the wiring resistances R_{lead} may not be equal. In this case, the worst condition with the highest relay voltage (corresponding to the highest through-fault current) must be sought by considering all possible external feeder faults.

Setting

The setting is always a trade-off between sensitivity and stability. A higher voltage setting leads not only to enhanced through-fault stability but also to higher CT magnetizing and

Fig. 2/90 Breaker failure protection, logic circuit

Fig. 2/91 Time coordination of BF time setting

Fig. 2/92 Principle connection diagram for high-impedance restricted earth-fault protection of a winding of the transformer using SIPROTEC digital overcurrent relay (e.g. 7SJ61)

Relay setting U _{rms}	С	β	Varistor type
≤ 125	450	0.25	600 A / S1 / S256
125 - 240	900	0.25	600 A / S1/S1088

Calculation example:

Restricted earth fault protection for the 400 kV winding of 400 MVA power transformer with $I_{r, 400 kV} = 577$ A installed in a switchgear with rated withstand short-circuit current of 40 kA.

Given:

N = 4 CTs connected in parallel; I_{pn}/I_{sn} = 800 A / 1 A – CT ratio; U_k = 400 V – CT Knee-point voltage;

 $I_m = 20 \text{ mA} - \text{CT}$ magnetizing current at U_k ;

 $R_{CT} = 3 \Omega - CT$ internal resistance;

 $R_{lead} = 2 \Omega$ – secondary wiring (lead) resistance

Relay: 75J612; Time overcurrent 1Phase input used with setting range $I_{set} = 0.003$ A to 1.5 A in steps of 0.001 A; relay internal burden $R_{relay} = 50 \text{ m}\Omega$

Stability calculation

$$U_{s,min} = I_{k,max,thr} \frac{I_{sn}}{I_{pn}} \left(R_{CT} + R_{lead} \right) = 10,000 \frac{1}{800} (3+2) = 62.6 \text{ V}$$

with $I_{k,max,thr}$ taken as $16 \cdot I_{r,400kV} = 16 \cdot 577 \text{ A} = 9,232 \text{ A}$, rounded up to 10 kA.

The actual stability voltage for the scheme U_s can be taken with enough safety margin as $U_s = 130 V$ (remembering that $2U_s < U_k$).

Fault setting calculation

For the desired primary fault sensitivity of 125 A, which is approx. 22 % of the rated current of the protected winding $I_{r, 400 kV}$ (i.e. $I_{p, des} = 125$ A) the following current setting can be calculated:

$$I_{set} = I_{p,des} \frac{I_{sn}}{I_{pn}} - N \cdot I_m \frac{U_s}{U_k} = 125 \frac{1}{800} - 4 \cdot 0.02 \frac{130}{400} = 0.13 \text{ A}$$

Stabilizing resistor calculation

From the U_s and I_{set} values calculated above the value of the stabilizing resistor R_{stab} can be calculated:

$$R_{stab} = \frac{U_s}{I_{set}} - R_{relay} = \frac{130}{0.13} - 0.05 = \approx 1,000 \ \Omega$$

where the relay resistance can be neglected.

The stabilizing resistor R_{stab} can be chosen with a necessary minimum continuous power rating $P_{\text{stabscont}}$ of:

$$P_{stab,cont} \ge \frac{U_s^2}{R_{stab}} = \frac{130^2}{1000} = 16.9 \ W$$

varistor leakage currents, resulting consequently in a higher primary pickup current.

A higher voltage setting also requires a higher knee-point voltage of the CTs and therefore greater size of the CTs. A sensitivity of 10 to 20 % of I_r (rated current) is typical for restricted earth-fault protection. With busbar protection, a pickup value \geq Ir is normally applied. In networks with neutral earthing via impedance the fault setting shall be revised against the minimum earth fault conditions.

Non-linear resistor (varistor)

Voltage limitation by a varistor is needed if peak voltages near or above the insulation voltage (2 kV ... 3kV) are expected. A limitation to $U_{rms} = 1,500$ V is then recommended. This can be checked for the maximum internal fault current by applying the formula shown for $U_{max relav}$. A restricted earth-fault protection may sometimes not require a varistor, but a busbar protection in general does. However, it is considered a good practice to equip with a varistor all high impedance protection installations. The electrical varistor characteristic of a varistor can be expressed as $U = C I^{\beta}$ where C and β are the varistor constants. Moreover, R_{stab} must have a short time rating large enough to withstand the fault current levels before the fault is cleared. The time duration of 0.5 seconds can be typically considered ($P_{\text{stab},0.5s}$) to take into account longer fault clearance times of back-up protection.

The rms voltage developed across the stabilizing resistor is decisive for the thermal stress of the stabilizing resistor. It is calculated according to formula:

$$U_{rms,relay} = 1.3 \cdot \sqrt[4]{U_k^3 \cdot R_{stab} \cdot I_{k,max,int}} \frac{I_{sm}}{I_{pm}} = 1.3 \cdot \sqrt[4]{400^3 \cdot 1000 \cdot 50} = 1738.7V$$

The resulting short-time rating P_{stab} , 0.5 s equals to:

$$P_{stab,0.5s} \ge \frac{U_{rms,relay}^2}{R_{stab}^2} = \frac{1739^2}{1000} = 3023W$$

Check whether the voltage limitation by a varistor is required

The relay should normally be applied with an external varistor which should be connected across the relay and stabilizing resistor input terminals. The varistor limits the voltage across the terminals under maximum internal fault conditions. The theoretical voltage which may occur at the terminals can be determined according to following equation:

$$U_{k, max, int} = I_{k, max, int} \frac{I_{sn}}{I_{pn}} \left(R_{relay} + R_{stab} \right) = 40,000 \frac{1}{800} \left(0.05 + 1000 \right) = 50003 \text{ V}$$

with $I_{k,max,int}$ taken as the rated short-circuit current of the switchgear = 40 kA. The resulting maximum peak voltage across the panel terminals

(i.e. tie with relay and Rstab connected in series):

$$\hat{U}_{\text{max,relay}} = 2\sqrt{2U_k (U_{k,\text{max,int}} - U_k)} = 2\sqrt{2 \cdot 400(50003 - 400)} = 12600V$$

Since $U_{max, relay} > 1.5$ kV the varistor is necessary.

Exemplarily, a METROSIL of type 600A / S1 / Spec.1088 can be used ($\beta = 0.25$, C = 900).

This Metrosil leakage current at voltage setting $U_s = 130$ V equals to

$$I_{rms} = 0.52 \left(\frac{U_{set, rms} \cdot \sqrt{2}}{C} \right)^{1/\beta} = 0.91 \text{ mA}$$

and can be neglected by the calculations, since its influence on the proposed fault-setting is negligible.

CT requirements for protection relays

Instrument transformers

Instrument transformers must comply with the applicable IEC recommendations IEC 60044 and 60186 (PT), ANSI/IEEE C57.13 or other comparable standards.

Voltage transformers (VT)

Voltage transformers (VT) in single-pole design for all primary voltages have typical single or dual secondary windings of 100, 110 or 115 V/ $\sqrt{3}$ with output ratings between 10 and 50 VA suitable from most application with digital metering and protection equipment, and accuracies of 0.1 % to 6 % to suit the particular application. Primary BIL values are selected to match those of the associated switchgear.

Current transformers

Current transformers (CT) are usually of the single-ratio type with wound or bar-type primaries of adequate thermal rating. Single, double or triple secondary windings of 1 or 5 A are standard. 1 A rating should, however, be preferred, particularly in HV and EHV stations, to reduce the burden of the connected lines. Output power (rated burden in VA), accuracy and saturation characteristics (rated symmetrical short-circuit current limiting factor) of the cores and secondary windings must meet the requirements of the particular application. The CT classification code of IEC is used in the following:

• Measuring cores

These are normally specified 0.2 % or 0.5 % accuracy (class 0.2 or class 0.5), and an rated symmetrical short-circuit current limiting factor FS of 5 or 10. The required output power (rated burden) should be higher than the actually connected burden. Typical values are 2.5, 5 or 10 VA. Higher values are normally not necessary when only electronic meters and recorders are connected. A typical specification could be: 0.5 FS 10, 5 VA.

• Cores for billing values metering In this case, class 0.25 FS is normally required.

• Protection cores

The size of the protection core depends mainly on the maximum short-circuit current and the total burden (internal CT burden, plus burden of connected lines plus relay burden)

Furthermore, a transient dimensioning factor has to be considered to cover the influence of the DC component in the short-circuit current.

Glossary of used abbreviations (according to IEC 60044-6, as defined)

K _{ssc}	= Rated symmetrical short-circuit current factor (example: CT cl. 5P20 $\rightarrow K_{ssc} = 20$)
K'ssc	= Effective symmetrical short-circuit current factor
K_{td}	 Transient dimensioning factor
Issc max	 Maximum symmetrical short-circuit current
Ipn	= CT rated primary current
I_{sn}	= CT rated secondary current
R_{ct}	 Secondary winding d.c. resistance at 75 °C / 167 °F (or other specified temperature)
R_b	= Rated resistive burden
R'_b	$= R_{lead} + R_{relay} = $ connected resistive burden
T_P	Primary time constant (net time constant)
U_K	= Kneepoint voltage (r.m.s.)
R _{relay}	= Relay burden
R _{lead}	$=\frac{2\cdot\rho\cdot l}{A}$
with	
1	 Single conductor length from CT to relay in m
ρ	= Specific resistance = $0.0175 \Omega \text{mm}^2/\text{m}$ (copper wires) at 20 °C/68 °F (or other specified temperature)

 $A = Conductor cross-section in mm^2$

In general, an accuracy of 1 % in the range of 1 to 2 times nominal current (class 5 P) is specified. The rated symmetrical short-circuit current factor K_{SSC} should normally be selected so that at least the maximum short-circuit current can be transmitted without saturation (DC component is not considered).

This results, as a rule, in rated symmetrical short-circuit current factors of 10 or 20 depending on the rated burden of the CT in relation to the connected burden. A typical specification for protection cores for distribution feeders is 5P10, 10 VA or 5P20, 5 VA. The requirements for protective current transformers for transient performance are specified in IEC 60044-6. In many practical cases, iron-core CTs cannot be designed to avoid saturation under all circumstances because of cost and space reasons, particularly with metal-enclosed switchgear.

The Siemens relays are therefore designed to tolerate CT saturation to a large extent. The numerical relays proposed in this guide are particularly stable in this case due to their integrated saturation detection function.

CT dimensioning formulae

$$K'_{ssc} = K_{ssc} \cdot \frac{R_{ct} + R_b}{R_{ct} + R'_b} \text{ (effective)}$$

with $K'_{ssc} \ge K_{td} \cdot \frac{I_{scc} \max}{I_{rm}} \text{ (required)}$

The effective symmetrical short-circuit current factor K'_{SSC} can be calculated as shown in the table above.

The rated transient dimensioning factor K_{td} depends on the type of relay and the primary DC time constant. For relays with a required saturation free time from ≤ 0.4 cycle, the primary (DC) time constant TP has little influence.

CT design according to BS 3938/IEC 60044-1 (2000)

IEC Class P can be approximately transfered into the IEC Class PX (BS Class X) standard definition by following formula:

$$U_k = \frac{(R_b + R_{ct}) \cdot I_n \cdot K_{ssc}}{1.2}$$

IEC

Example: IEC 60044: 600 / 1, 5P10, 15 VA, $R_{ct} = 4 \Omega$

PX or BS:
$$U_K = \frac{(15+4) \cdot 1 \cdot 10}{1.3} = 146 \text{ V}$$

 $R_{cl} = 4 \Omega$

For CT design according to ANSI/IEEE C 57.13 please refer to page 2/50.

The CT requirements mentioned in table 2/2 are simplified in order to allow fast CT calculations on the safe side. More accurate dimensioning can be done by more intensive calculation with Siemens's CTDIM (www.siemens.com/ctdim) program. Results of CTDIM are released by the relay manufacturer.

Adaption factor for 7UT6, 7UM62 relays in Fig. 2/92 (limited resolution of measurement)

$$F_{Adap} = \frac{I_{pn}}{I_{nO}} \cdot \frac{I_{Nrelay}}{I_{sn}} = \frac{I_{pn} \cdot \sqrt{3} \cdot U_{nO}}{S_{Nmax}} \cdot \frac{I_{Nrelay}}{I_{sn}} \rightarrow \text{Request: } \frac{1}{8} \le 8$$

7SD52, 53, 610, when transformer inside protected zone

$$\frac{I_{n\text{-}pri\text{-}}CT_{max}}{I_{n\text{-}pri\text{-}}CT_{min}} \cdot \frac{1}{\text{Transformer Ratio}^*} \leq 8$$

* If transformer in protection zone, else 1

 I_{n-pri} -*CT*-Transf-Site $\leq 2 \cdot I_n$ -Obj-Transf-Site AND

 I_{n-pri} -*CT*-Transf-Site \geq I_n -Obj-Transf-Site with

 I_{nO} = Rated current of the protected object

 U_{nO} = Rated voltage of the protected object

 I_{Nrelay} = Rated current of the relay

 S_{Nmax} = Maximun load of the protected object

(for transformers: winding with max. load)

Relay type		Transient dimensioning factor K _{td}			oning		Min. required sym. short- circuit current factor K' _{ssc}	Min. required knee-point voltage U_k		
Overcurrent-time and motor protection 7SJ511, 512, 531 7SJ45, 46, 60 7SJ61, 62, 63, 64 7SJ80, 7SK80		_					$K'_{ssc} \ge \frac{I_{High set point}}{I_{pn}}$ at least: 20	$U_k \ge \frac{I_{High set point}}{1.3 \cdot I_{pn}} \cdot (R_{ct} + R'_b) \cdot I_{sn}$ at least: $\frac{20}{1.3} \cdot (R_{ct} + R'_b) \cdot I_{sn}$		
Line differential protection (pilot wire) 7SD600		-					$K'_{ssc} \ge \frac{I_{scc max} (ext. fault)}{I_{pn}}$ and: $\frac{3}{4} \le \frac{(K'_{ssc} \cdot I_{pn})_{end1}}{(K'_{ssc} \cdot I_{pn})_{end2}} \le \frac{4}{3}$	$U_k \geq \frac{I_{scc max (ext. fault)}}{1.3 \cdot I_{pn}} \cdot (R_{ct} + R'_b) \cdot I_{sn}$ and: $\frac{3}{4} \leq \frac{(U_k/(R_{ct} + R'_b) \cdot I_{pn}/I_{sn})_{end1}}{(U_k/(R_{ct} + R'_b) \cdot I_{pn}/I_{sn})_{end2}} \leq \frac{4}{3}$		
Line differential protection (without distance function) 7SD52x, 53x, 610 (50/60 Hz)	Trans 1.2	nsformer		Busbar/ Line 1.2	Ge Mo 1.2	n./ otor	$K'_{ssc} \ge$ $K_{td} \cdot \frac{I_{scc max}(ext. fault)}{I_{pn}}$	$U_{K} \ge K_{td} \cdot \frac{I_{scc max}(ext. fault)}{1.3 \cdot I_{pn}} \cdot (R_{ct} + R_{b}^{\circ}) \cdot I_{sn}$		
Tranformer / generator differential protection 7UT612, 7UT612 V4.0 7UT613, 633, 635, 7UT612 V4.6 7UM62	Trans 4 3 4	ransformer		sformer		Busbar / Line 4 3 –	Busbar / Gen. / Line Motor 6 5 5 5 - 5		and (only for 7SS): $\frac{I_{scc max (ext. fault)}}{I_{pn}} \le 100$ (measuring range)	and (only for 7SS): $\frac{I_{scc max (ext. fault)}}{I_{pn}} \leq 100$ (measuring range)
Busbar protection 7SS52, 7SS60		for stabilizing factors $k \ge 0.5$ 0.5			ictors k ≥	0.5				
Distance protection 7SA522, 7SA6, 7SD5xx (with distance function)	prima K _{td} (a	primary DC time consistent $\leq 30 \leq 50$ K_{td} (a) 1 2		e consta ≤ 50 2	nt T_p [m ≤ 100 4	s] ≤ 200 4	$K'_{ssc} \ge$ $K_{td}(\mathbf{a}) \cdot \frac{I_{scc} \max(close - in fault)}{I_{pn}}$	$U_{K} \geq K_{td}(a) \cdot \frac{I_{scc max}(close - in fault)}{1.3 \cdot I_{pn}} \cdot (R_{ct} + R_{b}^{*}) \cdot I_{sn}$		
	K _{td} (ł)	4	5	5	5	and: K_{td} (b) $\cdot \frac{I_{scc} \max (zone 1 - end fault)}{I_{pn}}$	and: $K_{td}(\mathbf{b}) \cdot \frac{I_{scc max (zone 1 - end fault)}}{I_{pn}} \cdot (R_{ct} + R_{b}^{*}) \cdot I_{sn}$		

Table 2/2 CT requirements

 $u_{k \ 1-2}$ = Transformer impedance voltage HV side – LV side in %

 R_{relay} = Assumed with 0.1 Ω , (power consumption for above relays is below 0.1 VA)

1) Current from side 3 is due to $u_{k^{2-3}}$ and x^{*}_{d} of G2 in most cases negligible

Fig. 2/93 Example 1 – CT verification for 7UM62, 7UT6, 7SD52 (7SD53, 7SD610)

2/48

-T (G S2), 7UM62	-T (T LV1), 7UT633	-T (T HV), 7UT633	-T (L end 1), 7SD52
$I_{scc\ max\ (ext.\ fault)} = \frac{c \cdot S_{NG}}{\sqrt{3} \cdot U_{NG} x^{\prime\prime}_{d}}$	$I_{scc\ max\ (ext.\ fault)} = \frac{S_{NT}}{\sqrt{3} \cdot U_{NT}\ u_k}$	$I_{scc\ max\ (ext.\ fault)} = \frac{S_{NT}}{\sqrt{3} \cdot U_{NT}\ u_k^{""}}$	$I_{scc\ max\ (ext.\ fault)} = 17\ kA\ (given)$
$= \frac{1.1 \cdot 120,000 \text{ kVA}}{\sqrt{3} \cdot 13.8 \text{ kV} \cdot 0.16} = 34,516 \text{ A}$	$= \frac{120,000 \text{ kVA}}{\sqrt{3} \cdot 13.8 \text{ kV} \cdot 0.14} = 35,860 \text{ A}$	$= \frac{240,000 \text{ kVA}}{\sqrt{3} \cdot 132 \text{ kV} \cdot 0.14} = 7,498 \text{ A}$	
$K_{td} = 5$ (from table 2/2)	$K_{td} = 3$ (from table 2/2)	$K_{td} = 3$ (from table 2/2)	$K_{td} = 1.2$ (from table 2/2)
$K'_{ssc} \geq K_{td} \cdot \frac{I_{scc max}(ext. fault)}{I_{pn}}$	$K'_{ssc} \geq K_{td} \cdot \frac{I_{scc max}(ext. fault)}{I_{pn}}$	$K'_{ssc} \geq K_{td} \cdot \frac{I_{scc} \max{(ext. fault)}}{I_{pn}}$	
$= 5 \cdot \frac{31,378 \text{ A}}{6,000 \text{ A}} = 28.8$	$= 3 \cdot \frac{35,860 \text{ A}}{6,000 \text{ A}} = 17.9$	$= 3 \cdot \frac{7,498 \text{ A}}{1,200 \text{ A}} = 18,7$	
$R_b = \frac{S_n}{I_{sn}^2} = \frac{20 \text{ VA}}{1 \text{ A}^2} = 20 \Omega$	$R_b = \frac{S_n}{I_{sn}^2} = \frac{20 \text{ VA}}{1 \text{ A}^2} = 20 \Omega$	$R_b = \frac{S_n}{I_{sn}^2} = \frac{50 \text{ VA}}{(5 \text{ A})^2} = 2 \Omega$	
$R'_b = R_{lead} + R_{relay}$	$R'_b = R_{lead} + R_{relay}$	$R'_b = R_{lead} + R_{relay}$	$R'_b = R_{lead} + R_{relay}$
$R_b = \frac{2 \cdot \mathbf{p} \cdot \mathbf{l}}{\mathbf{A}} + 0.1 \ \Omega$	$R_b = \frac{2 \cdot \mathbf{p} \cdot \mathbf{l}}{\mathbf{A}} + 0.1 \ \Omega$	$R_b = \frac{2 \cdot \mathbf{p} \cdot \mathbf{l}}{\mathbf{A}} + 0.1 \Omega$	$R_b = \frac{2 \cdot \mathbf{p} \cdot \mathbf{l}}{\mathbf{A}} + 0.1 \ \Omega$
$=\frac{2\cdot0.0175\frac{\Omega \text{ mm}^2}{\text{m}}\cdot 60 \text{ m}}{4 \text{ mm}^2}$	$=\frac{2\cdot 0.0175 \frac{\Omega \text{ mm}^2}{\text{m}^2} 640 \text{ m}}{4 \text{ mm}^2}$	$=\frac{2\cdot0.0175\frac{\Omega \text{ mm}^2}{\text{m}^2}\cdot100 \text{ m}}{4 \text{ mm}^2}$	$=\frac{2\cdot0.0175\frac{\Omega \text{ mm}^2}{\text{m}}\cdot60 \text{ m}}{4 \text{ mm}^2}$
$\begin{array}{l} + \ 0.1 \ \Omega \\ = \ 0.625 \ \Omega \end{array}$	$\begin{array}{l} + \ 0.1 \ \Omega \\ = \ 0.450 \ \Omega \end{array}$	$\begin{array}{l} + \ 0.1 \ \Omega \\ = \ 0.975 \ \Omega \end{array}$	$\begin{array}{l} + \ 0.1 \ \Omega \\ = \ 0.625 \ \Omega \end{array}$
$K'_{ssc} = K_{ssc} \cdot \frac{R_{ct} + R_b}{R_{ct} + R'_b}$	$K'_{ssc} = K_{ssc} \cdot \frac{R_{ct} + R_b}{R_{ct} + R'_b}$	$K'_{ssc} = K_{ssc} \cdot \frac{R_{ct} + R_b}{R_{ct} + R'_b}$	$U_{K} \geq K_{td} \cdot \frac{I_{scc max (ext. fault)}}{1.3 \cdot I_{pn}} \cdot (R_{ct} + R'_{b}) \cdot I_{sn}$
$= 20 \cdot \frac{18 \ \Omega + 20 \ \Omega}{18 \ \Omega + 0.625 \ \Omega} = 40.8$	$= 20 \cdot \frac{18 \Omega + 20 \Omega}{18 \Omega + 0.450 \Omega} = 41.2$	$= 20 \cdot \frac{0.96 \ \Omega + 2 \ \Omega}{0.96 \ \Omega + 0.975 \ \Omega} = 30.6$	$= 1.2 \cdot \frac{17,000 \text{ A}}{1.3 \cdot 1,000 \text{ A}} \cdot (0.8 \Omega + 0.625 \Omega) \cdot 5 \text{ A}$ $= 111.8 \text{ V}$
K'_{ssc} required = 28.8,	K'_{ssc} required = 17.9,	K'_{ssc} required = 18.7,	U_K required = 111.8 V,
K_{ssc} effective = 40.8	K_{ssc} effective = 41.2	K_{ssc} effective = 30.6	U_K effective = 200 V
28.8 < 40.8	17.9 < 41.2	18.7 < 30.6	111.8 V < 200 V
\rightarrow CT dimensioning is ok	→ CT dimensioning is ok	→ CT dimensioning is ok	→ CT dimensioning is ok
$F_{Adap} = \frac{I_{pn} \cdot \sqrt{3} \cdot U_{nO}}{S_{Nmax}} \cdot \frac{I_{Nrelay}}{I_{sn}}$	$F_{Adap} = \frac{I_{pn} \cdot \sqrt{3} \cdot U_{nO}}{S_{Nmax}} \cdot \frac{I_{Nrelay}}{I_{sn}}$	$F_{Adap} = \frac{I_{pn} \cdot \sqrt{3} \cdot U_{nO}}{S_{Nmax}} \cdot \frac{I_{Nrelay}}{I_{sn}}$	$\frac{I_{pn\;max}}{I_{pn\;min}} \leq 8$
6,000 A · √3 · 13.8 kV 1 A	6,000 A · √3 · 13.8 kV 1 A	1,200 A · √3 · 132 kV 5 A	1,500 A
120,000 kVA 1 A	240,000 kVA 1 A	240,000 kVA 5 A	$1,000 \text{ A}$ = 1.3 ≤ 6 $\neq 0$ K!
= 1.195	= 0.598	= 1.143	
$1/8 \le 1.195 \le 8 \rightarrow \text{ok!}$	$1/8 \le 0.598 \le 8 \longrightarrow \text{ok!}$	$1/8 \le 1.143 \le 8 \rightarrow \text{ok!}$	

 Table 2/3
 Example 1 (continued) – verfication of the numerical differential protection

Attention (only for 7UT6 V4.0): When low-impedance REF is used, the request for the REF side (3-phase) is:

tected zone): Maximum ratio between primary currents of CTs at the end of the protected line:

 $\frac{I_{pn\;max}}{I_{pn\;min}} \le 8$

 $^{1}/_{4} \leq F_{Adap} \leq 4$, (for the neutral CT: $^{1}/_{8} \leq F_{Adap} \leq 8$)

Further condition for 7SD52x, 53x, 610 relays (when used as line differential protection without transformer inside pro-

Fig. 2/94 Example 2

$\frac{I_{sccmax}}{I_{pn}}$	$\frac{x}{4} = \frac{30,000 \text{ A}}{600 \text{ A}} = 50$	
Accord	ling to table 6.2-2, page 287 K_{td} = ¹ / ₂	
K'ssc	≥ — · 50 = 25	1 2
R_b	== 15 Ω	15 VA 1 A ²
R _{relay}	= 0.1 Ω	
R _{lead}	=== 0.3 Ω	2 · 0.0175 · 50 6
R'_b	$= R_{lead} + R_{relay} = 0.3 \ \Omega + 0.1 \ \Omega = 0.4 \ \Omega$	
K'ssc	$= \underbrace{\qquad} \cdot K_{ssc} = \frac{R_{ct} + R_b}{R_{ct} + R'_b} \cdot 10 = 43$	$\begin{array}{c} 4 \ \Omega + 15 \ \Omega \\ 4 \ \Omega + 0.4 \ \Omega \end{array}$

Result:

The effective K'_{ssc} is 43.2, the required K'_{ssc} is 25. Therefore the stability criterion is fulfilled.

Relay burden

The CT burdens of the numerical relays of Siemens are below 0.1 VA and can therefore be neglected for a practical estimation. Exceptions are the busbar protection 7SS60 and the pilot-wire relays 7SD600.

Intermediate CTs are normally no longer necessary, because the ratio adaptation for busbar protection 7SS52 and transformer protection is numerically performed in the relay. Analog static relays in general have burdens below about 1 VA.

Mechanical relays, however, have a much higher burden, up to the order of 10 VA. This has to be considered when older relays are connected to the same CT circuit.

In any case, the relevant relay manuals should always be consulted for the actual burden values.

Burden of the connection leads

The resistance of the current loop from the CT to the relay has to be considered:

$$R_{lead} = \frac{2 \cdot \rho \cdot l}{A}$$

l = Single conductor length from the CT to the relay in m

Specific resistance:

 ρ = 0.0175 $\frac{\Omega \cdot \text{mm}^2}{\text{m}}$ (copper wires) at 20 °C/68 °F

A = Conductor cross-section in mm²

CT design according to ANSI/IEEE C 57.13

Class C of this standard defines the CT by ist secondary terminal voltage at 20 times rated current, for which the ratio error shall not exceed 10 %. Standard classes are C100, C200, C400 and C800 for 5 A rated secondary current.

This terminal voltage can be approximately calculated from the IEC data as follows:

ANSI CT definition

 $U_{s.t.max} = 20 \cdot 5 \text{ A} \cdot R_b \cdot \frac{K_{ssc}}{20}$ with $R_b = \frac{P_b}{I_{sn}^2} \text{ and } I_{Nsn} = 5 \text{ A, the result is}$ $U_{s.t.max} = \frac{P_b \cdot K_{ssc}}{5 \text{ A}}$ Example:
IEC 600/5, 5P20, 25 VA,
60044
ANSI
C57.13: $U_{s.t.max} = \frac{(25 \text{ VA} \cdot 20)}{5 \text{ A}} = 100 \text{ V, acc. to class C100}$

Operating Programs

DIGSI 4 An Operating Software for all SIPROTEC Protection Relays	3 /3
SIGRA 4 Powerful Analysis of all Protection Fault Records	3 /9

DIGSI 4

Page

DIGSI 4, An Operating Software for all SIPROTEC Protection Relays

Description

The PC operating program DIGSI 4 is the user interface to the SIPROTEC devices, regardless of their version. It is designed with a modern, intuitive user interface. With DIGSI 4, SIPROTEC devices

are configured and evaluated – it is the tailored program for industrial and energy distribution systems.

Fig. 3/1 DIGSI 4 operating program

Function

Simple protection setting

From the numerous protection functions it is possible to easily select only those which are really required (see Fig. 3/2). This increases the clearness of the other menus.

Device setting with primary or secondary values

The settings can be entered and displayed as primary or secondary values. Switching over between primary and secondary values is done with one mouse click in the tool bar (see Fig. 3/2).

Assignment matrix

The DIGSI 4 matrix shows the user the complete configuration of the device at a glance (Fig. 3/3). For example, the assignment of the LEDs, the binary inputs and the output relays are displayed in one image. With one click, the assignment can be changed.

IEC 61850 system configurator

The IEC 61850 system configurator, which is started out of the system manager, is used to determine the IEC 61850 network structure as well as the extent of data exchange between the participants of an IEC 61850 station. To do this, subnets are added in the "network" working area - if required -, available participants are assigned to the subnets, and addressing is defined. The "assignment" working area is used to link data objects between the participants, e.g., the starting message of the V/inverse-time overcurrent protection I> -function of feeder 1, which is transferred to the incoming supply in order to prompt the reverse interlocking of the V/inverse-time overcurrent protection I>> function there (see Fig. 3/4).

Fig. 3/2 DIGSI 4, main menu, selection of protection functions

Fig. 3/4 DIGSI 4, IEC 61850 system configurator

Function

CFC: Projecting the logic instead of programming

With the CFC (continuous function chart), it is possible to link and derive information without software knowledge by simply drawing technical processes, interlocks and operating sequences.

Logical elements such as AND, OR, timers, etc., as well as limit value requests of measured values are available (Fig. 3/5).

Commissioning

Special attention has been paid to commissioning. All binary inputs and outputs can be set and read out in targeted way. Thus, a very simple wiring test is possible. Messages can be sent to the serial interface deliberately for test purposes.

Fig. 3/6 Typical time-signal representation

Selection and ordering data	Variants	Order No.	
	DIGSLA		
	Software for projecting and usage of all Siemens protection devices is running under MS Windows XP Prof. /		
	MS Windows Server 2003, MS Windows 7 Professional and Ultimate/Enterprise.		
	Incl. device templates, online manual and DIGSL cable: for all device types		
	Start Up manual (paper)		
	Incl. service (upgrade, update, hotline)		
	Operator language: German, English, French, Spanish, Italian, Chinese, Russian, Turkish are included.		
	Delivery on DVD-ROM		
	Basic		
	Basic version with license for 10 computers (authorisation by serial number)	7XS5400-0AA00	
	Professional		
	Basic version and additionally SIGRA (Fault record analysis), CFC Editor (Logic editor),		
	Display Editor (Editor for control displays) and DIGSI 4 Remote (Remote operation)		
	with license for 10 computers (authorisation by serial number)	7XS5402-0AA00	
	DIGSI 4 Professional + IEC 61850		
	Professional version and IEC 61850		
	System Configurator with license for 10 computers (authorisation by serial number)	7XS5403-0AA00	
	Upgrade from DIGSI 4 Basis to DIGSI 4 Professional	7XS5407-0AA00	
	Upgrade from DIGSI 4 Basis to DIGSI 4 Professional + IEC61850	7XS5408-0AA00	
	SIPROTEC 4 Tutorial		
	Multimedia information and training for:		
	SIPROTEC 4, DIGSI 4, SIGRA 4 and IEC 61850		
	Incl. trial software, manuals and catalogs	50001-U310-D21-X-7100	
	DIGSI 4 Basic + RecProtec		
	DIGSI 4 Basic and additionally RecProtec		
	(cyclic retrieval and archiving of fault records from SIPROTEC 4 devices)		
	with license for 10 computers (DIGSI 4) and for 1 computer (RecProtec).		
	Authorisation for DIGSI 4 by serial number, for RecProtec by floppydisk.	7XS5400-0AA01	
	DIGSI 4 Professional + RecProtec		
	DIGSI 4 Professional and additionally RecProtec		
	(cyclic retrieval and archiving of fault records, from SIPROTEC 4 devices)		
	with license for 10 computers (DIGSI 4) and for 1 computer (RecProtec).		
	Authorisation for DIGSI 4 by serial number, for RecProtec by floppydisk.	7XS5402-0AA01	
	DIGSI 4 Trial		
	like DIGSI 4 Professional + IEC 61850,		
	but <u>only</u> valid for 30 days (test version)		
	(no authorisation required)	7X\$5401-1AA00	

Selection and ordering data	Variants	Order No.
	DIGSI 4 Scientific	
	like DICSI 4 Drafessional + IEC 61850, only for university level institutions	
	with license for 10 PCs (authorisation by serial number)	7XS5402-2AA00
	DIGSI 4 DVD Update	
	Latest version of DIGSI 4	
	DVD includes DIGSI 4 and	
	IEC 61850 System Configurator and SIGRA	
	Incl. the latest Service packs.	
	Current content of DIGSI 4 Update	
	DVD can be found at www.siemens.com/siprotec	7XS5490-0AA00
	IEC 61850 System Configurator	
	Software for configuration of substations via IEC 61850-communication	
	is running under MS Windows XP Prof./MS Windows Vista Home Premium,	
	Business and Ultimate/MS Windows Server 2003.	
	See product information for supported	
	Service packs of operating systems	
	Incl. electronic help	
	Operator language:	
	German English French Spanish Italian Chinese Russian Turkish are included	
	oernan, English, Feneri, Opanish, tanan, onnese, tassian, Farkish are neuded.	
	IEC 61850 System Configurator for DIGSI 4 Professional	
	Upgrade from DIGSI 4 Prof. to DIGSI 4 Prof. + IEC 61850	
	version with license for 10 computers (authorisation by serial number)	
	For ordering the specification of a DIGSI 4 license number is required.	7XS5460-0AA00
	IEC 61850 System Configurator for Reyrolle devices	
	for System Configuration if no DIGSI 4	
	Prof. + IEC 61850 license is available	
	Requires installed Reydisp Manager	
	version with license for 10 computers	
	(authorization by serial number)	
	Delivery on DVD-ROM	7XS5461-0AA00
	GOOSE Inspector for IEC 61850 Ethernet station bus with license for 1 PC	
	PC-tool for online-monitoring of IEC 61850 GOOSE-telegrams	
	Checking of all GOOSE connections on the station bus and validation with	
	the configured connections in the system configurator (SCD)	
	Contains installation CD with USB-dongle	
	Recommended system requirements:	
	Windows XP, 32 Bit, SP2 or SP3	
	Duo CPU at least 1.6 GHz; RAM 2 GB	
	Network interface (Ethernet LAN, TCP/IP)	
	Supported languages: English, German	/XS5900-0AA00

3 Operating Program / DIGSI 4
SIGRA 4 Powerful Analysis of all Protection Fault Records

Fig. 3/7

Description

It is of crucial importance after a line fault that the fault is quickly and fully analyzed so that the proper measures can be immediately derived from the evaluation of the cause. As a result, the original line condition can be quickly restored and the downtime reduced to an absolute minimum. It is possible with SIGRA 4 to display records from digital protection units and fault recorders in various views and measure them, as required, depending on the relevant task.

In addition to the usual time-signal display of the measured variables record, it is also designed to display vector diagrams, circle diagrams, bar charts for indicating the harmonics and data tables. From the measured values which have been recorded in the fault records, SIGRA 4 calculates further values, such as: absent quantities in the three-wire system, impedances, outputs, symmetrical components, etc. By means of two measuring cursors, it is possible to evaluate the fault trace simply and conveniently. With SIGRA, however, you can add additional fault records. The signals of another fault record (e.g. from the opposite end of the line) are added to the current signal pattern by means of Drag & Drop. SIGRA 4 offers the possibility to display signals from various fault records in one diagram and fully automatically synchronize these signals to a common time base. In addition to finding out the details of the line fault, the localization of the fault is of special interest.

A precise determination of the fault location will save time that can be used for the on-site inspection of the fault. This aspect is also supported by SIGRA 4 – with its "offline fault localization" feature.

SIGRA 4 can be used for all fault records using the COMTRADE file format.

The functional features and advantages of SIGRA 4 can, however, only be optimally shown on the product itself. For this reason, it is possible to test SIGRA 4 for 30 days with the trial version.

Function overview

- 6 types of diagrams: time signal representation (usual), circle diagram (e.g. for R/X), vector diagram (reading of angles), bar charts (e.g. for visualization of harmonics), table (lists values of several signals at the same instant) and fault locator (shows the location of a fault)
- Calculate additional values such as positive impedances, r.m.s. values, symmetric components, vectors, etc.
- Two measurement cursors, synchronized in each view
- Powerful zoom function
- User-friendly configuration via drag & drop
- Innovative signal configuration in a clearly-structured matrix
- Time-saving user profiles, which can be assigned to individual relay types or series
- Addition of other fault records to the existing fault record
- Synchronization of several fault records to a common time basis
- Easy documentation by copying diagrams to documents of other MS Windows programs
- Offline fault localization

Hardware requirements

- Pentium 4 with 1-GHz processor or similar
- 1 GB of RAM (2 GB recommended)
- Graphic display with a resolution of 1024 x 768 (1280 x 1024 recommended)
- 50 MB free storage space on the hard disk
- DVD-ROM drive
- Keyboard and mouse

Software requirements

- MS Windows XP Professional
- MS Windows Vista Home Premium, Business and Ultimate
- MS Windows Server 2003 Standard Edition with Service Pack 2 used as a Workstation computer
- MS Windows 7 Professional and Enterprise Ultimate

3

Different views of a fault record

In addition to the standard time signal representation, SIGRA 4 also supports the display of circle diagrams (e.g. R/X diagrams), vectors, which enable reading of angles, and bar charts (e.g. for visualization of harmonics). To do this, SIGRA uses the values recorded in the fault record to calculate additional values such as positive impedances, r.m.s. values, symmetric components, vectors, etc.

Measurement of a fault record

Two measurement cursors enable fast and convenient measurement of the fault record. The measured values of the cursor positions and their differences are presented in tables. The cursors operate interactively and across all views, whereby all cursor movement is synchronized in each view: In this manner, the cursor line enables simultaneous "intersection" of a fault occurrence in both a time signal characteristic and circle diagram characteristic. And of course a powerful zoom function ensures that you do not lose track of even the tiniest detail. The views of SIGRA 4 can accommodate any number of diagrams and in each diagram any number of signals.

Operational features

The main aim of the developers of SIGRA 4. who were assisted by ergonomic and design experts, was to produce a system that was simple, intuitive and user-friendly:

- The colours of all the lines have been defined so that they are clear and easily distinguishable. However, the colour, as well as the line style, the scale and other surface features, can be adjusted to suit individual requirements.
- Pop-up menus for each situation offer customized functionality - thus eliminating the need to browse through numerous menu levels (total operational efficiency).

Fig. 3/8 Typical time signal representation

Fig. 3/9 Vector diagrams

Fig. 3/10 Circle diagram

Functions

- Configuration of the individual diagrams is simple and intuitive: object-oriented, measured variables can be simply dragged and dropped from one diagram to another (also diagrams of different types).
- "Snap-to-grid" and "snap-to-object" movement of the cursor lines for easy and accurate placement.
- Redundancy: Most user tasks can be achieved via up to five different operational methods, thus ensuring quick and easy familiarization with the analysis software.
- Utilization of the available screen space is automatically optimized by an intelligent function that, like the "synchronous mouse cursors", has since been patented.

User friendly tools support you in your daily work:

- Storage of user defined views (e.g zoom, size), in so-called user profiles and to assign them to individual relay types or series. Then simply select from the toolbar and you can display each fault record quickly and easily as required. No need to waste time scrolling, zooming or resizing and moving windows.
- Additional fault records, e.g. from the other end of a line, can be added to existing records.
- A special function allows several fault records to be synchronized on a mutual time basis, thus considerably improving the quality of fault analysis.
- Fault localization with data from one line end the fault record data (current and voltage measurement) values are imported from the numerical protection unit into SIGRA 4. The fault localisator in SIGRA 4 is then started by the user and the result represented in % or in km of the line length, depending on the parameters assigned.
- Fault localization with data from both line ends. The algorithm of the implemented fault location does not need a zero-phase sequence system. Thus, measuring errors due to earth impedance or interference with the zero current of the parallel line are ruled out. Errors with contact resistance on lines with infeed from both ends are also correctly recorded.

The above influences are eliminated due to the import of fault record data from both line ends into SIGRA. For this purpose, the imported data are synchronized in SIGRA and the calculation of the fault

		Signals			Tir	ne S	ignals	5	/ector	Circle	Har	mon	ics	s Table	
		Name	Line		Sp	Str	Bin		Sp	Imp	Sp	Str		F	Tabe
	E	UL1E	-		х			Ť	х		X				х
	E	UL2E			Х				X		х				х
	E	UL3E	-		Х				х		х				х
	E	IL1	_			Х						Х			х
	E	IL2				Х						Х			х
Analog	E	IL3	-	1		Х						Х			х
	E	UL12*		1			1								
	E	UL23*	-												1
	E	UL31*		1											
	E	Uen*						T							
	E	IE*						ŀ							
	E	Start		1			X	h		Н					- 7
Binary	EL	Trip		1			X								
Status	FI	Trigger		1				h		H				<u> </u>	- i
	FI	Zone Z1						h		H					
	E	Zone Z1E						ŀ		x	-				_
	E	Zone Z1B			-			ŀ	-	-	-				
	FI	Zone Z1BE						ŀ		x		-			
	EL	Zone Z2			-			ŀ			-				
Dist. Zones	E	Zone Z2E				-				x	-				_
		Zone 73				-	-	H	-	-	-	-			
	H	Zone 73E			-		-	ŀ	-	x	-	-			
	1	7ope 74			-			ŀ	-	Ĥ					
	E E	700e 74F						ŀ		X				-	
	12	111*				_			-	Ĥ					-
	吕	112*			-	-	-		-						
	문	110*						+	-		-	-			-
Sym. Comp.	臣	114			-	_		+	_					-	
	臣	104			_	_		ŀ	-			-			
2	1E	12						L		ш,	-	-			
				_				_							-
	1	. 1									-		1		
OK	Ap	2Ply								1	Canc	el		H	elp

Fig. 3/11 Concise matrix for assigning signals to diagrams

1								
Cursor 1: -41,0) ms							
Measuring Signal	3.Harmon.	4.Harmon.	Instantar	Extremum	1.Harmon.	6.Harmon.	7.Harmon.	8.Harmon
IL1	0,000 A	0,000 A	-0,44 A	-1,41 A	1,0 A	0,000 A	A 000,0	0,000 A
IL2	0,000 A	0,000 A	-0,94 A	1,41 A	1,0 A	0,000 A	0,000 A	0,000 A
IL3	0,000 A	0,000 A	1,38 A	1,41 A	1,0 A	0,000 A	0,000 A	0,000 A
UL1E	0,000 ∨	0,000 ∨	-25,3 V	-81,6 V	58 V	0,000 ∨	0,000 V	0,000 V
UL2E	0,000 ∨	0,000 ∨	-54,6 V	81,2 V	58 V	0,000 ∨	0,000 V	0,000 V
LIL 3E	0.000 V	0.000 V	79.9 V	81.2 V	58 V	0.000 V	0.000 V	0.000 V

Fig. 3/12 Table with values at a definite time

location is then started. Consequently, fault localization is independent from the zero-phase sequence system and the line infeed conditions and produces precise results to allow as fast an inspection of the fault location as possible.

• So-called marks, which users can insert at various instants as required, enable suitable commentary of the fault record. Each individual diagram can be copied to a

document of another MS Windows program via the "clipboard": documenting fault records really could not be easier.

Scope of delivery

The software product is quick and easy to install from a CD-ROM. It has a comprehensive "help" system. An user-friendly and practical manual offers easy step-by-step instructions on how to use SIGRA.

Selection and ordering data	Variants	Order No.
	SIGRA 4	
	SIGRA 4 Software for graphic visualisation, analysis and evaluation of fault and measurement records is running under MS Windows XP Prof./MS Windows Vista Home Premium, Business and Ultimate/MS Windows Server 2003, MS Windows 7 Professional and Ultimate/Enterprise. See product information for supported Service packs of operating systems. Incl. templates, online manual Incl. service (upgrade, update, hotline) Operator language: German, English, French, Spanish, Italian, Chinese, Russian, Turkish are included. Incl. multimedia tutorial on separate CD.	
	Delivery on DVD-ROM	
	SIGRA 4 for DIGSI	
	with license for 10 PCs (authorisation by serial number) For ordering the specification of a DIGSI 4 serial number is required.	7XS5410-0AA00
	SIGRA 4 Stand Alone	
	with license for 10 PCs. Installation without DIGSI 4 (authorisation by serial number)	7XS5416-0AA00
	SIGRA 4 Scientific	
	Installation without DIGSI 4 only for university-level institutions with license for 10 PCs (authorisation by serial number)	7XS5416-1AA00
	SIGRA 4 Trial	
	like SIGRA 4 Stand Alone, but <u>only</u> valid for 30 days (test version) (no authorisation required)	7XS5411-1AA00
	Upgrade SIGRA 4 Trial to SIGRA 4 Stand Alone	
	like SIGRA 4 Stand Alone.	
	For customers who want to unlock their trail version. With license for 10 PC	7XS5416-2AA00

Communication

Description	4/3
Function overview	4/3
Typical applications	4/5
Integration into substation control systems	4 /7
Integration into the SICAM PAS power automation system	4 /9
Integration into the substation automation system	4 /10
Integration into the SICAM PAS power automation system	4 /11
Solution without substation control system	4 /12

Page

Communication

Fig. 4/1

Description

Communication interfaces on protection relays are becoming increasingly important for the efficient and economical operation of substations and networks. The interfaces can be used for:

- Accessing the protection relays from a PC using the DIGSI operating program. Remote access via modem, Ethernet modem is possible with a serial service port at the relay. This allows remote access to all data of the protection relay.
- Integrating the relays into control systems with IEC 60870-5-103 protocol, PROFIBUS-FMS protocol, PROFIBUS-DP protocol, DNP 3.0 protocol and MODBUS protocol. The standardized IEC 61850 protocol is available since Oct. 2004 and with its SIPROTEC units Siemens has provided this standard as the first manufacturer worldwide.
- Peer-to-peer communication of differential relays and distance relays to exchange real-time protection data via fiber-optic cables, communication network, telephone networks or analog pilot wires.

Function overviev

Description

- Remote communication with DIGSI
- Remote communication with SIPROTEC 4 units
- Remote communication with SIPROTEC 3 units and SIPROTEC '600 units

Typical applications

- SIPROTEC 4 units on an RS485 bus
- SIPROTEC 4 units with FO/RS485
- Mixed system SIPROTEC 4, SIPROTEC 3 units, SIPROTEC '600 units
- Configuration with active star-coupler

Integration into substation control systems

Integration into the SICAM power automation system

Integration into other systems

Description

Remote communication with DIGSI

By using the remote communication functions of DIGSI it is possible to access relays from your office via the telephone network. So you do not have to drive to the substation at all and, if you need to carry out a quick fault analysis, for example, you can transfer the fault data into your office in just a few minutes so that you can use DIGSI to evaluate it.

Another alternative is the ability to access all the units of a substation from a central point within that station. This saves you having to connect your PC individually to all the relays in the station.

In both cases you need a few simple communication units and a PC with DIGSI and a remote communication component installed. The data traffic with DIGSI uses a secure protocol based on the IEC standard similar to IEC 60870-5-103 so that, amongst other things, the relays have unique addresses for accessing purposes. A high level of data integrity is achieved through the check sum incorporated in the telegram. Any telegrams that might become distorted during transmission are repeated. A comparison of parameters between relay and PC to ensure that they match also improves the integrity. There are other security functions too such as passwords and a substation modem callback function which can also be triggered from events.

Remote communication with SIPROTEC 4 units

SIPROTEC 4 units are well equipped for remote communication. A separate serial service interface for the protection engineer, independent of the system interface, allows the units to be easily integrated into any communication configuration. The front interface then remains free for local operation. Together with a flexibility in the choice of interface, i.e. optical with an ST connector for multi-mode FO cables or electrical for RS232 or RS485 hardwired connections, it is easy to create the optimum solution for any particular application.

Fig. 4/2 Remote relay communication

With SIPROTEC 4 units you can also use PROFIBUS-FMS to provide a central link with DIGSI via the control system interface. For this you will need a PC with a special PROFIBUS card that must be connected to the PROFIBUS system. This solution is intended exclusively for SIPROTEC 4 units with PROFIBUS-FMS.

Since Oct. 2004, a relay can be accessed remotely with DIGSI via an Ethernet interface in the relay and with the IEC 61850 protocol. This allows access to the relays via an Ethernet network. Some relays include a Web server, so an Internet browser can also be used for remote access via Ethernet.

Remote communication with SIPROTEC 3 and series '600 relays

These relays are ideal for applications involving remote communication. When configuring the actual communication system, however, it is important to take into account the smaller number of relay interfaces compared with SIPROTEC 4 units. In the case of SIPROTEC 3 units, communication is normally effected via the system interface at the back of the unit. If this interface is already being used for communication with the substation control system, the front interface can be used for the DIGSI communication instead. A suitable connector module is available to convert from electrical to optical interface.

Series '600 relays normally have one RS485 interface which can be used for communication either with the substation control system or with DIGSI.

SIPROTEC series '80 relays offer the same features regarding communication possibilities as SIPROTEC 4 devices.

Typical applications

An extensive range of communication components, such as modems, star couplers, optoelectric converters, prefabricated FO connection cables and electric connection cables (see part 12 of this catalog) allows you to create a variety of different solutions: FO connections immune to interference or cost-effective solutions using the two-wire RS485 electric bus.

The following examples give some indication of what configurations are possible, which items are needed for the purpose and what baud rates are possible.

Example 1: SIPROTEC 4 units on an RS485 bus

Remote communication is effected via a private or public telephone network with both analog or digital telephone lines being possible. An Ethernet network can also be used together with Ethernet modems. The 8N1 data format and an analog baud rate of 57.6/64 kbit/s have become established as the standard for serial modem links. The connection between modem and units is initially optical. An FO/RS485 converter 7XV5650 that can be installed close to the units then converts the signals for the RS485 bus. Up to 31 relays can be connected to the RS485 bus. Particularly in the case of modems, we recommend the use of the types of units listed in part 12. Other accessories can be found in the same part (see Fig. 4/3).

Example 2: SIPROTEC 4 units with FO/RS485

In the case of larger substations with longer distances we recommend the use of FO connection cables. The following example shows a mixed system of optical and electrical connections. Typically, all relays in a cubicle can be linked together via RS485 and the cubicles themselves can be connected to the star coupler via FO cables (see Fig. 4/4).

Fig. 4/4 Two groups of SIPROTEC 4 units on an RS485 bus (Example 2)

Typical applications

Example 3: Mixed system – SIPROTEC 4, SIPROTEC 3, series '600

Relays from different families can be integrated into a remote communication system, as illustrated in Example 3 (see Fig. 4/5). This example also shows how relays can be integrated by means of FO links and star couplers. With this kind of arrangement the baud rate for all links must be set at 19.2 kbaud because the SIPROTEC 3 units and the series '600 relays cannot support a higher baud rate. In this case we recommend to use the 7XV5550 active mini star-coupler (see Fig. 4/6).

Communication will then generally be at 57.6/64 kbit/s on the modem link. For any units that cannot operate at this baud rate the active star-coupler will convert the rate accordingly.

Example 4: Configuration with active starcoupler

With this configuration it is also possible to integrate relays that can only be connected via the front interface and whose maximum baud rates are less than 19.2 kbaud (see Fig. 4/6).

The following points must be noted with this type of configuration:

- One output of the active mini starcoupler is used to service several SIPROTEC 4 units through further star couplers or RS485 converters. On that output, a mixed system containing SIPROTEC 3 and series '600 relays should be avoided so that 57600 baud operation is possible for SIPROTEC 4 relays.
- Several SIPROTEC 3 units and series '600 relays can also be connected to another output of the active mini star-coupler (via mini star-couplers or RS485 converters). The baud rate for this output must be set less or equal to 19200 baud.
- Relays that are not available with communication functions according to IEC 60870-5-103 protocol (e.g. 7VE51, 7VK51, 7SV51 and older firmware versions of some relays) can also be connected via the active star-coupler as illustrated in Fig. 4/6. In this case one output must be assigned to each relay. The baud rate must be set according to the unit.

Fig. 4/5 Mixed system, FO/RS485 with units from different families (Example 3)

The solutions for central and/or remote communication with SIPROTEC units have easy upgrade compatibility. Different versions of relays can be integrated into a remote communication concept. This is supported by the substation and device management in the DIGSI software. A substation can be retrofitted with add-on remote communication components provided it has the communication connection available. And changing of the telephone line from, say, analog to digital does not necessitate the replacement of all components. Also, Ethernet networks can be used. The telephone modem is then replaced by an Ethernet modem. The infrastructure in the substation remains unchanged.

Fig. 4/6 Mixed system with relays from different families, with active star-coupler (Example 4)

Integration into substation control systems

Almost all SIPROTEC units can be integrated into substation control systems via communication interfaces.

The relays can be supplied as part of an integrated Siemens system offering all substation control and protection. In addition, the relays can also be integrated into other control systems via standard protocols. An integrated system offers type-tested functions, consistent configuration and optimally coordinated communication protocols. SICAM PAS and SICAM 1703 are two proven systems available from Siemens. These systems, also offer Ethernet communication with IEC 61850.

For situations where you would like to integrate SIPROTEC units into other control systems we can offer open communication interfaces. In addition to the IEC 60870-5-103 protocol that is available in almost all relays we can also offer other communication protocols for SIPROTEC 4 units like PROFIBUS-DP, MODBUS or DNP 3.0. IEC 61850 is available since Oct. 2004.

Relay type	Substation co	ontrol telegram			
	IEC 61850	IEC 60870-5-10	3 PROFIBUS-DP	MODBUS	DNP 3.0
6MD61	V4.0	V4.0	V4.0		
6MD63	V4.6	V4.0	V4.2	V4.2	V4.2
6MD663/4	V4.6	V4.2	V4.2		
7SA522	V4.6	V4.0	V4.2		V4.2
7SA6	V4.6	V4.0	V4.2		V4.2
7SD52.	V4.6	V4.0	V4.21		V4.21
7SD61	V4.6	V4.0	V4.2		V4.2
7SJ600		V1.0			
7SJ602		V1.0 / V3.5	V3.5	V3.5	
7SJ61/62/63	V4.6	V4.0	V4.2	V4.2	V4.2
7SJ64	V4.6	V4.0	V4.4	V4.4	V4.4
7S*80	V4.0	V4.0	V4.0	V4.0	V4.0
7UM61		V4.0	V4.0	V4.1	V4.1
7UM62	V4.6	V4.0	V4.0	V4.0	V4.1
7UT6.	V4.6 ¹⁾	V4.0	V4.0	V4.0	V4.0
7VE6	V4.6	V4.0	V4.0	V4.0	V4.0
7VK61	V4.6	V4.0	V4.0		V4.0

Integration into substation control systems

The table on page 4/7 shows which communication protocols are available in the various SIPROTEC relays starting with the firmware version. The latest version can be found on the Internet at www.siprotec.com.

IEC 61850 protocol

Since Oct. 2004, the Ethernet-based IEC 61850 protocol is the worldwide standard for protection and control systems used by power supply corporations, Siemens was the first manufacturer to support the protocol in its devices. By means of this protocol, information can also be exchanged directly between bay units so as to enable the creation of simple masterless systems for bay and system interlocking. Access to the units via the Ethernet bus is also possible with DIGSI.

It will also be possible to retrieve operating and fault messages and fault recordings via a browser. This Web monitor will also provide a few items of unit specific information in browser windows.

IEC 60870-5-103 protocol

The IEC 60870-5-103 protocol is an international standard for the transmission of protective data and fault recordings. All messages from the unit (and also control commands) can be transferred via published, Siemens-specific extensions.

PROFIBUS-DP protocol

PROFIBUS-DP is the most widespread protocol in industrial automation. Via PROFIBUS-DP, SIPROTEC units make their information available to a SIMATIC controller or, in the control direction, receive commands from a central SIMATIC. Measured values can also be transferred. The information is assignable to a mapping file with DIGSI.

MODBUS RTU protocol

This uncomplicated, serial protocol is mainly used in industry and by power supply corporations, and is supported by a number of unit vendors. SIPROTEC units behave as MODBUS slaves, making their information available to a master or receiving information from it. Information is assignable to a mapping file with DIGSI.

DNP 3.0 protocol

Power supply corporations overseas use the serial DNP 3.0 (Distributed Network Protocol) for the station and network control levels, SIPROTEC units behave as DNP slaves, supplying their information to a master system or receiving information from it. Information is assignable to a mapping file with DIGSI.

	Substation contr	ol port B				Port C
	IEC 61850	IEC 60870-5-103	PROFIBUS-DP	MODBUS	DNP 3.0	DIGSI
Alarms (relay → central unit)	√ with time stamp	$\sqrt{\text{with}}$ time stamp	$\sqrt{\text{with}}$ time stamp	$\sqrt{\text{with}}$ time stamp	$\sqrt{\text{with}}$ time stamp	√ with time stamp
Commands (BC/central unit → relay)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Measured values	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Time synchronization	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	1)
Fault records (sampled values)	\checkmark	\checkmark	Separate port (with DIGSI) ²⁾	Separate port (with DIGSI) ²⁾	Separate port (with DIGSI) ²⁾	
Protection settings	√ (with DIGSI)	Separate port (with DIGSI) ³⁾	\checkmark			
Parameter group switchover	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

- There is no time synchronization via this protocol. For time synchronization purposes it is possible to use a separate time synchronization interface (Port A in SIPROTEC 4 relays).
- 2) The transmission of fault records is not part of the protocol. They can be read out with DIGSI via the service interface Port C or the front operating interface.
- 3) This protocol does not support the transmission of protection settings. Only setting groups can be changed. For this purpose you should use the service interface or the front operating interface together with DIGSI.

Integration into the SICAM power automation system

SIPROTEC 4 is tailor-made for use with the SIMATIC-based SICAM power automation system. The SICAM family comprises the following components:

- SICAM 1703, the modern telecontrol system with automation and programmable logic functions
- SICAM PAS, the substation automation system based on dedicated hardware

Data management and communication is one of the strong points of the SICAM / SIPROTEC 4 system. Powerful engineering tools make working with SICAM convenient and easy. SIPROTEC 4 units are optimally matched for use in SICAM PAS. With SICAM and SIPROTEC 4 continuity exists at three crucial points:

- Data management
- Software architecture
- Communication

The ability to link SICAM/ SIPROTEC to other substation control, protection and automation components is assured, thanks to open interfaces such as IEC 60870-5-103 protocol and the Ethernet-based IEC 61850 protocol. Other protocols like PROFIBUS-DP, DNP 3.0 and MODBUS are also supported.

Integration into substation automation system

SIPROTEC 4 is tailor-made for use with the SICAM substation automation system. Over the low-cost electrical RS485 bus, the units exchange information with the control system. Units featuring IEC 60870-5-103 interfaces can be connected to SICAM interference free and radially by fiber-optic link. Through this interface, the system is open for the connection of units of other manufacturers.

Fig. 4/7 Communication structure with substation automation system

Integration into the SICAM PAS power automation system

SIPROTEC 4 is tailor-made for use with the SICAM power automation system together with IEC 61850 protocol. Via the 100 Mbit/s Ethernet bus, the units are linked electrically or optically to the station PC with PAS. Connection may be simple or redundant. The interface is standardized, thus also enabling direct connection of units of other manufacturers to the Ethernet bus. Units featuring an IEC 60870-5-103 interface or other serial protocols are connected via the Ethernet station bus to SICAM PAS by means of serial/Ethernet converters (see Fig. 4/8). DIGSI and the Web monitor can also be used over the same station bus.

Together with Ethernet/IEC 61850, an interference-free optical solution is also provided (see Fig. 4/9). The Ethernet interface in the relay includes an Ethernet switch. Thus, the installation of expensive external Ethernet switches can be avoided. The relays are linked in an optical ring structure.

Integrated SNMP (<u>Simple N</u>etwork <u>M</u>anagement <u>P</u>rotocol) facility allows the supervision of the network from the station controller.

Fig. 4/8Ethernet-based system with SICAM PAS
with electrical Ethernet interface

Integration into a substation automation system of other makes

Fig. 4/9 Ethernet-based system with SICAM PAS with optical Ethernet interface

Fig. 4/10 Ethernet-based system with optical Ethernet interface and migration of relays with serial protocol

Ethernet-based communication with optical Ethernet interface between SIPROTEC protection relays without substation control offers many advantages:

- Fast remote access via DIGSI 4
- High-speed setting and parameterization with DIGSI 4
- Interlocking between different field devices and exchange of binary signals via GOOSE messages of IEC 61850
- Common time synchronization of all relays from central time synchronization server (eg. SICLOCK)

For automation of new substations (or plants) and modernization of existing substations you get future investment security, without additional investment.

Overcurrent Protection

SIPROTEC easy 7SJ45 Numerical Overcurrent Protection Relay Powered by CTs	5 /3
SIPROTEC easy 7SJ46 Numerical Overcurrent Protection Relay	5 /11
SIPROTEC 7SJ600 Numerical Overcurrent, Motor and Overload Protection Relay	5 /19
SIPROTEC 7SJ602 Numerical Overcurrent, Motor and Overload Protection Relay	5 /31
SIPROTEC 4 7SJ61 Multifunction Protection Relay	5 /55
SIPROTEC 4 7SJ62 Multifunction Protection Relay	5 /83
SIPROTEC 4 7SJ63 Multifunction Protection Relay	5 /121
SIPROTEC 4 7SJ64 Multifunction Protection Relay with Synchronization	5/161

.

0

0

Ú

0

110

ALC: NO

Ē

5

Page

SIPROTEC easy 7SJ45 Numerical Overcurrent Protection Relay Powered by CTs

Fig. 5/1 SIPROTEC easy 7SJ45 numerical overcurrent protectiona rely powered by current transformers (CT)

Description

The SIPROTEC easy 7SJ45 is a numerical overcurrent protection relay which is primarily intended as a radial feeder or transformer protection (backup) in electrical networks. It provides definite-time and inverse-time overcurrent protection according to IEC and ANSI standards. The 7SJ45 relay does not require auxiliary voltage supply. It imports its power supply from the current transformers.

Function overview

- Operation without auxiliary voltage via integrated CT power supply
- Standard current transformers (1 A/5 A)
- Low power consumption: 1.4 VA at *I*_N (of the relay)
- Easy mounting due to compact housing
- Easy connection via screw-type terminals

Protection functions

- 2-stage overcurrent protection
- Definite-time and inverse-time characteristics (IEC/ANSI)
- High-current stage *I*>> or calculated earth-current stage *I*_E> or *I*_{Ep}> selectable

5

- Trip with pulse output (24 V DC / 0.1 Ws) or relay output (changeover contact)
- Repetition of trip during circuit-breaker failure (relays with pulse output)
- Combination with electromechanical relays is possible due to the emulation algorithm

Monitoring functions

• Hardware and software are continuously monitored during operation

Front design

- Simple setting via DIP switches (self-explaining)
- Settings can be executed without auxiliary voltage no PC
- Integrated mechanical trip indication optionally

Additional features

- Optional version available for most adverse environmental conditions (condensation permissible)
- Flush mounting or surface (rail) mounting

The SIPROTEC easy 7SJ45 is a numerical overcurrent protection relay which is primarily intended as a radial feeder or transformer protection (backup) in electrical networks. It provides definite-time and inverse-time overcurrent protection according to IEC and ANSI standards. The convenient setting with DIP switches is self-explanatory and simple.

The 7SJ45 relay does not require auxiliary voltage supply. It imports its power supply $(1.4 \text{ VA at } I_{\text{N}}, \text{ sum of all phases})$ from the current transformers. Impulse output for low-energy trip release or contact output for additional auxiliary transformer are available. An optional

integrated trip indication shows that a trip occurred.

ANSI	IEC	Protection functions
50	I>>	Instantaneous overcurrent protection
50, 51	I>t, Ip	Time-overcurrent protection (phase)
50N, 51N	I _E >t, I _{Ep}	Time-overcurrent protection (earth)

Within its compact housing the protection relay contains all required components for:

• Operation and indication (without a PC)

• Optional mechanical trip indication Auxiliary supply from current trans-

The housing dimensions of the units are such that the 7SJ45 relays can in general be installed into the existing cutouts in cubicles. Alternative constructions are available (surface mounting and flush mounting). The compact housing permits easy mounting, and a version for the most adverse environmental conditions, even

• Measuring and processing • Alarm and command output

• Maintenance not necessary

with extreme humidity, is also

Fig. 5/3 Application in distribution switchgear

Fig. 5/4 Screw-type terminals

.

formers

available.

Protection functions

The overcurrent function is based on phase-selective measurement of the three phase currents.

The earth (ground) current $I_{\rm E}$ (Gnd) is calculated from the three line currents $I_{\rm L1}$ (A), $I_{\rm L2}$ (B), and $I_{\rm L3}$ (C).

The relay has always a normal stage for phase currents I > (50/51). For the second stage, the user can choose between a high-current stage for phase currents I >> (50) or a normal stage for calculated earth currents $I_E > (50N/51N)$.

The inverse-time overcurrent protection with integrating measurement method (disk emulation) emulates the behaviour of electromechanical relays.

The influence of high-frequency transients and transient DC components is largely suppressed by the implementation of numerical measured-value processing.

Fig. 5/6 Inverse-time overcurrent characteristic

Available inverse-time characteristics

Characteristics acc. to	ANSI/IEEE	IEC 60255-3
Moderately inverse/normal inverse	•	•
Very inverse	•	•
Extremely inverse	•	•

Connection diagrams

Pulse output or relay output are optionally available.

Pulse output

These relays require a low-energy trip release (24 V DC/0.1 Ws) in the circuitbreaker, and are intended for modern switchgear. In case of circuit-breaker failure, a repetition of the tripping signal is initiated.

Relay output

These relays can be applied with all conventional switchgear. A transformer that provides the trip circuit energy, must be connected in the current transformer circuit.

Fig. 5/9 Connection of 3 CTs with trigger transformer and relay output

Fig. 5/10 Connection diagram 7SJ45 with relay output

Tach	nical	data
reun	пса	laala

General unit data		EMC tests for interference immunity	r; type tests
Analog input		Standards	IEC 60255-6, IEC 60255-22,
System frequency I _N	50 or 60 Hz (selectable)		EN 50263 (product standards)
Current transformer inputs			EN 50082-2 (generic standard) EN 61000-6-2
Rated current, normal earth current $I_{\rm N}$	1 or 5 A	High-frequency test	IEC 61000-4 (basic standards) 2.5 kV (peak): 1 MHz: $\tau = 15$ ms:
Power consumption At $I_{\rm N}$ = 1 / 5 A	Approx. 1.4 VA at $I_{\rm N}$ (relay)	IEC 60255-22-1, class III	$R_i = 200 \Omega$; 400 surges/s; duration $\ge 2 s$
Rating of current transformer		Electrostatic discharge	4 kV/6 kV contact discharge;
circuit Thermal (r.m.s.)	$50 \cdot I_{\rm N}$ for 1 s	IEC 60255-22-2, class III EN 61000-4-2, class III	8 kV air discharge; both polarities; 150 pF; $R_i = 330 \Omega$
	$15 \cdot I_{\rm N}$ for 10 s	Irradiation with radio-frequency	10 V/m; 80 to 1000 MHz;
Dynamic (peak)	$100 \cdot b \cdot \text{ for half a cycle}$	field, amplitude-modulated	80 %; 1 kHz; AM
Pacommended primary current	$100 \cdot I_{\rm N}$ for that a cycle	lec 60255-22-5 and lec 61000-4-5,	
transformers	or according to the requirements and	Irradiation with radio-frequency	10 V/m; 900 MHz; repetition
	required tripping power	field, pulse-modulated	frequency 200 Hz; duty cycle 50 %
Output relays		IEC 61000-4-3/ENV 50204,	30 V/M; 1890 MHz;
Pulse output (7SJ45XX-0*)		class III	200 Hz; duty cycle 50 %
Number	1 pulse output	Fast transient interference/bursts	4 kV: 5/50 ns: 5 kHz: burst duration
	24 V DC / 0.1 Ws	IEC 60255-22-4 and	= 15 ms; repetition rate 300 ms; both
Relay output (7SJ45XX-1*)		IEC 61000-4-4, class IV	polarities; $R_i = 50 \Omega$; duration 1 min
Number	1 changeover contact	High-energy surge voltage,	Impulse: 1.2/50 µs
Contact rating	Make 1000 W/VA Break 30 VA	IEC 61000-4-5 installation, class III Measuring inputs binary outputs	Circuit groups to earth: $2 \text{ kV} \cdot 42 \Omega = 0.5 \text{ \muF}$
	40 W resistive $25 \text{ VA at } L/R \le 50 \text{ ms}$	Measuring inputs, binary butputs	Across circuit groups: 1 kV; 42 Ω , 0.5 μ F
Rated contact voltage	$\leq 250 \text{ V DC or} \leq 240 \text{ V AC}$	Line-conducted HF,	10 V; 150 kHz to 80 MHz; 80 %;
Permissible current per contact	5 A continuous 30 A for 0.5 s (inrush current)	amplitude-modulated, IEC 60255-22-6 and	1 kHz; $R_{\rm i} = 150 \ \Omega$
Unit design		IEC 61000-4-6, class III	
Housing	Flush mounting DIN 43700/IEC 61554 Adaptable for rail mounting (recom-	Power frequency magnetic field IEC 61000-4-8, class IV IEC 60255-6	30 A/m continuous; 300 A/m for 5 s; 50 Hz 0.5 mT; 50 Hz
Dimensions (WxHxD) in mm	78.5 x 147 x 205.8 (incl. transparent cover and terminal blocks)	Damped wave IEC 60694, IEC 61000-4-12, class III	2.5 kV (peak, polarity alternating) 100 kHz, 1 MHz, 10 MHz and 50 MHz, $R_i = 200 \Omega$, duration > 2.8
Weight (mass) approx.	1.5 kg	Oscillatory surge withstand	2.5 to 3 kV (peak); 1 to 1.5 MHz
Degree of protection according to IE	C 60529	capability ANSI/IEEE C37.90.1	damped wave; 50 shots per s;
Housing		Not across open contacts	duration ≥ 2 s; $R_i = 150 \Omega$ to 200 Ω
Front	IP 51 IP 20	Fast transient surge withstand	4 to 5 kV; 10/150 ns; 50 and 120 surges per > 2 s:
Protection of personnel	IP1X	not across open contacts	both polarities; duration ≥ 2 s; $R_i = 80 \Omega$
	11 174	Radiated electromagnetic	35 V/m; 25 to 1000 MHz
Listed under "69CA".		interference ANSI/IEEE C37.90.2	amplitude and pulse-modulated
		EMC tests for interference emission;	type test
Electrical tests		Standard	EN 50081-* (generic)
Specifications		Interference field strength	30 to 1000 MHz,
Standards	IEC 60255 (product standards) ANSI C37.90.0/.1/.2; UL508 See also standards for individual tests	IEC CISPR 22	class B
Insulation tests			
Standards	IEC 60255-5		
Voltage test (routine test)	2.5 kV (r.m.s.), 50 Hz, 1 min		
All circuits except for pulse output-e	arth		
Voltage test (type test)			
across open command contacts	1.0 kV (r.m.s.), 50 Hz, 1 min		
Impulse voltage test (type test) all circuits, class III	5 kV (peak); 1.2/50 μs; 0.5 J; 3 positive and 3 negative impulses in intervals of 1 s		

Technical data

Mechanical stress tests

Vibration, shock stress and seismic vibration

During operation Standards Vibration IEC 60255-21-1, class II IEC 60068-2-6

Shock IEC 60225-21-2; class I

Seismic vibration IEC 60255-21-3; class I IEC 60068-3-3

During transport (flush mounting) Standards Vibration IEC 60255-21-1, class 2 IEC 60068-2-6

Shock IEC 60255-21-2, class 1 IEC 60068-2-27

Continuous shock IEC 60255-21-2, class 1 IEC 60068-2-29

Climatic stress tests

Temperatures

Temperatures during service

Permissible temperature during storage Permissible temperature during transport

Humidity

Permissible humidity class (standard)

Permissible humidity class (condensation proof)

IEC 60255-21 and IEC 60068-2 Sinusoidal 10 to 60 Hz \pm 0.075 mm amplitude: 60 to 150 Hz; 1 g acceleration Frequency sweep 1 octave/min 20 cycles in 3 perpendicular axes Semi-sinusoidal 5 g acceleration, duration 11 ms, each 3 shocks in both directions of the 3 axes Sinusoidal 1 to 8 Hz: \pm 4.0 mm amplitude (horizontal vector) 1 to 8 Hz: \pm 2.0 mm amplitude (vertical vector) 8 to 35 Hz: 1 g acceleration (horizontal vector) 8 to 35 Hz: 0.5 g acceleration (vertical vector) Frequency sweep 1 octave/min 1 cycle in 3 perpendicular axes

IEC 60255-21 and IEC 60068-2 Sinusoidal 5 Hz to 8 Hz: \pm 7.5 mm amplitude; 8 Hz to 150 Hz: 2 g acceleration frequency sweep 1 octave/min 20 cycles in 3 perpendicular axes Semi-sinusoidal 15 g acceleration, duration 11 ms, each 3 shocks in both directions of the 3 axes Semi-sinusoidal 10 g acceleration, duration 16 ms, each 1000 shocks in both directions of the 3 axes

-20 °C to +70 °C / -4 °F to +158 °F With continuous current 2I_N: -20 °C to +55 °C / -4 °F to +131 °F -25 °C to +55 °C / -13 °F to +131 °F -25 °C to +85 °C / -13 °F to +185 °F Annual mean value \leq 75 % relative humidity; on 30 days per year up to

95 % relative humidity; condensation not permissible.

Condensation is permissible according to IEC 60654-1, class III

Functions

Overcurrent protection Definite time (DT O/C ANSI 50/51) Setting range / steps Current pickup *I*>> (phases) Current pickup *I*> (phases) 3-phase supply: see note* Current pickup IE> 3-phase supply: see note* Delay times $T_I >>$ Delay times T_{I} > The set time delays are pure delay times. Inverse time (IEC or ANSI 51) Setting range / steps Current pickup *I*_p (phases) 3-phase supply: see note* Current pickup IEp> (earth calculated) 3-phase supply: see note* Delay times T_{Ip} (IEC) Delay times D (ANSI) Trip times Total time delay impulse output Total time delay relay output Reset ratio Tolerances Definite time (DT O/C 50/51) Current pickup I>>, I>, I_E> Delay times T Inverse time (IEC or ANSI 51) Pickup thresholds Time behavior for $2 \le I/I_p \le 20$ Deviation of the r as a result of vario Frequency in th $0.95 < f/f_N < 1.0$ Frequency in th $0.9 < f/f_N < 1.1$ Harmonics up to 10 % 3rd DC component

Temperature in – 5 °C to 70 °C / 23 °F to 158 °F

2 IN to 20 IN or deactivated, step 0.5 IN $0.5 I_{\rm N}$ to $6.2 I_{\rm N}$ or deactivated, step 0.1 $I_{\rm N}$ 0.5 I_N to 6.2 I_N or deactivated, step 0.1 IN 0 to 1575 ms, step 25 ms 0 to 6300 ms, step 100 ms

 $0.5 I_{\rm N}$ to $4 I_{\rm N}$ or deactivated, step 0.1 IN $0.5 I_{\rm N}$ to $4 I_{\rm N}$ or deactivated, step 0.1 IN

0.05 to 3.15 s, step 0.05 s 0.5 to 15.00 s, step 0.25 s

Approx. 32 ms Approx. 38 ms Approx. 0.95 (with definite time) Approx. 0.91 (with inverse time)

5 % of the set value or 5 % of I_N (at threshold < I_N) 1 % or 30 ms

5 % of the set value or 5 % of I_N (at threshold $< I_N$) 5 % or 50 ms

neasured values ous interferences	
he range of)5	< 2.5 %
he range of	< 10 %
and 5 th harmonic	< 1 %
ts	< 5 %
n the range of	< 0.5 %

o/10 K

Note: The device allows minimum setting values of 0.5 I_N (3-phase). With single supply, operation is ensured from $0.8 I_N$ (7SJ45XX-0^{*}; pulse output) or 1.3 IN (7SJ45XX-1*; relay output) onwards (printed on the front).

CE conformity

This product is in conformity with the Directives of the European Communities on the harmonization of the laws of the Member States relating to electromagnetic compatibility (EMC Council Directive 89/336/EEC).

This unit conforms to the international standard IEC 60255.

The unit has been developed and manufactured for application in an industrial environment according to the EMC standards.

This conformity is the result of a test that was performed by Siemens AG in accordance with Article 10 of the Council Directive complying with the generic standards EN 50081-2 and EN 50082-2.

Selection and ordering data

Description	Order No.
SIPROTEC easy 7SJ45	
numerical overcurrent protection relay powered by CTs	7SJ450🗆 – 🗆 🗆 🗇 00 – 🗆 AA 🗆
Current transformer by	
1 A	1
5 A	5
Trip	
Pulse output (for further details refer to "Accessories")	0
Relay output (for further details refer to "Accessories")	1
Unit design	
For rail mounting	В
For panel flush mounting	E
Region-specific functions	
Region World, 50/60 Hz; standard	A
Region World, 50/60 Hz; condensation-proof	В
IEC/ANSI	
IEC	0
ANSI	1
Indication (flag)	
Without	0
With	1

Protection relay with pulse output

Low energy trip release	3AX1104-2B
Protection relay with relay output	
Auxiliary transformers for the trip circuit (30 V	VA CTs recommended)
1 A	4AM5065-2CB00-0AN2
5 A	4AM5070-8AB00-0AN2

Current transformer-operated trip release	
0.5 A (rated operating current)	3AX1102-2A
1 A (rated operating current)	3AX1102-2B

5 Overcurrent Protection / 7SJ45

SIPROTEC easy 7SJ46 Numerical Overcurrent Protection Relay

Fig. 5/11 SIPROTEC easy 7SJ46 numerical overcurrent protection relay

Description

The SIPROTEC easy 7SJ46 is a numerical overcurrent protection relay which is primarily intended as a radial feeder or transformer protection (backup) in electrical networks. It provides definite-time and inverse-time overcurrent protection according to IEC and ANSI standards. The 7SJ46 relay has an AC and DC auxiliary power supply with a wide range allowing a high degree of flexibility in its application.

Function overview

- Universal application due to integrated wide range AC/DC power supply.
- Standard current transformers (1 A/5 A)
- Easy mounting due to compact housing
- Easy connection via screw-type terminals

Protection functions

- 2-stage overcurrent protection Definite-time and inverse-time
- characteristics (IEC/ANSI)
- High-current stage *I*>> or calculated earth-current stage *I*_E> or *I*_{Ep}> selectable
- Two command outputs for "trip" or "pickup"
- Combination with electromechanical relays is possible due to the emulation algorithm

Monitoring functions

- One live contact for monitoring
- Hardware and software are continuously monitored during operation

Front design

- Simple setting via DIP switches (self-explaining)
- Settings can be executed without auxiliary voltage no PC
- Individual phase pickup indication with stored or not stored LEDs
- Trip indication with separate LED

Additional features

- Optional version available for most adverse environmental conditions (condensation permissible)
- Flush mounting or surface (rail) mounting

Application

The SIPROTEC easy 7SJ46 is a numerical overcurrent protection relay which is primarily intended as a radial feeder or transformer protection (backup) in electrical networks.

It provides definite-time and inverse-time overcurrent protection according to IEC and ANSI standards. The convenient setting with DIP switches is self-explanatory and simple.

The 7SJ46 relay has an AC and DC auxiliary power supply with a wide range allowing a high degree of flexibility in its application. Phase-selective indication of protection pickup is indicated with LEDs.

IEC	Protection functions
I>>	Instantaneous overcurrent protection
I>t, Ip	Time-overcurrent protection (phase)
I _E >t, I _{Ep}	Time-overcurrent protection (earth)
	IEC I>> I>t, Ip I_E>t, I_Ep

Within its compact housing the protection relay contains all required components for:

Measuring and processingPickup and command outputOperation and indication

Wide range AC/DC power supply
Maintenance not necessary (no battery)
The housing dimensions of the units are such that the 7SJ46 relays can in general be installed into the existing panel cutouts.
Alternative constructions are available (rail mounting and flush mounting). The compact housing permits easy mounting, and a

version for the most adverse environmental conditions, even with extreme humidity, is also available.

(without a PC)

Fig. 5/14 Screw-type terminals

Protection functions

The overcurrent function is based on phase-selective measurement of the three phase currents.

The earth (ground) current $I_{\rm E}$ (Gnd) is calculated from the three line currents $I_{\rm L1}$ (A), $I_{\rm L2}$ (B), and $I_{\rm L3}$ (C).

The relay has always a normal stage for phase currents I > (50/51).

For the second stage, the user can choose between a high-current stage for phase currents I >> (50) or a normal stage for calculated earth currents $I \ge (50N/51N)$.

The inverse-time overcurrent protection with integrating measurement method (disk emulation) emulates the behavior of electromechanical relays.

The influence of high frequency transients and transient DC components is largely suppressed by the implementation of numerical measured-value processing.

Fig. 5/15 Definite-time overcurrent characteristic

Fig. 5/16 Inverse-time overcurrent characteristic

Available inverse-time characteristics

Characteristics acc. to	ANSI/IEEE	IEC 60255-3
Moderately inverse/normal inverse	•	•
Very inverse	•	•
Extremely inverse	•	•

Connection diagrams

The 7SJ46 has a trip contact, a contact which is adjustable for trip or pickup, and a live contact for the self-monitoring function.

Fig. 5/17 Connection of 3 CTs

Technical data

General unit data	
Analog input	
System frequency <i>f</i> _N	50 or 60 Hz (selectable)
Current transformer inputs	
Rated current, normal earth current $I_{\rm N}$	1 or 5 A
Power consumption Per phase at $I_N = 1$ A Per phase at $I_N = 5$ A	Approx. 0.01 VA at $I_{\rm N}$ Approx. 0.2 VA at $I_{\rm N}$ (relay)
Rating of current transformer circuit	
Thermal (r.m.s.)	$\begin{array}{l} 100 \cdot I_{\rm N} \text{ for } 1 \text{ s} \\ 30 \cdot I_{\rm N} \text{ for } 10 \text{ s} \\ 4 \cdot I_{\rm N} \text{ continuous} \end{array}$
Dynamic (peak)	$250 \cdot I_{\rm N}$ for half a cycle
Auxiliary voltage AC/DC powered	
Input voltage range	24 to 250 V DC (± 20 %) 60 to 230 V AC (-20 %, +15 %)
Power consumption	DC – power supply: Approx. 1.5 W AC – power supply: Approx. 3 VA at 110 V approx. 5.5 VA at 230 V
Output relays	
Number	2 (normally open), 1 live contact
Contact rating	Make 1000 W/VA Break 30 VA 40 W resistive 25 VA at L/R \leq 50 ms
Rated contact voltage	$\leq 250 \text{ V DC or} \leq 240 \text{ V AC}$
Permissible current per contact	5 A continuous 30 A for 0.5 s (inrush current)
Unit design	
Housing	Flush mounting DIN 43700/IEC 61554 Adaptable for rail mounting recommended for local mounting only
Dimensions (WxHxD) in mm	78.5 x 147 x 205.8 (incl. transparent cover and terminal blocks)
Weight (mass) approx.	1 kg
Degree of protection according to IEC	C 60529
Housing Front	IP 51
Rear	IP 20
Protection of personnel	IP 1X
U _L -listing	
Listed under "69CA".	
Electrical tests	
Specifications	
Standards	IEC 60255 (product standards)

IEC 60255 (product standards) ANSI C37.90.0/.1/.2; UL508 See also standards for individual tests

Insulation tests	
Standards	IEC 60255-
Voltage test (routine test) all circuits except auxiliary supply	2.5 kV (r.m
Voltage test (routine test) auxiliary supply	3.5 kV DC;
Voltage test (type test)	
Across open contacts	1.5 kV (r.m
Across open live contact	1.0 kV (r.m

IEC 60255-5 2.5 kV (r.m.s.), 50 Hz; 1 min 3.5 kV DC; 30 s; both polarities

1.5 kV (r.m.s.), 50 Hz; 1 min 1.0 kV (r.m.s.), 50 Hz; 1 min

Impulse voltage test (type test) all circuits, class III	5 kV (peak); 1.2/50 μs; 0.5 J; 3 positive and 3 negative impulses in intervals of 1 s
EMC tests for interference immunity	r; type tests
Standards	IEC 60255-6, IEC 60255-22, EN 50263 (product standards) EN 50082-2 (generic standard) EN 61000-6-2 IEC 61000-4 (generic standards)
High-frequency tests IEC 60255-22-1, class III	2.5 kV (peak); 1 MHz; $\tau = 15$ ms; $R_i = 200 \Omega$; 400 surges/s; duration $\ge 2 s$
Electrostatic discharge IEC 60255-22-2, class III EN 61000-4-2, class III	4 kV/6 kV contact discharge; 8 kV air discharge; both polarities; 150 pF; $R_i=330~\Omega$
Irradiation with radio-frequency field, amplitude-modulated IEC 60255-22-3 and IEC 61000-4-3, class III	10 V/m; 80 to 1000 MHz; 80 %; 1 kHz; AM
Irradiation with radio-frequency field, pulse-modulated IEC 61000-4-3/ENV 50204, class III	10 V/m; 900 MHz; repetition frequency 200 Hz; duty cycle 50 % 30 V/m 1810 MHz; repetition frequency 200 Hz; duty cycle 50 %
Fast transient interference/bursts IEC 60255-22-4 and IEC 61000-4-4, class IV	4 kV; 5/50 ns; 5 kHz; burst length = 15 ms; repetition rate 300 ms; both polarities; $R_i = 50 \Omega$; duration 1 min
High-energy surge voltage, IEC 61000-4-5 installation class III	Impulse: 1.2/50 μs
Auxiliary voltage	circuit groups to earth: 2 kV; 12 Ω, 9 μF between circuit groups: 1 kV; 2 Ω, 18 uF
Measuring inputs, binary outputs	circuit groups to earth: 2 kV; 42 Ω , 0.5 μ F between circuit groups: 1 kV; 42 Ω , 0.5 μ F
Line-conducted HF, amplitude-modulated. IEC 60255-22-6 and IEC 61000-4-6, class III	10 V; 150 kHz to 80 MHz; 80 %; 1 kHz; AM; $R_{\rm i}$ = 150 Ω
Power frequency magnetic field IEC 61000-4-8, class IV IEC 60255-6	30 A/m continuous; 300 A/m for 5 s; 50 Hz 0.5 mT; 50 Hz
Damped wave IEC 60694, IEC 61000-4-12, class III	2.5 kV (peak, polarity alternating) 100 kHz, 1 MHz, 10 MHz and 50 MHz, $R_i = 200 \Omega$, duration $\ge 2 s$
Oscillatory surge withstand capability ANSI/IEEE C37.90.1 not across open contacts	2.5 to 3 kV (peak); 1 to 1.5 MHz damped wave; 50 shots per s; duration ≥ 2 s; $R_i = 150 \Omega$ to 200 Ω
Fast transient surge withstand capability ANSI/IEEE C37.90.1 not across open contacts	4 kV to 5 kV; 10/150 ns; 50 and 120 surges per s; both polari- ties; duration $\ge 2 s$; $R_i = 80 \Omega$
Radiated electromagnetic inter- ference ANSI/IEEE C37.90.2	35 V/m 25 MHz to 1000 MHz amplitude and pulse-modulated
EMC tests for interference emission;	type test
Standard Conducted interference voltage, auxiliary voltage IEC CISPR 22,	EN 50081–* (generic) 150 kHz to 30 MHz, class B
Part 22 Interference field strength IEC CISPR 22	30 MHz to 1000 MHz, class B

Technical data

Mechanical stress test

Vibration, shock and seismic vibration

During operation Standards Vibration IEC 60255-21-1, class II IEC 60068-2-6

Shock IEC 60225-21-2; class I

Seismic vibration IEC 60255-21-3; class I IEC 60068-3-3

During transport (flush mounting) Standards Vibration IEC 60255-21-1, class 2 IEC 60068-2-6

Shock IEC 60255-21-2, class 1 IEC 60068-2-27

Continuous shock IEC 60255-21-2, class 1 IEC 60068-2-29

Climatic stress tests

Temperatures

Temperatures during service

Maximum temperature during storage

Maximum temperature during transport

Humidity

Permissible humidity class (standard)

Permissible humidity class (condensation proof)

- IEC 60255-21 and IEC 60068-2 Sinusoidal 10 to 60 Hz. \pm 0.075 mm amplitude; 60 to 150 Hz; 1 g acceleration Frequency sweep 1 octave/min 20 cycles in 3 perpendicular axes Semi-sinusoidal 5 g acceleration, duration 11 ms, each 3 shocks in both directions of the 3 axes Sinusoidal 1 to 8 Hz: ± 4.0 mm amplitude (horizontal vector) 1 to 8 Hz: \pm 2.0 mm amplitude (vertical vector) 8 to 35 Hz: 1 g acceleration (horizontal vector) 8 to 35 Hz: 0.5 g acceleration (vertical vector) Frequeny sweep 1 octave/min 1 cycle in 3 perpendicular axes
- IEC 60255-21 and IEC 60068-2 Sinusoidal 5 Hz to 8 Hz: \pm 7.5 mm amplitude; 8 Hz to 150 Hz: 2 *g* acceleration frequency sweep 1 octave/min 20 cycles in 3 perpendicular axes Semi-sinusoidal 15 *g* acceleration, duration 11 ms, each 3 shocks in both directions of the 3 axes Semi-sinusoidal 10 *g* acceleration, duration 16 ms, each 1000 shocks in both directions of the 3 axes
- -20 °C to +70 °C / −4 °F to +158 °F with continuous current 4 *I*_N: -20 °C to +55 °C / −4 °F to +131 °F -25 °C to +55 °C / −13 °F to +131 °F -25 °C to +85 °C / −13 °F to +185 °F

Annual mean value \leq 75 % relative humidity; on 30 days per year up to 95 % relative humidity; condensation not permissible.

Condensation is permissible according to IEC 60654-1, class III

Functions

Overcurrent protection Definite time (DT O/C ANSI 50/51) Setting range / steps Current pickup *I*>> (phases) 2 IN to 20 IN or deactivated, step 0.5 IN Current pickup *I*> (phases) 0.5 IN to 6.2 IN or deactivated, step 0.1 IN Current pickup I_F> 0.5 IN to 6.2 IN or deactivated, step 0.1 IN (earth calculated) Delay times $T_I >>$ 0 to 1575 ms, step 25 ms Delay times $T_{\rm I}$ > 0 to 6300 ms, step 100 ms The set time delays are pure delay times. Inverse time (IEC or ANSI 51) Current pickup Ip (phases) 0.5 IN to 4 IN or deactivated, step 0.1 IN Current pickup IEp> 0.5 IN to 4 IN or deactivated, step 0.1 IN (earth calculated) 0.05 to 3.15 s, step 0.05 s Delay times T_{Ip} (IEC) Delay times D (ANSI) 0.5 to 15.00 s, step 0.25 s Trip times Switch on to fault, relay output Approx. 38 ms Reset ratio Approx. 0.95 (with definite time) Approx. 0.91 (with inverse time) Tolerances Definite time (DT O/C 50/51) 5 % of the set value or Current pickup I>>, I>, IE> 5 % of I_N (at threshold < I_N) Delay times T 1 % or 30 ms Inverse time (IEC or ANSI 51) Pickup thresholds 5 % of the set value or 5 % of I_N (at threshold < I_N) Time behaviour for $2 \le I/I_p \le 20$ 5 % or 50 ms Deviation of the measured values as a result of various interferences Frequency in the range of < 2.5 % $0.95 < f/f_N < 1.05$ Frequency in the range of < 10 % $0.9 < f/f_N < 1.1$ Harmonics < 1 % up to 10 % 3rd and 5th harmonic DC components < 5 % Auxiliary supply voltage DC in < 1 % the range of $0.8 \le V_{aux}/V_{aux N} \le 1.2$ Auxiliary supply voltage AC in the < 1 %range of $0.8 \le V_{\text{aux}}/V_{\text{aux N}} \le 1.15$

CE conformity

Temperature in the range of

-5 °C to 70 °C / 23 °F to 158 °F

This product is in conformity with the Directives of the European Communities on the harmonization of the laws of the Member States relating to electromagnetic compatibility (EMC Council Directive 89/336/EEC).

< 0.5 %/10 K

This unit conforms to the international standard IEC 60255.

The unit has been developed and manufactured for application in an industrial environment according to the EMC standards.

This conformity is the result of a test that was performed by Siemens AG in accordance with Article 10 of the Council Directive complying with the generic standards EN 50081-2 and EN 50082-2.

Selection and ordering data

Description	Order No.
SIPROTEC easy 7SJ46	
numerical overcurrent protection relay	7SJ460□− 1□□00 − □AA0
Current transformer I _N	
1 A	1
5 A	5
Unit design	
For rail mounting	В
For panel-flush mounting	E
Region-specific/functions	
Region World, 50/60 Hz; standard	A
Region World, 50/60 Hz; condensation-proof	В
IEC/ANSI	
IEC	0
ANSI	1

5 Overcurrent Protection / 7SJ46

SIPROTEC 7SJ600 Numerical Overcurrent, Motor and Overload Protection Relay

Description

The SIPROTEC 7SJ600 is a numerical overcurrent relay which, in addition to its primary use in radial distribution networks and motor protection, can also be employed as backup for feeder, transformer and generator differential protection.

The SIPROTEC 7SJ600 provides definitetime and inverse-time overcurrent protection along with overload and negativesequence protection for a very comprehensive relay package. In this way, equipment such as motors can be protected against asymmetric and excessive loading. Asymmetric short-circuits with currents that can be smaller than the largest possible load currents or phase interruptions are reliably detected.

Function overview

Feeder protection

- Overcurrent-time protection
- Earth-fault protection
- · Overload protection
- Negative-sequence protection
- Cold load pickup
- Auto-reclosure
- Trip circuit supervision

Motor protection

- Starting time supervision
- Locked rotor

Control functions

- Commands for control of a circuitbreaker
- Control via keyboard, DIGSI 4 or SCADA system

Measuring functions

• Operational measured values I

Monitoring functions

- Fault event logging with time stamp (buffered)
- 8 oscillographic fault records
- Continuous self-monitoring

Communication

- Via personal computer and DIGSI 3 or DIGSI 4 (≥ 4.3)
- Via RS232 RS485 converter
- Via modem
- IEC 60870-5-103 protocol, 2 kV-isolated
- RS485 interface

Hardware

- 3 current transformers
- 3 binary inputs
- 3 output relays
- 1 live status contact

Application

Wide range of applications

The SIPROTEC 7SJ600 is a numerical overcurrent relay which, in addition to its primary use in radial distribution networks and motor protection, can also be employed as backup for feeder, transformer and generator differential protection.

The SIPROTEC 7SJ600 provides definite-time and inverse-time overcurrent protection along with overload and negative-sequence protection for a very comprehensive relay package. In this way, equipment such as motors can be protected against asymmetric and excessive loading. Asymmetric short-circuits with currents that can be smaller than the largest possible load currents or phase interruptions are reliably detected.

The integrated control function allows simple control of a circuit-breaker or disconnector (electrically operated/motorized switch) via the integrated HMI, DIGSI 3 or DIGSI 4 (\geq 4.3) or SCADA (IEC 60870-5-103 protocol).

Fig. 5/20 Function diagram

ANSI	IEC	Protection functions
50, 50N	I>, I>>, I>>> I _E >, I _E >>	Definite time-overcurrent protection (phase/neutral)
51, 51N	Ip, IEp	Inverse time-overcurrent protection (phase/neutral)
79		Auto-reclosure
(46)	<i>I</i> ₂ >	Phase-balance current protection (negative-sequence protection)
49	ϑ>	Thermal overload protection
48)		Starting time supervision
(74TC)		Trip circuit supervision breaker control
The definite-time overcurrent protection

overcurrent element (I>>) and a high-set

Intentional trip delays can be parameteriz-

instantaneous-tripping element (I>>>).

ed from 0.00 to 60.00 seconds for the

elements. The instantaneous zone I>>>

trips without any intentional delay. The

definite-time overcurrent protection for

the earth (ground) current has a low-set

overcurrent element $(I_E>)$ and a high-set

low-set and high-set overcurrent

for the 3 phase currents has a low-set overcurrent element (*I*>), a high-set

Construction

The relay contains all the components needed for

- Acquisition and evaluation of measured values
- Operation and display
- Output of signals and trip commands
- Input and evaluation of binary signals
- SCADA interface (RS485)
- Power supply.

The rated CT currents applied to the SIPROTEC 7SJ600 can be 1 or 5 A. This is selectable via a jumper inside the relay.

Two different housings are available. The flush-mounting/cubicle-mounting version has terminals accessible from the rear. The surface-mounting version has terminals accessible from the front.

Fig. 5/21 Rear view of flush-mounting housing

Protection functions

Definite-time characteristics

The definite-time overcurrent function is based on phase-selective measurement of the three phase currents and/or earth current.

Optionally, the earth (ground) current I_E (Gnd) is calculated or measured from the three line currents $I_{L1}(I_A)$, $I_{L2}(I_B)$ and $I_{L3}(I_C)$.

Inverse-time characteristics

In addition, invese-time overcurrent protection characteristics (IDMTL) can be activated.

Fig. 5/23 Inverse-time overcurrent characteristic

Available inverse-time characteristic

Characteristics acc.to	ANSI / IEEE	IEC 60255-3
Inverse	٠	•
Short inverse	•	
Long inverse	•	•
Moderately inverse	•	
Very inverse	•	•
Extremely inverse	•	•
Definite inverse	٠	
I squared T	•	

Protection functions

Thermal overload protection (ANSI 49)

The thermal overload protection function provides tripping or alarming based on a thermal model calculated from phase currents.

Thermal overload protection without preload

For thermal overload protection without consideration of the preload current, the following tripping characteristic applies only when

 $I \geq 1.1 \cdot I_{\rm L}$

For different thermal time constants T_{L} , the tripping time *t* is calculated in accordance with the following equation:

$$t = \frac{35}{\left(\frac{I}{I_{\rm L}}\right)^2 - 1} \cdot T_{\rm I}$$

I = Load current

 $I_2 =$ Pickup current

 $T_{\rm L}$ = Time multiplier

The reset threshold is above $1.03125 \cdot I/I_N$

Thermal overload protection with preload

The thermal overload protection with consideration of preload current constantly updates the thermal model calculation regardless of the magnitude of the phase currents. The tripping time t is calculated in accordance with the following tripping characteristic (complete memory in accordance with IEC 60255-8).

$$t = \tau \cdot \ln \frac{\left(\frac{I}{\mathbf{k} \cdot I_{\mathbf{N}}}\right)^2 - \left(\frac{I_{\text{pre}}}{\mathbf{k} \cdot I_{\mathbf{N}}}\right)^2}{\left(\frac{I}{\mathbf{k} \cdot I_{\mathbf{N}}}\right)^2 - 1}$$

- t = Tripping time after beginning of the thermal overload
- $\tau = 35.5 \cdot T_{\rm L}$

$$T_{\rm L}$$
 = Time multiplier

- *I* = Load current
- k = k factor (in accordance with IEC 60255-8)
- ln = Natural logarithm
- $I_{\rm N}$ = Rated (nominal) current

For further details please refer to part 2 "Overview".

Fig. 5/24 Tripping characteristic of the negative-sequence protection function

Negative-sequence protection (*I*₂>>, *I*₂>/ANSI 46 Unbalanced-load protection)

The negative-sequence protection (see Fig. 5/24) detects a phase failure or load unbalance due to network asymmetry. Interruptions, short-circuits or crossed connections to the current transformers are detected.

Furthermore, low level single-phase and two-phase short-circuits (such as faults beyond a transformer) as well as phase interruptions can be detected.

This function is especially useful for motors since negative sequence currents cause impermissible overheating of the rotor.

In order to detect the unbalanced load, the ratio of negative phase-sequence current to rated current is evaluated.

 I_2 = Negative-sequence current T_{12} = Tripping time

Transformer protection

The high-set element permits current coordination where the overcurrent element functions as a backup for the lower-level protection relays, and the overload function protects the transformer from thermal overload. Low-current single-phase faults on the low voltage side that result in negative phase-sequence current on the highvoltage side can be detected with the negative-sequence protection.

Cold load pickup

By means of a binary input which can be wired from a manual close contact, it is possible to switch the overcurrent pickup settings to less sensitive settings for a programmable duration of time. After the set time has expired, the pickup settings automatically return to their original setting. This can compensate for initial inrush when energizing a circuit without compromising the sensitivity of the overcurrent elements during steady state conditions.

3-pole multishot auto-reclosure (AR, ANSI 79)

Auto-reclosure (AR) enables 3-phase autoreclosing of a feeder which has previously been disconnected by time-overcurrent protection.

Trip circuit supervision (ANSI 74TC)

One or two binary inputs can be used for the trip circuit monitoring.

Control

The relay permits circuit-breakers to be opened and closed without command feedback. The circuit-breaker/disconnector may be controlled by DIGSI, or by the integrated HMI, or by the LSA/SCADA equipment connected to the interface.

Protection functions

Switch-onto-fault protection

If switched onto a fault, instantaneous tripping can be effected. If the internal control function is used (local or via serial interface), the manual closing function is available without any additional wiring. If the control switch is connected to a circuitbreaker bypassing the internal control function, manual detection using a binary input is implemented.

Busbar protection (Reverse interlocking)

Binary inputs can be used to block any of the six current stages. Parameters are assigned to decide whether the input circuit is to operate in open-circuit or closed-circuit mode. In this case, reverse interlocking provides high-speed busbar protection in radial or ring power systems that are opened at one point. The reverse interlocking principle is used, for example, in medium-voltage power systems and in switchgear for power plants, where a high-voltage system transformer feeds a busbar section with several mediumvoltage outgoing feeders.

Motor protection

For short-circuit protection, e.g. elements I >> (50) and $I_E (50N)$ are available. The stator is protected against thermal overload by $\vartheta_s > (49)$, the rotor by $I_2 > (46)$, starting time supervision (48).

Motor starting time supervision (ANSI 48)

The start-up monitor protects the motor against excessively long starting. This can occur, for example, if the rotor is blocked, if excessive voltage drops occur when the motor is switched on or if excessive load torques occur. The tripping time depends on the current.

$$t_{\rm TRIP} = \left(\frac{I_{\rm start}}{I_{\rm rms}}\right)^2 \cdot t_{\rm start\,max}$$

for
$$I_{\rm rms} > I_{\rm start}$$
, reset ratio $\frac{I_{\rm N}}{I_{\rm start}}$

approx. 0.94

- t_{TRIP} = Tripping time
- I_{start} = Start-up current of the motor
- $t_{\text{start max}}$ = Maximum permissible starting
- time
- $I_{\rm rms}$ = Actual current flowing

Fig. 5/25 Reverse interlocking

Features

Fig. 5/26 Wiring communication For convenient wiring of the RS485 bus, use bus cable system 7XV5103 (see part 15 of this catalog).

Serial data transmission

A PC can be connected to ease setup of the relay using the Windows-based program DIGSI which runs under MS-Windows. It can also be used to evaluate up to 8 oscillographic fault records, 8 fault logs and 1 event log containing up to 30 operational indications. The SIPROTEC 7SJ600 transmits a subset of data via IEC 60870-5-103 protocol:

- General fault detection
- General trip
- Phase current *I*_{L2}
- User-defined message
- Breaker control
- Oscillographic fault recording

Connection diagrams

Fig. 5/31 Example of typical wiring

5/24

5

General unit data	
CT circuits	
Rated current I _N	1 or 5 A
Rated frequency <i>f</i> _N	50/60 Hz (selectable)
Overload capability current path Thermal (r.m.s.)	$100 \ge I_N$ for $\le 1 \le$ $30 \ge I_N$ for $\le 10 \le$ $4 \ge I_N$ continuous
Dynamic (pulse current)	250 x $I_{\rm N}$ one half cycle
Power consumption Current input at $I_{\rm N} = 1$ A at $I_{\rm N} = 5$ A	< 0.1 VA < 0.2 VA
Power supply via integrated DC/DC c	onverter
Rated auxiliary voltage <i>V</i> _{aux} / permissible variations	24, 48 V DC/± 20 % 60, 110/125 V DC/± 20 % 220, 250 V DC/± 20 % 115 V AC/-20 % +15 % 230 V AC/-20 % +15 %
Superimposed AC voltage, peak-to-peak at rated voltage at limits of admissible voltage	$\leq 12 \%$ $\leq 6 \%$
Power consumption Quiescent Energized	Approx. 2 W Approx. 4 W
Bridging time during failure/ short-circuit of auxiliary voltage	\geq 50 ms at $V_{aux} \geq$ 110 V DC \geq 20 ms at $V_{aux} \geq$ 24 V DC
Binary inputs	
Number	3 (marshallable)
Operating voltage	24 to 250 V DC
Current consumption, independent of operating voltage	Approx. 2.5 mA
Pickup threshold, reconnectable by solder bridges Rated aux. voltage 24/48/60 V DC Vnickup	≥ 17 V DC
Vdrop-out 110/125/220/250 V DC	< 8 V DC
$V_{ m pickup}$ $V_{ m drop-out}$	≥ 74 V DC < 45 V DC
Signal contacts	
Signal/alarm relays	2 (marshallable)
Contacts per relay	1 CO
Switching capacity Make	1000 W / VA
Break	30 W / VA
Switching voltage	250 V
Permissible current	5 A

Heavy-duty (command) contacts	
Trip relays, number	2 (marshallable)
Contacts per relay	2 NO
Switching capacity Make Break	1000 W / VA 30 W / VA
Switching voltage	250 V
Permissible current Continuous For 0.5 s	5 A 30 A
Design	
Housing 7XP20	Refer to part 15 for dimension drawings
Weight Flush mounting /cubicle mount- ing Surface mounting	Approx. 4 kg Approx. 4.5 kg
Degree of protection acc. to EN 60529	
Housing Terminals	IP51 IP21
A 111 - A	
Serial interface	
Interface, serial; isolatea	DC 405
Test voltage	2.8 kV DC for 1 min
Connection	2.8 KV DC IOI I IIIII
Transmission speed	data wires, one frame reference, for connection of a personal computer or similar; core pairs with individual and common screening, screen must be earthed (grounded), communica- tion possible via modem As delivered 9600 baud min. 1200 baud, max. 19200 baud
Electrical tests	
Specifications	
Standards	IEC 60255-5; ANSI/IEEE C37.90.0
Insulation test	
Standards	IEC 60255-5, ANSI/IEEE C37.90.0
High-voltage test (routine test) Except DC voltage supply input and RS485 Only DC voltage supply input and RS485	2 kV (r.m.s.), 50 Hz 2.8 kV DC
High-voltage test (type test) Between open contacts of trip relays Between open contacts of alarm relays	1.5 kV (r.m.s.), 50 Hz 1 kV (r.m.s.), 50 Hz
Impulse voltage test (type test) all circuits, class III	5 kV (peak), 1.2/50 μs, 0.5 J, 3 positive and 3 negative impulses at intervals of 5 s

Standards

EMC tests for interference immunity; type tests

High-frequency test

IEC 60255-22-1, class III Electrostatic discharge

IEC 60255-22-2, class III and IEC 61000-4-2, class III Irradiation with radio-frequency

field Non-modulated,

IEC 60255-22-3 (report) class III Amplitude modulated, IEC 61000-4-3, class III Pulse modulated. IEC 61000-4-3, class III

Fast transient interference/bursts IEC 60255-22-4 and IEC 61000-4-4, class III

Conducted disturbances induced by 10 V, 150 kHz to 80 MHz, radio-frequency fields, amplitude modulated IEC 601000-4-6, class III

Power frequency magnetic field IEC 61000-4-8, class IV IEC 60255-6

Oscillatory surge withstand capability ANSI/IEEE C37.90.1 (common mode)

Fast transient surge withstand capability ANSI/IEEE C37.90.1 (commom mode)

Radiated electromagnetic interference, ANSI/IEEE C37.90.2

High-frequency test Document 17C (SEC) 102

EMC tests for interference emission; type tests

Standard

Conducted interference voltage, aux. 150 kHz to 30 MHz voltage CISPR 22, EN 55022, DIN VDE 0878 Part 22, limit value class B

Interference field strength CISPR 11, EN 55011, DIN VDE 0875 Part 11, limit value class A

IEC 60255-6; IEC 60255-22 (product standard) EN 50082-2 (generic standard), DIN VDE 0435 Part 303

2.5 kV (peak), 1 MHz, $\tau = 15 \,\mu s$, 400 surges/s, duration 2 s 4 kV/6 kV contact discharge,

8 kV air discharge, both polarities, 150 pF, R_i =330 Ω

10 V/m, 27 to 500 MHz

10 V/m, 80 to 1000 MHz, 80 % AM, 1 kHz 10 V/m, 900 MHz, repetition frequency, 200 Hz, duty cycle 50 %

2 kV, 5/50 ns, 5 kHz, burst length 15 ms, repetition rate 300 ms, both polarities, $R_i = 50 \Omega$, duration 1 min

80 % AM, 1 kHz

30 A/m continuous, 50 Hz 300 A/m for 3 s, 50 Hz 0.5 mT; 50 Hz 2.5 to 3 kV (peak), 1 MHz to 1.5 MHz, decaying oscillation, 50 shots per s, duration 2 s, $R_i = 150 \Omega$ to 200 Ω

4 to 5 kV, 10/150 ns, 50 surges per s, both polarities, duration 2 s, $R_i = 80 \Omega$

10 to 20 V/m, 25 to 1000 MHz, amplitude and pulse-modulated

2.5 kV (peak, alternating polarity), 100 kHz, 1 MHz, 10 MHz and 50 MHz, decaying oscillation, $R_i = 50 \Omega$

EN 50081-* (generic standard)

30 to 1000 MHz

Mechanical stress tests

Vibration, shock and seismic vibration

During operation Standards

Vibration IEC 60255-21-1, class1 IEC 60068-2-6

Shock IEC 60255-21-2, class 1

Seismic vibration IEC 60255-21-3, class 1, IEC 60068-3-3

During transport

Vibration IEC 60255-21-1, class 2 IEC 60068-2-6

Shock IEC 60255-21-2, class 1 IEC 60068-2-27

Continuous shock IEC 60255-21-2, class 1 IEC 60068-2-29

Climatic stress tests

Temperatures

Recommended temperature during operation

Permissible temperature during operation during storage during transport (Storage and transport with standard works packaging)

Humidity

Acc. to IEC 60255-2-1 and IEC 60068-2

Sinusoidal 10 to 60 Hz: \pm 0.035 mm amplitude, 60 to 150 Hz: 0.5 g acceleration Sweep rate 1 octave/min 20 cycles in 3 orthogonal axes

Half-sine, acceleration 5 g, duration 11 ms, 3 shocks in each direction of 3 orthogonal axes

Sinusoidal 1 to 8 Hz: ± 3.5 mm amplitude (horizontal axis) 1 to 8 Hz: \pm 1.5 mm amplitude (vertical axis) 8 to 35 Hz: 1 g acceleration (horizontal axis) 8 to 35 Hz: 0.5 g acceleration (vertical axis) Sweep rate 1 octave/min 1 cycle in 3 orthogonal axes

Sinusoidal 5 to 8 Hz: \pm 7.5 mm amplitude; 8 to 150 Hz: 2 g acceleration Sweep rate 1 octave/min 20 cycles in 3 orthogonal axes

Half-sine, acceleration 15 g, duration 11 ms, 3 shocks in each direction of 3 orthogonal axes

Half-sine, acceleration 10 g duration 16 ms, 1000 shocks in each direction of 3 orthogonal axes

-5 °C to +55 °C / +23 °F to +131 °F > 55 °C decreased display contrast

–20 °C to +70 °C / –4 °F to +158 °F -25 °C to +55 °C / -13 °F to +131 °F -25 °C to +70 °C / -13 °F to +158 °F

Mean value per year \leq 75 % relative humidity, on 30 days per year 95 % relative humidity, condensation not permissible

Functions	
Definite-time overcurrent protection	n (ANSI 50, 50N)
$\begin{array}{l} \mbox{Setting range/steps} \\ \mbox{Overcurrent pickup phase } I > \\ \mbox{earth } I_E > \\ \mbox{phase } I > > \\ \mbox{earth } I_E > > \\ \mbox{phase } I > > \end{array}$	$ \begin{split} I/I_N &= 0.1 \text{ to } 25 \text{ (steps } 0.1\text{), or } \infty \\ &= 0.05 \text{ to } 25 \text{ (steps } 0.01\text{), or } \infty \\ I/I_N &= 0.1 \text{ to } 25 \text{ (steps } 0.1\text{), or } \infty \\ &= 0.05 \text{ to } 25 \text{ (steps } 0.01\text{), or } \infty \\ I/I_N &= 0.3 \text{ to } 12.5 \text{ (steps } 0.1\text{), or } \infty \end{split} $
Delay times <i>T</i> for <i>I</i> >, I_E >, <i>I</i> >> and I_E >> The set times are pure delay times	0 s to 60 s (steps 0.01 s)
Pickup times <i>I</i> >, <i>I</i> >>, <i>I</i> _E >, <i>I</i> _E >> At 2 x setting value, without meas. repetition At 2 x setting value, with meas. repetition Pickup times for <i>I</i> >>> at 2 x setting value	Approx. 35 ms Approx. 50 ms Approx. 20 ms
Reset times <i>I</i> >, <i>I</i> >>, <i>I</i> _E >, <i>I</i> _E >	Approx. 35 ms Approx. 65 ms
Reset ratios	Approx. 0.95
Overshot time	Approx. 25 ms
Tolerances Pickup values I >, I >>, I >>>, I_E >, I_E >> Delay times T	5 % of setting value 1 % of setting value or 10 ms
Influencing variables Auxiliary voltage, range: $0.8 \le V_{aux}/V_{auxN} \le 1.2$ Temperature, range: $0 \ ^{\circ}C \le \Theta_{amb} \le 40 \ ^{\circ}C$ Frequency, range: $0.98 \le flf_N \le 1.02$ Frequency, range: $0.95 \le flf_N \le 1.05$ Harmonics Up to 10 % of 3 \ ^{rd} harmonic	≤ 1 % ≤ 0.5 %/10 K ≤ 1.5 % ≤ 2.5 % ≤ 1 %
Up to 10 % of 3 rd harmonic Up to 10 % of 5 th harmonic	$ \leq 1 \% \\ \leq 1 \% $

Inverse-time overcurrent protection (ANSI 51/51N)

Setting range/steps	
Overcurrent pickup phase I _p earth I _{Ep}	$ I/I_{\rm N} = 0.1 \text{ to } 4 \text{ (steps } 0.1\text{)} \\ = 0.05 \text{ to } 4 \text{ (steps } 0.01\text{)} $
Time multiplier for $I_{\rm p}, I_{\rm Ep}$ $T_{\rm p}$	(IEC charac.) 0.05 to 3.2 s (steps 0.01 s) (ANSI charac.) 0.5 to 15 s (steps 0.1 s)
$\begin{array}{l} \text{Overcurrent pickup phase $I>>$} \\ \text{phase $I>>>$} \\ \text{earth $I_{\rm E}>>$} \end{array}$	$ \begin{split} I/I_N &= 0.1 \text{ to } 25 \text{ (steps 0.1), or } \infty \\ &= 0.3 \text{ to } 12.5 \text{ (steps 0.1), or } \infty \\ &= 0.05 \text{ to } 25 \\ & (\text{steps 0.01), or } \infty \end{split} $
Delay time T for $I >>$, $I_E >>$	0 s to 60 s (steps 0.01 s)
Tripping time characteristics acc. to I	EC
Pickup threshold Drop-out threshold Drop-out time	Approx. 1.1 x I_p Approx. 1.03 x I_p Approx. 35 ms
Tripping time characteristics acc. to A	ANSI / IEEE
Pickup threshold Drop-out threshold, alternatively: disk emulation	Approx. 1.06 x <i>I</i> _p Approx. 1.03 x <i>I</i> _p

Tolerances Pickup values Delay time for $2 \le I/I_p \le 20$ and $0.5 \le I/I_N \le 24$	5 % 5 % of theoretical value ± 2 % current tolerance, at least 30 ms
Influencing variables Auxiliary voltage, range: $0.8 \le V_{aux}/V_{auxN} \le 1.2$ Temperature, range:	≤ 1 % ≤ 0.5 %/10 K
$-5 \text{ °C} \le \Theta_{\text{amb}} \le 40 \text{ °C}$ +23 °F $\le \Theta_{\text{amb}} \le 104 \text{ °F}$ Frequency, range: $0.95 \le f/f_{\text{N}} \le 1.05$	≤ 8 % referred to theoretical time value
Negative-sequence overcurrent pro	tection (ANSI 46)
$\begin{array}{l} \mbox{Setting range/steps} \\ \mbox{Tripping stage} \\ I_2 \!\!> \mbox{in steps of } 1 \ \% \\ I_2 \!\!> \!\!> \mbox{in steps of } 1 \ \% \\ \mbox{Time delays } T(I_2 \!\!>), T(I_2 \!\!> \!\!>) \end{array}$	8 % to 80 % of $I_{ m N}$ 8 % to 80 % of $I_{ m N}$ 0.00 s to 60.00 s
in steps of 0.01s	At least one phase summer $> 0.1 \times L_{\odot}$
Di dava timer	At least one phase current $\ge 0.1 \times I_N$
Tripping stage $I_2>$, tripping stage $I_2>$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
But with currents <i>I</i> / <i>I</i> _N >1.5 (overcurrent case) or negative-sequence current < (set value +0.1 x <i>I</i> _N)	Approx. 200 ms 310 ms
Reset times Tripping stage <i>I</i> ₂ >, tripping stage <i>I</i> ₂ >>	$\begin{array}{rrrr} \mathrm{At}f_{\mathrm{N}} = & 50~\mathrm{Hz} & & 60~\mathrm{Hz} \\ \mathrm{Approx.} & 35~\mathrm{ms} & & 42~\mathrm{ms} \end{array}$
Reset ratios Tripping stage I ₂ >, tripping stage I ₂ >>	Approx. 0.95 to 0.01 x $I_{\rm N}$
Tolerances Pickup values I_2 , I_2 >> with current $I/I_N \le 1.5$ with current $I/I_N > 1.5$ Stage delay times	$\pm 1 \% \text{ of } I_{\text{N}} \pm 5 \% \text{ of set value}$ $\pm 5 \% \text{ of } I_{\text{N}} \pm 5 \% \text{ of set value}$ $\pm 1 \% \text{ or } 10 \text{ ms}$
Influence variables Auxiliary DC voltage, range: $0.8 \le V = (V = x \le 1.2)$	≤ 1 %
Temperature, range: $-5^{\circ}C \le \Theta_{amb} \le +40^{\circ}C$ $+23^{\circ}F \le \Theta_{amb} \le +104^{\circ}F$	$\leq 0.5 \%/10 \text{ K}$
Frequency, range: $0.98 \le f/f_N \le 1.02$ range: $0.95 \le f/f_N \le 1.05$	$\leq 2 \% \text{ of } I_{\text{N}}$ $\leq 5 \% \text{ of } I_{\text{N}}$
Auto-reclosure (option) (ANSI 79)	
Number of possible shots Auto-reclose modes	1 up to 9 3-pole
Dead times for 1^{st} to 3^{rd} shot for 4^{th} and any further shot	0.05 s to 1800 s (steps 0.01 s) 0.05 s to 1800 s (steps 0.01 s)
Reclaim time after successful AR	0.05 s to 320 s (steps 0.01 s)
Lock-out time after unsuccessful AR	0.05 s to 320 s (steps 0.01 s)
Reclaim time after manual close	0.50 s to 320 s (steps 0.01 s)
Duration of RECLOSE command	0.01s to 60 s (steps 0.01 s)
Control	
Number of devices Evaluation of breaker control	1 None

Thermal overload protection with memory (ANSI 49) (total memory according to IEC 60255-8)

Setting ranges	
Factor k acc. to IEC 60255-8 Thermal time constant τ_{th} Thermal alarm stage $\Theta_{alarm} / \Theta_{trip}$	0.40 to 2 (steps 0.01) 1 to 999.9 min (steps 0.1 min) 50 to 99 % referred to trip tempera- ture rise (steps 1 %)
Prolongation factor at motor stand-still k_{τ}	1 to 10 (steps 0.01)
Reset ratios $\Theta / \Theta_{\text{trip}}$	Reset below Θ_{alarm}
Θ/Θ_{alarm}	Approx. 0.99
Tolerances Referring to k $\cdot I_N$	± 5 % (class 5 % acc. to IEC 60255-8)
Referring to trip time	± 5 % ± 2 s (class 5 % acc. to IEC 60255-8)
Influence variables referred to $k \cdot I_N$ Auxiliary DC voltage in the range of $0.8 \le V_{aux} / V_{auxN} \le 1.2$	≤ 1 %
Temperature, range: $-5 \text{ °C} \le \Theta_{amb} \le +40 \text{ °C}$ $+23 \text{ °F} \le \Theta_{amb} \le +104 \text{ °F}$ Frequency, range: $0.95 \le f/6_* \le 1.05$	≤ 0.5 % / 10 K ≤ 1 %
Without pickup value I_L / I_N	0.4 to 4 (steps 0.1)
Memory time multiplier T_L (= t_6 -time)	1 to 120 s (steps 0,1 s)
Reset ratio I/IL	Approx. 0.94
Tolerances Referring to pickup threshold 1.1· <i>I</i> L	± 5 %
Referring to trip time	$\pm 5\% \pm 2 s$
Influence variables Auxiliary DC voltage in the range of $0.8 \le V_{aux} / V_{auxN} \le 1.2$	≤ 1 %
Temperature, range: $-5 \text{ °C} \le \Theta_{amb} \le +40 \text{ °C}$ $+23 \text{ °F} \le \Theta_{amb} \le +104 \text{ °F}$	≤ 0.5 %/10 K
Frequency, range: $0.95 \le f/f_N \le 1.05$	≤ 1 %

Starting time supervision (motor protection)

Setting ranges Permissible starting current I _{Start} /I _N	0.4 to 20 (steps 0.1)
Permissible starting time <i>t</i> _{Start}	1 to 360 s (steps 0.1 s)
Tripping characteristic	$t = \left(\frac{I_{\text{Start}}}{I_{\text{rms}}}\right)^2 \cdot t \text{ for } I_{\text{rms}} > I_{\text{Start}}$
Reset ratio Irms / IStart	Approx. 0.94

Tolerances Pickup value Delay time 5 %

5 % of setting value or 330 ms

-	
Measured values	I_{L1}, I_{L2}, I_{L3}
Start signal	Trip, start release, binary input
Fault storage Total storage time (fault detec- tion or trip command = 0 ms) Max. storage period per fault event T_{max} Pre-trigger time T_{pre} Post-fault time T_{post} Sampling rate	Max. 8 fault records Max. 5 s, incl. 35 power-fail safe selectable pre-trigger and post-fault time 0.30 to 5.00 s (steps 0.01 s) 0.05 to 0.50 s (steps 0.01s) 0.05 to 0.50 s (steps 0.01 s) 1 instantaneous value per ms at 50 Hz
	1 instantaneous value per 0.83 ms at 60 Hz
Additional functions	
Operational measured values	
Operating currents Measuring range Tolerance	<i>I</i> _{L1} , <i>I</i> _{L2} , <i>I</i> _{L3} 0 % to 240 % <i>I</i> _N 3 % of rated value
Thermal overload values	
Calculated temperature rise Measuring range Tolerance	Θ/Θ _{trip} 0 % to 300 % 5 % referred to Θ _{trip}
Fault event logging	
Storage of indications of the last 8 faults	
Time assignment	
Resolution for operational indications Resolution for fault event indications Max. time deviation	1 s 1 ms 0.01 %
Trip circuit supervision	
With one or two binary inputs	
Circuit-breaker trip test	
With live trip or trip/reclose cycle	

CE conformity

(version with auto-reclosure)

Fault recording

This product is in conformity with the Directives of the European Communities on the harmonization of the laws of the Member States relating to electromagnetic compatibility (EMC Council Directive 89/336/EEC) and electrical equipment designed for use within certain voltage limits (Council Directive 73/23/EEC).

This unit conforms to the international standard IEC 60255, and the German standard DIN 57435/Part 303 (corresponding to VDE 0435/Part 303).

The unit has been developed and manufactured for application in an industrial environment according to the EMC standards.

This conformity is the result of a test that was performed by Siemens AG in accordance with Article 10 of the Council Directive complying with the generic standards EN 50081-2 and EN 50082-2 for the EMC Directive and standard EN 60255-6 for the "low-voltage Directive".

lering data	Description	Order No.
	7SJ600 numerical overcurrent, motor and overload protection relay	<i>7SJ600</i> – □□ <i>A</i> □ <i>0</i> – □ <i>D</i> □□
	Binary input voltage 24 to 250 V DC with isolated RS485 port	
	Rated current at 50/60 Hz	
	$\frac{1 A^{1}}{1}$	1
	$5 \mathrm{A}^{1}$	5
	Rated auxiliary voltage	
	24, 48 V DC	2
	$60, 110, 125 \text{ V DC}^{2}$	4
	220,250 V DC, 115 V AC ²	5
	230 V AC^{3}	6
	Unit design	
	For panel surface mounting, terminals on the side	B
	Terminal connection on top and bottom	D
	For panel flush mounting/cubicle mounting	<u> </u>
	Languages	
	English, German, Spanish, French, Russian	0
	Auto-reclosure (option)	
	Without	0
	with	<i>1</i>
	Control	
	Without	Δ
	With	B
	·····	D
	U ₁ -Listing	
	Without U _L -listing	0
	With U _L -listing	1
	- 0	

Accessories

Converter R\$232 (V.24) - R\$485*

Converter (5252 (1.24) (15465	
With communication cable for the	
7SJ600 numerical overcurrent, motor and overload protection relay	
Length 1 m	
PC adapter	
With power supply unit 230 V AC	<i>7XV5700-0</i> □□00 ⁴⁾
With power supply unit 110 V AC	<i>7XV5700-</i> 1□□00 ⁴⁾

Converter, full-duplex,

Auxiliary voltage 24 to 250 V DC and 110/230 V AC	7XV5650-0BA00
Mounting rail for 19" rack	C73165-A63-C200-1
Manual for 75J600	
English	C53000-G1176-C106-7
Spanish	C53000-G1178-C106-1
French	C53000-G1177-C106-3

7SJ600, 1 A, 60 - 125 V, flush mounting, ARC 7SJ6001-4EA00-1DA0 Converter V.24 -RS485, 230 V AC 7XV5700-0AA00 Manual, English C53000-G1176-C106-7 2) Transition between the two auxiliary

or visit www.siemens.com/siprotec

means of jumpers. 3) Only when position 16 is not "1" (with U_L -listing).

SP2

4) Possible versions see part 13.

1) Rated current can be selected by

voltage ranges can be selected by

means of jumpers.

Mounting rail

RS485 bus system up to 115 kbaud RS485 bus cable and adaptor 7XV5103-□AA□□; see part 13.

Connection diagram

SIPROTEC 7SJ602 Multifunction Overcurrent and Motor Protection Relay

Fig. 5/33 SIPROTEC 7SJ602 multifunction protection relay

Description

The SIPROTEC 7SJ602 is a numerical overcurrent relay which, in addition to its primary use in radial distribution networks and motor protection, can also be employed as backup for line, transformer and generator differential protection. The SIPROTEC 7SJ602 provides definite-time and inverse-time overcurrent protection along with overload and unbalanced-load (negative-sequence) protection for a very comprehensive relay package.

For applications with earth-current detection two versions are available: One version with four current transformer inputs for nondirectional earth (ground) fault detection and a second version with three current inputs (2 phase, 1 earth/ground) and one voltage input for <u>directional</u> earth (ground) fault detection.

The flexible communication interfaces are open for modern communication architectures with control systems.

Function overview

Feeder protection

- Overcurrent-time protection
- Sensitive earth-fault detection
- Directional sensitive earth-fault detection
- Displacement voltage
- Disk emulation
- Overload protection
- Breaker failure protection
- Negative-sequence protection
- Cold load pickup
- Auto-reclosure
- Trip circuit supervision

Motor protection

- Starting time supervision
- Locked rotor
- Restart inhibit
- Undercurrent monitoring
- Temperature monitoring

Control functions

- Commands for control of a circuitbreaker
- Control via keyboard, DIGSI 4 or SCADA system

Measuring functions

- Operational measured values *I*, *V*
- Power measurement P, Q, S, W_{p} , W_{q}
- Slavepointer
- Mean values
- Monitoring functions
- Fault event logging with time stamp (buffered)
- 8 oscillographic fault records
- Continuous self-monitoring

Communication interfaces

- System interface
- IEC 60870-5-103 protocol– PROFIBUS-DP
- MODBUS RTU/ASCII
- Front interface for DIGSI 4

Hardware

- 4 current transformers or
- 3 current + 1 voltage transformers
- 3 binary inputs
- 4 output relays
- 1 live status contact

Application

Wide range of applications

The SIPROTEC 7SJ602 is a numerical overcurrent relay which, in addition to its primary use in radial distribution networks and motor protection, can also be employed as backup for feeder, transformer and generator differential protection.

The SIPROTEC 7SJ602 provides definite-time and inverse-time overcurrent protection along with overload and negative sequence protection for a very comprehensive relay package. In this way, equipment such as motors can be protected against asymmetric and excessive loading. Asymmetric shortcircuits with currents that can be smaller than the largest possible load currents or phase interruptions are reliably detected.

The integrated control function allows simple control of a circuit-breaker or disconnector (electrically operated/motorized switch) via the integrated HMI, DIGSI or SCADA.

1) alternatively; see "Selection and ordering data" for details Fig. 5/34 Function diagram

ANSI No.	IEC	Protection functions
(50, 50N)	I>, I>>, I>>> $I_{\rm E}>, I_{\rm E}>>$	Definite-time overcurrent protection (phase/neutral)
(51, 51N)	<i>I</i> _p , <i>I</i> _{Ep}	Inverse-time overcurrent protection (phase/neutral)
67Ns/50Ns	$I_{\rm EE}$ >, $I_{\rm EE}$ >>, $I_{\rm EEp}$	Directional/non-directional sensitive earth-fault detection
64	$V_{\rm E}>$	Displacement voltage
50BF		Breaker failure protection
79		Auto-reclosure
46	$I_2>$	Phase-balance current protection (negative-sequence protection)
49	ϑ>	Thermal overload protection
48		Starting time supervision
66/86		Restart inhibit
37	<i>I</i> <	Undercurrent monitoring
38		Temperature monitoring via external device, e.g. bearing temperature monitoring
(74TC)		Trip circuit supervision breaker control

Construction

The relay contains all the components needed for

- Acquisition and evaluation of measured values
- Operation and display
- Output of signals and trip commands
- Input and evaluation of binary signals
- SCADA interface (RS485, RS232, fiber-optic)
- Power supply.

The rated CT currents applied to the SIPROTEC 7SJ602 can be 1 A or 5 A. This is selectable via a jumper inside the relay.

Two different housings are available. The flush-mounting version has terminals accessible from the rear. The surface-mounting version has terminals accessible from the front. Retrofitting of a communication module, or replacement of an existing communication module with a new one are both possible.

Fig. 5/35 Rear view of flush-mounting housing

Fig. 5/36 View from below showing system interface (SCADA) with FO connection (for remote communications)

Protection functions

Definite-time characteristics

The definite-time overcurrent function is based on phase-selective evaluation of the three phase currents and earth current.

The definite-time overcurrent protection for the 3 phase currents has a low-set overcurrent element (I>), a high-set overcurrent element (I>>) and a high-set instantaneous element (I>>>). Intentional trip delays can be set from 0 to 60 seconds for all three overcurrent elements.

The definite-time overcurrent protection for the earth (ground) current has a low-set overcurrent element (I_E >) and a high-set overcurrent element (I_E >>). Intentional trip delays can be parameterized from 0 to 60 seconds.

Inverse-time characteristics

In addition, inverse-time overcurrent protection characteristics (IDMTL) can be activated.

Reset characteristics

For easier time coordination with electromechanical relays, reset characteristics according to ANSI C37.112 and IEC 60255-3 / BS 142 standards are applied. When using the reset characteristic (disk emulation), a reset process is initiated after the fault current has disappeared.

This reset process corresponds to the reverse movement of the Ferraris disk of an electromechanical relay (thus: disk emulation).

t Delay

Fig. 5/38 Inverse-time overcurrent characteristic

Available inverse-time characteristics

Characteristics acc. to	ANSI/IEEE	IEC 60255-3	
Inverse	٠	•	
Short inverse	•		
Long inverse	٠	•	
Moderately inverse	٠		
Very inverse	•	•	
Extremely inverse	•	•	
Definite inverse	•		
I squared T	•		
RI/RD-type			
			-

Protection function

(Sensitive) directional earth-fault detection (ANSI 64, 67Ns)

The direction of power flow in the zero sequence is calculated from the zero-sequence current I_0 and zero-sequence voltage V_0 . For networks with an isolated neutral, the reactive current component is evaluated; for compensated networks the active current component or residual resistive current is evaluated. For special network conditions, e.g. high-resistance earthed networks with ohmic-capacitive earth-fault current or low-resistance earthed networks with ohmic-inductive current, the tripping characteristics can be rotated approximately \pm 45 degrees (cosine/sinus).

Two modes of earth-fault direction detection can be implemented: tripping or in "signalling only mode".

It has the following functions:

- TRIP via the displacement voltage V_E.
- Two instantaneous elements or one instantaneous plus one inverse characteristic.
- Each element can be set in forward, reverse, or non-directional.

(Sensitive) earth-fault detection (ANSI 50Ns, 51Ns / 50N, 51N)

For high-resistance earthed networks, a sensitive input transformer is connected to a phase-balance neutral current transformer (also called core-balance CT).

Fig. 5/39 Directional determination using cosine measurements

Thermal overload protection (ANSI 49)

The thermal overload protection function provides tripping or alarming based on a thermal model calculated from phase currents.

The ambient temperature or the temperature of the coolant can be detected serially via an external temperature monitoring box (also called thermo-box). If there is no thermobox it is assumed that the ambient temperatures are constant.

Thermal overload protection without preload:

For thermal overload protection without consideration of the preload current, the following tripping characteristic applies only when

 $I \geq 1.1 \cdot I_{\rm L}$

For different thermal time constants T_L , the tripping time *t* is calculated in accordance with the following equation:

$$t = \frac{35}{\left(\frac{I}{I_{\rm L}}\right)^2 - 1} \cdot T_{\rm L}$$

I = Load current

- $I_{\rm L}$ = Pickup current
- $T_{\rm L}$ = Time multiplier

The reset threshold is above $1.03125 \cdot I/I_N$

Thermal overload protection with preload

The thermal overload protection with consideration of preload current constantly updates the thermal model calculation regardless of the magnitude of the phase currents. The tripping time t is calculated in accordance with the following tripping characteristic (complete memory in accordance with IEC 60255-8).

$$t = \tau \cdot \ln \frac{\left(\frac{I}{\mathbf{k} \cdot I_{\mathrm{N}}}\right)^{2} - \left(\frac{I_{\mathrm{pre}}}{\mathbf{k} \cdot I_{\mathrm{N}}}\right)^{2}}{\left(\frac{I}{\mathbf{k} \cdot I_{\mathrm{N}}}\right)^{2} - 1}$$

- t = Tripping time after beginning of the thermal overload
- $= 35.5 \cdot T_{\rm L}$
- I_{pre} = Preload current
- *I* = Load current
- k = k factor (in accordance with IEC 60255-8)
- $\ln = Natural logarithm$
- $T_{\rm L}$ = Time multiplier
- $I_{\rm N}$ = Rated (nominal) current

Protection functions

Breaker failure protection (ANSI 50BF)

If a faulted portion of the electrical circuit is not disconnected upon issuance of a trip command, another command can be initiated using the breaker failure protection which operates the circuit-breaker, e.g. of an upstream (higher-level) protection relay. Breaker failure is detected if after a trip command, current is still flowing in the faulted circuit. As an option it is possible to make use of the circuit-breaker position indication.

Negative-sequence protection (I₂>>, I₂>/ANSI 46 Unbalanced-load protection)

The negative-sequence protection (see Fig. 5/40) detects a phase failure or load unbalance due to network asymmetry. Interruptions, short-circuits or crossed connections to the current transformers are detected.

Furthermore, low level single-phase and two-phase short-circuits (such as faults beyond a transformer) as well as phase interruptions can be detected.

This function is especially useful for motors since negative-sequence currents cause impermissible overheating of the rotor.

In order to detect the unbalanced load, the ratio of negative phase-sequence current to rated current is evaluated.

 I_2 = negative-sequence current T_{12} = tripping time

Transformer protection

The high-set element permits current coordination where the overcurrent element functions as a backup for the lower-level protection relays, and the overload function protects the transformer from thermal overload. Low-current single-phase faults on the low voltage side that result in negative phase-sequence current on the high-voltage side can be detected with the negativesequence protection.

Fig. 5/40 Tripping characteristics of the negative-sequence protection function

Cold load pickup

By means of a binary input which can be wired from a manual close contact, it is possible to switch the overcurrent pickup settings to less sensitive settings for a programmable duration of time. After the set time has expired, the pickup settings automatically return to their original setting. This can compensate for initial inrush when energizing a circuit without compromising the sensitivity of the overcurrent elements during steady state conditions.

3-pole multishot auto-reclosure (AR, ANSI 79)

Auto-reclosure (AR) enables 3-phase autoreclosing of a feeder which has previously been disconnected by time-overcurrent protection.

Trip circuit supervision (ANSI 74TC)

One or two binary inputs can be used for trip circuit monitoring.

Control

The relay permits circuit-breakers to be opened and closed without command feedback. The circuit-breaker/disconnector may be controlled by DIGSI, or by the integrated HMI, or by the LSA/SCADA equipment connected to the interface.

Protection functions

Switch-onto-fault protection

If switched onto a fault, instantaneous tripping can be effected. If the internal control function is used (local or via serial interface), the manual closing function is available without any additional wiring. If the control switch is connected to a circuitbreaker by-passing the internal control function, manual detection using a binary input is implemented.

Busbar protection (Reverse interlocking)

Binary inputs can be used to block any of the six current stages. Parameters are assigned to decide whether the input circuit is to operate in open-circuit or closed-circuit mode. In this case, reverse interlocking provides highspeed busbar protection in radial or ring power systems that are opened at one point. The reverse interlocking principle is used, for example, in medium-voltage power systems and in switchgear for power plants, where a high-voltage system transformer feeds a busbar section with several medium-voltage outgoing feeders.

Fig. 5/41 Reserve interlocking

Motor protection

Starting time supervision (ANSI 48)

Starting time supervision protects the motor against long unwanted start-ups that might occur when excessive load torque occurs, excessive voltage drops occur within the motor or if the rotor is locked. Rotor temperature is calculated from measured stator current. The tripping time is calculated according to the following equation:

$$t_{\text{TRIP}} = \left(\frac{I_{\text{start}}}{I_{\text{rms}}}\right)^2 \cdot t_{\text{start max}}$$

for $I_{\text{rms}} > I_{\text{start}}$, reset ratio $\frac{I_{\text{N}}}{I_{\text{start}}}$ approx. 0.94

$$I_{\text{start}} = \text{start-up current of the motor}$$

*t*_{start max} = maximum permissible starting time

$$I_{\rm rms}$$
 = actual current flowing

Restart inhibit (ANSI 66/86)

If a motor is started up too many times in succession, the rotor can be subject to thermal overload, especially the upper edges of the bars. The rotor temperature is calculated from the stator current and the temperature characteristic is shown in a schematic diagram. The reclosing lockout only permits startup of the motor if the rotor has sufficient thermal reserves for a complete start-up.

Undercurrent monitoring (ANSI 37)

With this function, a sudden drop in current, which may occur due to a reduced motor load, is detected. This can cause shaft breakage, no-load operation of pumps or fan failure.

Fig. 5/43 Restart inhibit

Temperature monitoring (ANSI 38)

A temperature monitoring box with a total of 6 measuring sensors can be used for temperature monitoring and detection by the protection relay. The thermal status of motors, generators and transformers can be monitored with this device. Additionally, the temperature of the bearings of rotating machines are monitored for limit value violation. The temperatures are measured with the help of temperature detectors at various locations of the device to be protected. This data is transmitted to the protection relay via a temperature monitoring box (also called thermo-box or RTD-box) (see "Accessories").

Additional functions

Measured values

The r.m.s. values are calculated from the acquired current and voltage along with the power factor, active and reactive power. The following functions are available for measured value processing:

- Currents $I_{1,1}, I_{1,2}, I_{1,3}, I_{E}, I_{EE}$ (67Ns)
- Voltages $V_{\rm LI}$, $V_{\rm E}$ (67N_s) if existing
- Power Watts, Vars, VA/P, Q, S
- Power factor $(\cos \varphi)$,
- Energy ± kWh, ± kVarh, forward and reverse power flow
- Mean as well as minimum and maximum current, voltage and power values

Communicatior

With respect to communication, particular emphasis has been placed on high levels of flexibility, data integrity and utilization of standards common in energy automation. The design of the communication modules permits interchangeability.

Local PC interface

The SIPROTEC 7SJ602 is fitted with an RS232 PC front port. A PC can be connected to ease set-up of the relay using the Windows-based program DIGSI which runs under MS-Windows. It can also be used to evaluate up to 8 oscillographic fault records, 8 fault logs and 1 event log containing up to 30 events.

System interface on bottom of the unit

A communication module located on the bottom part of the unit incorporates optional equipment complements and readily permits retrofitting. It guarantees the ability to comply with the requirements of different communication interfaces.

This interface is used to carry out communication with a control or a protection system and supports a variety of communication protocols and interface designs, depending on the module connected.

IEC 60870-5-103 protocol

IEC 60870-5-103 is an internationally standardized protocol for the efficient communication in the protected area. IEC 60870-5-103 is supported by a number of protection device manufacturers and is used worldwide.

PROFIBUS-DP

PROFIBUS-DP is an industry-recognized standard for communications and is supported by a number of PLC and protection device manufacturers.

MODBUS RTU

MODBUS RTU is an industry-recognized standard for communications and is supported by a number of PLC and protection device manufacturers.

Typical connections

CT connections

Fig. 5/47 Standard

- Phase current measured
- Earth current measured (e.g. core balance CT)
- Standard connection Fig. 5/48 • Connection of 3 CTs with residual connection for neutral fault
- Fig. 5/49 Isolated networks only

7SJ6021/7SJ6025

Fig. 5/47 Connection of 4 CTs with measurement of the earth (ground) current

Fig. 5/48 Connection of 3 CTs with residual connection for neutral fault

Connection of 2 CTs only for isolated or resonant-earthed (grounded) power

Typical connections

7SJ6022/7SJ6026

F16

F18

Fig. 5/52

-11

F4

F3

____Alarm

F5 F7 F9 F11

СВ

52

7SJ602

LSA2592-agpen eps

Connection of 3 CTs and 1 VT with measurement of the earth (ground) current and one phase voltage

Fig. 5/53 Example of typical wiring

F2

F16

General unit data

CT circuits Rated current IN Option: sensitive earth-fault CT Rated frequency fN Power consumption Current input at $I_{\rm N} = 1$ A at $I_{\rm N} = 5$ A For sensitive earth-fault detection at 1 A Overload capability Thermal (r.m.s)

Dynamic (pulse current) Overload capability if equipped with sensitive earth-fault current transformer Thermal (r.m.s.)

Dynamic (impulse current)

Voltage transformer

Rated voltage V_N Power consumption at $V_{\rm N} = 100 \, \text{V}$ < 0.3 VA per phase Overload capability in voltage

path (phase-neutral voltage) Thermal (r.m.s.)

Power supply

Power supply via integrated DC/DC converter Rated auxiliary voltage Vaux / permissible variations

Superimposed AC voltage, peak-to-peak At rated voltage At limits of admissible voltage Power consumption

Bridging time during failure/ short-circuit of auxiliary voltage

Binary outputs

Trip relays

Contacts per relay

Switching capacity Make Break

Switching voltage Permissible current Continuous For 0.5 s Permissible total current For common potential: Continuous For 0.5 s

1 or 5 A (settable) $I_{\rm EE} < 1.6$ A or < 8 A (settable) 50/60 Hz (selectable)

< 0.1 VA < 0.3 VA Approx. 0.05 VA

100 x $I_{\rm N}$ for 1 s $30 \ge I_N$ for $10 \le$ $4 \text{ x} I_{\text{N}}$ continuous 250 x I_N one half cycle

300 A for 1 s 100 A for 10 s 15 A continuous 750 A (half cycle)

100 to 125 V

230 V continuous

24/48 V DC/± 20 % 60/110 V DC/± 20 % 110/125/220/250 V DC/± 20 % 115 V AC/- 20 %, + 15 % 230 V AC/- 20 %, + 15 %

Distance

≤ 12 % $\leq 6\%$ Approx. 3 to 6 W, depending on operational status and selected auxiliary voltage \geq 50 ms at $V_{aux} \geq$ 110 V AC/DC \geq 20 ms at $V_{aux} \geq$ 24 V DC

4 (configurable) 1 NO/form A (Two contacts changeable to NC/form B, via jumpers)

1000 W/VA 30 VA, 40 W resistive 25 VA with L/R \leq 50 ms 250 V 5 A 30 A

5 A

30 A

	1
Alarm relays	
Contacts per relay	I NO/NC (IORM A/B)
Switching capacity Make	1000 W/VA
Break	30 VA, 40 W resistive
	25 VA with L/R \leq 50 ms
Switching voltage	250 V
Permissible current	5 A continuous
Binary inputs	
Number	3 (configurable)
Operating voltage	24 to 250 V DC
Current consumption,	Approx. 1.8 mA
independent of operating voltage	
Pickup threshold, selectable via bridges	
Rated aux. voltage	> 19 V DC
110/125/220/250 V DC V pickup	$\geq 19 \text{ V DC}$ $\geq 88 \text{ V DC}$
Permissible maximum voltage	300 V DC
Connection (with scrows)	
Connection (with screws)	
Connection ring cohla luga	$M_{\rm c} = 11$ mm $d = 5$ mm
Wire size	$w_{\text{max}} = 11 \text{ mm}, a_1 = 5 \text{ mm}$ 2.0 - 5.3 mm ² (AWG 14-10)
Direct connection	Solid conductor, flexible lead, connector sleeve
Wire size	2.0 - 5.3 mm ² (AWG 14-10)
Voltage terminals	
Connection ring cable lugs Wire size	$W_{\text{max}} = 10 \text{ mm}, d_1 = 4 \text{ mm}$ 0.5 - 3.3 mm ² (AWG 20-12)
Direct connection	Solid conductor, flexible lead, connector sleeve
Wire size	0.5 - 3.3 mm ² (AWG 20-12)
Unit design	
Housing 7XP20	For dimensions please refer to dimension drawings, part 15
Degree of protection	
acc. to EN 60529	
For the device	ID 51
in flush-mounting housing	11 51
front	IP 51
rear	IP 20
For personal safety	IP 2x with closed protection cover
Weight	Annual Alar
cubicle mounting	Approx. 4 kg
Surface mounting	Approx. 4.5 kg
Serial interfaces	
Operating interface	
Connection	At front side, non-isolated, RS232, 9-pin subminiature connector
Operation	With DIGSI 4.3 or higher
Transmission speed	As delivered 19200 baud, parity: 8E1

Min. 1200 baud

15 m

Max. 19200 baud

System interface (bottom of unit)

IEC 60870-5-103 protocol Connection Transmission rate

RS232/RS485 acc. to ordered version Connection

Test voltage RS232 maximum distance RS485 maximum distance Fiber-optic Connector type

Optical wavelength Laser class 1 acc. to EN 60825-1/-2 Permissible path attenuation Bridgeable distance No character position

PROFIBUS-DP

Isolated interface for data transfer to a control center Transmission rate Transmission reliability <u>RS485</u> Connection 9-pin subminiature connector Distance Test voltage Fiber optic Connection fiber-optic cable Optical wavelength Laser class 1 acc. to EN 60825-1-2 For glass fiber 50/125 µm

Permissible path attenuation Distance

Idle state of interface

Isolated interface for data transmission Min. 1200 baud, max. 19200 baud As delivered 9600 baud

9-pin subminiature connector on the bottom part of the housing 500 V AC 15 m

1000 m

ST connector on the bottom part of the housing $\lambda = 820 \text{ nm}$ For glass fiber 50/125 µm or 62.5/125 µm Max. 8 dB, for glass fiber 62.5/125 µm Max. 1.5 km Selectable, setting as supplied "light off"

Up to 1.5 Mbaud

Hamming distance d = 4

1000 m/3300 ft ≤ 93.75 kbaud; $500 \text{ m}/1500 \text{ ft} \le 187.5 \text{ kbaud};$ 200 m/600 ft ≤ 1.5 Mbaud 500 V AC against earth

Integrated ST connector for fiberoptic connection $\lambda = 820 \text{ nm}$ or 62.5/125 µm Max. 8 dB, for glass fiber 62.5/125 µm 500 kB/s 1.6 km/0.99 miles 1500 kB/s 530 m/0.33 miles

Settable, setting as supplied "light off"

ystem interface (bottom of unit), cont'd		
MODBUS RTU / ASCII		
solated interface for data transfer o a control center		
Fransmission rate	Up to 19200 baud	
Fransmission reliability	Hamming distance $d = 4$	
<u>R\$485</u>		
Connection	9-pin subminiature connector	
Distance	Max. 1 km/3300 ft max. 32 units recommended	
Fest voltage	500 V AC against earth	
<u>Fiber-optic</u>		
Connection fiber-optic cable	Integrated ST connector for fiber- optic connection	
Optical wavelength	820 nm	
Laser class 1 acc. to EN 60825-1-2	For glass fiber 50/125 μm or 62.5/125 μm	
Permissible path attenuation	Max. 8 dB, for glass fiber 62.5/125 μm	
Distance	Max. 1.5 km/0.9 miles	
dle state of interface	"Light off"	

Electrical tests

-

Specifications	
Standards	IEC 60255-5; ANSI/IEEE C37.90.0
Insulation tests	
High-voltage tests (routine test) all circuits except for auxiliary voltage, binary inputs and communication interfaces	2.5 kV (r.m.s. value), 50 Hz
High-voltage tests (routine test) Auxiliary voltage and binary in- puts	3.5 kV DC
High-voltage tests (routine test) only isolated communication interfaces	500 V (r.m.s. value); 50 Hz
Impulse voltage tests (type test) all circuits, except communication interfaces	5 kV (peak value), 1.2/50 $\mu s,$ 0.5 J, 3 positive and 3 negative impulses at intervals of 5 s
EMC tests for interference immun	ity; type tests
Standards	IEC 60255-6; IEC 60255-22, (product standard) EN 50082-2 (generic standard) DIN 57435 Part 303
High-frequency test IEC 60255-22-1, class III and VDE 0435 Part 303, class III	2.5 kV (peak value); 1 MHz, $\tau = 15 \ \mu$ s; 400 surges per s; test duration 2 s; $R_i = 200 \ \Omega$
Electrostatic discharge IEC 60255-22-2 class IV EN 61000-4-2, class IV	8 kV contact discharge, 15 kV air gap discharge, both polarities, 150 pF; $R_i = 330 \Omega$
Irradiation with radio-frequency field, non-modulated IEC 60255-22-3 (Report), class III	10 V/m, 27 to 500 MHz

10 V/m, 80 to 1000 MHz, Irradiation with radio-frequency field, amplitude-modulated AM 80 %; 1 kHz IEC 61000-4-3, class III duration > 10 s

Irradiation with radio-frequency field, pulse-modulated IEC 61000-4-3/ENV 50204, class III duty cycle 50 % PM

10 V/m, 900 MHz,

repetition frequency 200 Hz

EMC tests for interference immunity; type tests, (cont'd)

Fast transients interference/bursts IEC 60255-22-4 and IEC 61000-4-4, class IV

Surge voltage IEC 61000-4-5, class III Pulse: 1.2/50 µs Auxiliary voltage From circuit to

Measuring inputs, binary inputs/outputs

Conducted RF amplitude-modulated IEC 61000-4-6, class III

Power frequency magnetic field IEC 61000-4-8, class IV IEC 60255-6

Oscillatory surge withstand capability ANSI/IEEE C37.90.1

Fast transient surge withstand capability ANSI/IEEE C37.90.1

Radiated electromagnetic interference ANSI/IEEE Std C37.90.2

Damped wave IEC 60694/ IEC 61000-4-12 4 kV; 5/50 ns; 5 kHz; burst length = 15 ms; repetition rate 300 ms; both polarities; $R_i = 50 \Omega$; test duration 1 min

Pulse: 1.2/50 µs From circuit to circuit (common mode): 2 kV, 12 Ω, 9 µF; Across contacts (diff. mode): 1 kV, 2 Ω, 18 µF

From circuit to circuit (common mode): 2 kV, 42 Ω , 0.5 µF; Across contacts (diff. mode): 1 kV, 42 Ω , 0.5 µF 10 V; 150 kHz to 80 MHz; AM 80 %; 1 kHz

30 A/m continuous 300 A/m for 3 s, 50 Hz 0.5 mT, 50 Hz

2.5 to 3 kV (peak value), 1 to 1.5 MHz damped wave; 50 surges per s; duration 2 s $R_i = 150$ to 200 Ω ;

4 to 5 kV, 10/150 ns, 50 surges per s, both polarities; duration 2 s, $R_i = 80 \Omega$; 35 V/m; 25 to 1000 MHz; amplitude and pulse-modulated

2.5 kV (peak value), polarity alternating 100 kHz, 1 MHz, 10 and 50 MHz, $R_i = 200 \Omega$;

EMC tests interference emission; type tests

Standard

Conducted interferences, only auxiliary voltage IEC/CISPR 22

Radio interference field strength IEC/CISPR 22

Harmonic currents on incoming lines of system at 230 V AC IEC 61000-3-2

Voltage fluctuation and flicker range on incoming lines of system at 230 V AC IEC 61000-3-3 EN 50081-* (generic specification) 150 kHz to 30 MHz limit class B

30 to 1000 MHz limit class B

Unit belongs to class D (applies only to units with > 50 VA power consumption)

Limit values are adhered to

Mechanical stress tests

Vibration, shock and seismic vibration

During operation Standards

Vibration IEC 60255-21-1, class I IEC 60068-2-6

Shock IEC 60255-21-2, class I

Seismic vibration IEC 60255-21-3, class I IEC 60068-3-3

During transportation Standards

Vibration IEC 60255-21-1, class II IEC 60068-2-6

Shock IEC 60255-21-2, class I IEC 60068-2-27

Continuous shock IEC 60255-21-2, class I IEC 60068-2-29

Climatic stress tests

Temperatures

Recommended temperature During operation

Limit temperature During operation During storage During transport (Storage and transport with standard works packaging)

Humidity

Permissible humidity stress: It is recommended to arrange the units in such a way that they are not exposed to direct sunlight or pronounced temperature changes that could cause condensation.

Acc. to IEC 60255-21 and IEC 60068-2 Sinusoidal 10 to 60 Hz: \pm 0.035 mm amplitude; 60 to 150 Hz: 0.5 *g* acceleration Sweep rate 1 octave/min 20 cycles in 3 orthogonal axes Half-sine, acceleration 5 *g*, duration 11 ms, 3 shocks in each direction of

3 orthogonal axes Sinusoidal 1 to 8 Hz: ± 3.5 mm amplitude (horizontal axis) 1 to 8 Hz: ± 1.5 mm amplitude (vertical axis) 8 to 35 Hz: 1 g acceleration (horizontal axis) 8 to 35 Hz: 0.5 g acceleration (vertical axis) Sweep rate 1 octave/min 1 cycle in 3 orthogonal axes

Acc. to IEC 60255-21 and IEC 60068-2

Sinusoidal 5 to 8 Hz: ± 7.5 mm amplitude; 8 to 150 Hz: 2 g acceleration Sweep rate 1 octave/min 20 cycles in 3 orthogonal axes

Half-sine, acceleration 15 g, duration 11 ms; 3 shocks in each direction of 3 orthogonal axes

Half-sine, acceleration 10 g, duration 16 ms, 1000 shocks in each direction of 3 orthogonal axes

-5 °C to +55 °C /23 °F to 131 °F, (> 55 °C decreased display contrast)

-20 °C to +70 °C /-4 °F to 158 °F -25 °C to +55 °C /-13 °F to 131 °F -25 °C to +70 °C /-13 °F to 158 °F

Annual average: ≤ 75 % relative humidity, on 56 days per year 95 % relative humidity, condensation not permissible!

Functions

Definite-time overcurrent protection (ANSI 50, 50N)

Setting ranges/steps Low-set overcurrent element Phase <i>I</i> > Earth <i>I</i> _E >	$I/I_{\rm N} = 0.1$ to 25 (steps 0.1); or ∞ $I/I_{\rm N} = 0.05$ to 25 (steps 0.01); or ∞
High-set overcurrent element Phase <i>I>></i> Earth <i>I</i> _E >>	$I/I_{\rm N} = 0.1$ to 25 (steps 0.1); or ∞ $I/I_{\rm N} = 0.05$ to 25 (steps 0.01); or ∞
Instantaneous tripping Phase <i>I</i> >>>	$I/I_{\rm N}$ = 0.3 to 12.5 (steps 0.1); or ∞
Delay times <i>T</i> for <i>I</i> >, <i>I</i> _E >, <i>I</i> >>, <i>I</i> _E >> and <i>I</i> >>> The set times are pure delay times	0 to 60 s (steps 0.01 s)
Pickup times <i>I</i> >, <i>I</i> >>, <i>I</i> _E >, <i>I</i> _E >> At 2 x setting value, without meas. repetition	Approx. 25 ms
At 2 x setting value, with meas. repetition	Approx. 35 ms
Pickup times for <i>I</i> >>> at 2 x setting value	Approx. 15 ms
Reset times <i>I</i> >, <i>I</i> >>, <i>I</i> _E >, <i>I</i> _E >> Reset time <i>I</i> >>>	Approx. 40 ms Approx. 50 ms
Reset ratios	Approx. 0.95
Overshot time	Approx. 55 ms
Folerances Pickup values I>, I>>, I>>>, I _E >, I _E >> Delay times T	5 % of setting value or 5 % of rated value 1 % of setting value or 10 ms
influencing variables Auxiliary voltage, range: 0.8 ≤ V _{aux} /V _{auxN} ≤ 1.2	≤ 1 %
Temperature, range: - 5 °C $\leq \Theta_{amb} \leq 40$ °C / 23 °F $\leq \Theta_{amb} \leq 104$ °F	$\leq 0.5 \% / 10 \text{ K}$
Frequency, range $0.98 \le f/f_N \le 1.02$ $0.95 \le f/f_N \le 1.05$	≤ 1.5 % ≤ 2.5 %
Harmonics Up to 10 % of 3 rd harmonic Up to 10 % of 5 th harmonic	≤ 1% ≤ 1 %

Inverse-time overcurrent protection	(ANSI 51/51N)
Setting ranges/steps	
Low-set overcurrent element	$U_{\rm L}$ 0.1 to 4 (store 0.1)
Earth <i>I</i> _{Ep}	$I/I_{\rm N} = 0.1$ to 4 (steps 0.1) $I/I_{\rm N} = 0.05$ to 4 (steps 0.01)
Time multiplier for $I_{\rm m}$ $I_{\rm Em}$	
(IEC charac.)	$T_{\rm p} = 0.05$ to 3.2 s (steps 0.01 s)
Time multiplier for <i>I</i> _p , <i>I</i> _{Ep} (ANSI charac.)	D = 0.5 to 15 s (steps 0.1 s)
High-set overcurrent element	
Phase <i>I>></i> Earth <i>I</i> _E >>	$I/I_{\rm N} = 0.1$ to 25 (steps 0.1); or ∞ $I/I_{\rm N} = 0.05$ to 25 (steps 0.01); or ∞
Instantaneous tripping Phase <i>I>>></i>	$I/I_{\rm N}$ = 0.3 to 12.5 (steps 0.1); or ∞
Delay time $T_I >>$	0 to 60 s (steps 0.01 s)
Tripping time characteristic	
acc. to IEC	See page 5/33
Pickup threshold	Approx. 1.1 x <i>I</i> _p
Reset threshold, alternatively disk emulation	Approx. 1.03 x I_p
Dropout time	
50 Hz	Approx. 50 ms
60 HZ	Approx. 60 ms
Tolerances	
Pickup values	5 % of setting value or 5 % of rated value
Timing period for $2 \le I/I_p \le 20$ and $0.5 \le I/I_p \le 24$	5 % of theoretical value \pm 2 % current tolerance; at least 30 ms
Influencing variables	
Auxiliary voltage, range:	
$0.8 \le V_{aux}/V_{auxN} \le 1.2$	$\leq 1\%$
Temperature, range: $5\% = 40\%$	≤ 0.5 %/10 K
$-3^{\circ} \text{C} \leq \Theta_{\text{amb}} \leq 40^{\circ} \text{C7}$ $-23^{\circ} \text{F} \leq \Theta_{\text{amb}} \leq 104^{\circ} \text{F}$	
Frequency, range:	
$0.95 \le f/f_{\rm N} \le 1.05$	\leq 8 %, referred to theoretical time value
Tripping characteristic	
acc. to ANSI/IEEE	See page 5/33
Pickup threshold	Approx. 1.06 x $I_{\rm p}$
Dropout threshold, alternatively disk emulation	Approx. 1.03 x <i>I</i> _p
Tolerances	
Pickup threshold	5 % of setting value or 5 % of rated value
Timing period for $2 \le I/I_p \le 20$	5 % of theoretical value
and $0.5 \le I/I_p \le 24$	± 2 % current tolerance; at least 30 ms
Influencing variables	
Auxiliary voltage, range: $0.8 \le V_{aux}/V_{auxN} \le 1.2$	≤ 1 %
Temperature, range:	
$-5 \text{ °C} \le \Theta_{\text{amb}} \le 40 \text{ °C} / 23 \text{ °F} \le \Theta_{\text{amb}} \le 104 \text{ °F}$	$\leq 0.5 \%/10 \text{ K}$
Frequency, range:	
$0.95 \le f/f_{\rm N} \le 1.05$	\leq 8 %, referred to theoretical

(Sensitive) earth-fault protection (directional/non-directional) Definite-time earth-fault protection (ANSI 50Ns)

Setting ranges/steps	
Low-set element $I_{\rm EE}>$	$I/I_{\text{EEN}} = 0.003 \text{ to } 1.5 \text{ (steps } 0.001\text{);}$ or ∞ (deactivated)
High-set element $I_{\rm EE}>>$	$I/I_{\text{EEN}} = 0.003 \text{ to } 1.5 \text{ (steps } 0.001\text{);}$ or ∞ (deactivated)
Delay times T for $I_{\rm EE}$ and $I_{\rm EE}$ >>	0 to 60 s (steps 0.01 s)
Pickup times $I_{\rm EE}$ >, $I_{\rm EE}$ >>	
At 2 x setting value without meas. repetition	Approx. 35 ms
At 2 x setting value with meas. repetition	Approx. 55 ms
Reset times $I_{\rm EE}$, $I_{\rm EE}$ >>	
At 50 Hz	Approx. 65 ms
At 60 HZ	
	Approx. 0.95
Overshot time	Approx. 55 ms
Tolerances	
Pickup values I_{EE} , I_{EE}	5 % of setting value or 5 % of rated value
	1 % of setting value or 10 ms
Influencing variables	
Auxiliary voltage, range: $0.8 \le V_{aux}/V_{auxN} \le 1.2$	≤ 1 %
Temperature, range: - 5 °C $\leq \Theta_{amb} \leq 40$ °C / 23 °F $\leq \Theta_{amb} \leq 104$ °F	$\leq 0.5 \% / 10 \text{ K}$
Frequency, ranges: $0.98 \le f/f_N \le 1.02$ $0.95 \le f/f_N \le 1.05$	≤ 1.5 % ≤ 2.5 %
Harmonics Up to 10 % of 3 rd harmonic Up to 10 % of 5 rd harmonic	$\leq 1\%$ $\leq 1\%$
Inverse-time earth-fault protection	(ANSI 51Ns)
Setting ranges/steps	
Low-set element I_{EEp}	$I/I_{\rm EEN} = 0.003$ to 1.4 (steps 0.001)
Time multiplier for I_{EEp} (IEC characteristic)	$T_{\rm p} = 0.05$ to 3.2 s (steps 0.01 s)
Time multiplier for <i>I</i> _{EEp} (ANSI characteristic)	<i>D</i> = 0.5 to 15 s (steps 0.1 s)
High-set element $I_{\rm EE}>>$	$I/I_{\text{EEN}} = 0.003 \text{ to } 1.5 \text{ (steps } 0.001\text{);}$ or ∞ (deactivated)
Delay time <i>T</i> for $I_{\text{EE}} >>$	0 to 60 s (steps 0.01 s)
<u>Tripping time characteristic</u> acc. to IEC	See page 5/33
Pickup threshold	Approx. 1.1 x I_{EEp}
Reset threshold alternatively disk emulation	Approx. 1.03 x I_{EEp}
Dropout time	
50 Hz	Approx. 50 ms
60 Hz	Approx. 60 ms
Tolerances Pickup values	5 % of setting value or 5 % of rated
Timing period for $2 \le I/I_{EEp} \le 20$ and $0.5 \le I/I_{EEN} \le 24$	5 % of theoretical value \pm 2 % current tolerance; at least 30 ms
Influencing variables	
Auxiliary voltage, range:	- 1.04
$0.0 \leq V_{aux}/V_{auxN} \leq 1.2$	$\geq 1 \%$

Inverse-time earth-fault protection (ANSI 51Ns), cont'd

Temperature, range: $-5 \text{ °C} \le \Theta_{\text{amb}} \le 40 \text{ °C} /$ $23 \text{ °F} \leq \Theta_{\text{amb}} \leq 104 \text{ °F}$ Frequency, range: $0.95 \le f/f_{\rm N} \le 1.05$ Tripping characteristic acc. to ANSI/IEEE Pickup threshold Dropout threshold, alternatively disk emulation Tolerances Pickup threshold

Timing period for $2 \le I/I_{EEp} \le 20$ and $0.5 \leq I/I_{\text{EEN}} \leq 24$

Influencing variables Auxiliary voltage, range: $0.8 \le V_{\text{aux}}/V_{\text{auxN}} \le 1.2$ Temperature, range: $-5 \,^{\circ}\text{C} \le \Theta_{amb} \le 40 \,^{\circ}\text{C}$ / $23 \text{ °F} \leq \Theta_{amb} \leq 104 \text{ °F}$ Frequency, range: $0.95 \le f/f_{\rm N} \le 1.05$

Direction detection (ANSI 67Ns)

Direction measurement Measuring principle Measuring enable For sensitive input

Reset ratio Measuring method Direction vector Dropout delay $T_{\text{Reset Delay}}$ Angle correction for cable converter (for resonant-earthed system) Angle correction F1, F2 Current values I1, I2 For sensitive input

Measuring tolerance acc. to DIN 57435 Angle tolerance

Displacement voltage (ANSI 64)

Displacement voltage, measured Measuring time Pickup delay time Time delay Dropout ratio Measuring tolerance $V_{\rm E}$ (measured) Operating time tolerances The set times are pure delay times $\leq 0.5 \% / 10 \text{ K}$

 \leq 8 %, referred to theoretical time value

See page 5/33 Approx. 1.06 x IEEp Approx. 1.03 x *I*_{EEp}

5 % of setting value or 5 % of rated value

5 % of theoretical value \pm 2 % current tolerance; at least 30 ms

 $\leq 1\%$

 $\leq 0.5 \% / 10 \text{ K}$

 \leq 8 %, referred to theoretical time value

 $I_{\rm E}$, $V_{\rm E}$ (measured) Active/reactive measurement

 $I/I_{\rm EEN} = 0.003$ to 1.2 (in steps of 0.001 I/IEEN) Approx. 0.8 $\cos \varphi$ and $\sin \varphi$ -45 ° to +45 ° (in steps of 0.1 °) 1 to 60 s (steps 1 s) In 2 operating points F1 and F2

 0° to 5° (in steps of 0.1 °)

 $I/I_{\rm EEN} = 0.003$ to 1.6 (in steps of 0.001 I/I_{EEN}) 2 % of the setting value or 1 mA

3 °

 $V_{\rm E} > / V_{\rm N} = 0.02$ to 1.3 (steps 0.001) Approx. 60 ms 0.04 to 320 s or ∞ (steps 0.01 s) 0.1 to 40000 s or ∞ (steps 0.01 s) 0.95 or (pickup value -0.6 V)

3 % of setting value, or 0.3 $\rm V$ 1 % of setting value, or 10 ms

Thermal overload protection with memory (ANSI 49) with preload

Setting	range	•
ocumg	range	-0

Factor k according to IEC 60255-8	0.40 to 2 (steps 0.01)
Thermal time constant $ au_{ m th}$	1 to 999.9 min (steps 0.1 min)
Thermal warning stage $\Theta_{alarm} / \Theta_{trip}$	50 to 99 % referred to trip temperature rise (steps 1 %)
Prolongation factor at motor stand-still $k au$	1 to 10 (steps 0.01)
Reset ratios Θ/Θ_{trip} Θ/Θ_{alarm}	Reset below 0.99 Θ_{alarm} Approx. 0.99
Tolerances	
Referring to $\mathbf{k} \cdot I_{\mathrm{N}}$	± 5 %
Referring to trip time	(class 5 % acc. to IEC 60255-8) ± 5 % ± 2 s (class 5 % acc. to IEC 60255-8)
Influencing variables	
Auxiliary DC voltage, range $0.8 \le V_{aux}/V_{auxN} \le 1.2$	≤ 1 %
Temperature, range - 5 °C $\leq \Theta_{amb} \leq +40$ °C / 23 °F $\leq \Theta_{amb} \leq 104$ °F	$\leq 0.5 \% / 10 \text{ K}$
Frequency, range $0.95 \le f/f_{\rm N} \le 1.05$	≤ 1 %

Thermal overload protection without memory (ANSI 49) without preload

Setting ranges	
Pickup value	$I_{\rm L}/I_{\rm N}=0.4$ to 4 (st
Time multiplier t_L (= t_6 -time)	1 to 120 s (steps 0
Reset ratio I/IL	Approx. 0.94
Tolerances	
Referring to pickup threshold 1.1 $I_{\rm L}$	\pm 5 % of setting v of rated value
Referring to trip time	\pm 5 % \pm 2 s
Influencing variables	
Auxiliary DC voltage, range $0.8 \le V_{aux}/V_{auxN} \le 1.2$	≤ 1 %
Temperature, range - 5 °C $\leq \Theta_{amb} \leq +40$ °C / 23 °F $\leq \Theta_{amb} \leq 104$ °F	≤ 0.5 %/10 K
Frequency, range $0.95 \le f/f_N \le 1.05$	≤ 1 %

Breaker failure protection

Setting ranges/steps
Pickup of current element
Delay time
Pickup times (with internal start) (via control) (with external start)
Dropout time
Tolerances
Pickup value
Delay time

teps 0.1)).1 s)

alue or 5 %

CB $I > I_{\rm N} = 0.04$ to 1.0 (steps 0.01) 0.06 to 60 s or ∞ (steps 0.01 s) is contained in the delay time is contained in the delay time is contained in the delay time Approx. 25 ms 2 % of setting value

1 % or 20 ms

Negative-sequence protection (ANSI 46)

Setting ranges/steps			
Tripping stages I_2 > and I_2 >>	8 to 80 % to $I_{\rm N}$ (steps 1 %)		
Delay times $T(I_2>), T(I_2>>)$	0 to 60 s (steps 0.01 s)		
Lower function limit	At least one phase of	current $\geq 0.1 \text{ x} I_{\text{N}}$	
Pickup times	<u>at f_N = 50 Hz</u>	<u>at f_N = 60 Hz</u>	
Tripping stages I_2 > and I_2 >> But with currents $I/I_N > 1.5$ (overcurrent case) or negative- sequence current < (set value +0.1 x I_N)	Approx. 60 ms	Approx. 75 ms	
Reset times	hppion. 200 mb	rippiox. 910 ms	
Tripping stages $I_2 >$ and $I_2 >>$	Approx. 35 ms	Approx. 42 ms	
Reset ratios			
Tripping stages I_2 and I_2 >>	Approx. 0.9 to 0.0	1 x <i>I</i> _N	
Tolerances			
Pickup values $I_2 >, I_2 >>$			
Current $I/I_N \le 1.5$ Current $I/I_N > 1.5$	\pm 1 % of $I_{\rm N}$ \pm 5 % of set value \pm 5 % of $I_{\rm N}$ \pm 5 % of set value		
Delay times $T(I_2>)$ and $T(I_2>>)$	±1% but min. 10	ms	
Influencing variables			
Auxiliary DC voltage, range $0.8 \le V_{aux}/V_{auxN} \le 1.2$	≤ 1 %		
Temperature, range $-5 \text{ °C} \le \Theta_{\text{amb}} +40 \text{ °C} /$ $23 \text{ °F} \le \Theta_{\text{amb}} \le 104 \text{ °F}$	≤ 0.5 %/10 K		
Frequency, range $0.98 \le f/f_N \le 1.02$ $0.95 \le f/f_N \le 1.05$	$\leq 1 \% \text{ of } I_{\text{N}} \\ \leq 5 \% \text{ of } I_{\text{N}}$		
Auto-reclosure (ANSI 79)			
Number of possible shots	1 to 9, configurabl	le	
Auto-reclosure modes	3-pole		
Dead times for 1 st and any further shot	0.05 s to 1800 s (st	teps 0.01 s)	
Blocking time after successful AR	0.05 s to 320 s (ste	ps 0.01 s)	
Lock-out time after unsuccessful AR	0.05 s to 320 s (ste	ps 0.01 s)	
Reclaim time after manual close	ose 0.50 s to 320 s (steps 0.01 s)		
Duration of reclose command	0.01 s to 60 s (steps 0.01 s)		
Trip circuit supervision (ANSI 74TC)			
Trip circuit supervision	With one or two b	oinary inputs	
Circuit-breaker trip test	Trip/reclosure cyc	le	
Control			
Number of devices	1		
Evaluation of breaker contact	None		

Motor protection		Thermo-box (instead of system interface) (ANSI 38)		
Setting ranges/steps		Number of temperature sensors	Max. 6	
Rated motor current/	$I = (I = 0.2 \pm 0.12)$	Type of measuring	Pt 100 Ω or Ni 100 Ω or Ni 120 Ω	
	$T_{\text{motor}}/T_{\text{N}} = 0.2$ to 1.2 (in steps of 0.1)	Installation drawing	"Oil" or "Environment" or "Stator" or "Bearing" or "Other"	
Start-up current of the motor	$I_{\text{start}}/I_{\text{motor}} = 0.4 \text{ to } 20$ (in steps of 0.1)	Limit values for indications	C C	
Permissible start-up time t _{start max} Startina time supervision (ANSI 48)	1 to 360 s (in steps of 0.1 s)	Warning temperature (stage 1)	-50 °C to 250 °C (in steps of 1 °C) -58 °F to 482 °F (in steps of 1 °F)	
Setting ranges/steps			or ∞ (no indication)	
Pickup threshold	$I_{\text{pickup}}/I_{\text{motor}} = 0.4 \text{ to } 20$ (in steps of 0.1)	Alarm temperature (stage 2)	-50 °C to 250 °C (in steps of 1 °C) -58 °F to 482 °F (in steps of 1 °F) or ∞ (no indication)	
Tripping time characteristic	$(I,)^2$			
	$t_{\text{TRIP}} = \left(\frac{I_{\text{start}}}{I_{\text{rmc}}}\right) \cdot t_{\text{start max}}$	Additional functions		
		Operational measured values		
	For $I_{\rm rms} > I_{\rm pickup}$ $I_{\rm ctore} = \text{Start-up current of the}$	For currents	$I_{\rm L1}, I_{\rm L2}, I_{\rm L3}, I_{\rm E}$	
	Irms = Current actually flowing	Range	in A (Amps) primary or in % $I_{\rm N}$ 10 to 240 % $I_{\rm N}$	
	I_{pickup} = Pickup threshold, from	Tolerance	3 % of measured value	
	$t_{\text{start max}} = Maximum permissible$	For voltages Range Tolerance	$V_{\text{L1-E}}$, in kV primary or in % 10 to 120 % of $V_{\text{N}} \leq 3$ % of measured value	
	starting time	For sensitive earth-current	$I_{\rm EE}, I_{\rm EEac}, I_{\rm EEreac}$	
Posst ratio I / I.	Approx 0.94	detection	(r.m.s., active and reactive current)	
Telerances	App10x. 0.94	Range	In A (kA) primary, or in $\%$	
Pickup values	5 % of setting value or 5 % rated	Tolerance	$\leq 3 \%$ of measured value	
	value	Power/work		
Delay time	5 % or 330 ms	S Apparent power	in kVA, MVA, GVA	
Restart inhibit for motors (ANSI 66/86) Setting ranges/steps		S/VA (apparent power)	For V/V_N , $I/I_N = 50$ to 120 % typically < 6 %	
Rotor temperature compensation	0 to 60 min (in steps of 0.1min)	P Active power,	in kW, MW, GW	
Minimum restart inhibit time T_{restart}	0.2 to 120 min (in steps of 0.1 min)	P/Watts (active power)	For $ \cos \varphi = 0.707$ to 1, typically < 6 %, for $V/V_{\rm N}$, $I/I_{\rm N} = 50$ to 120 %	
Maximum permissible number	1 to 4 (in steps of 1)	Q Reactive power,	In kvar, Mvar, Gvar	
of warm starts n _w Difference between cold and	1 to 2 (in steps of 1)	Q/Var (reactive power)	For $ \sin \varphi = 0.707$ to 1, typically < 6 %, for <i>V</i> / <i>V</i> _N , <i>I</i> / <i>I</i> _N = 50 to 120 %	
warm start n_c - n_w		$\cos \varphi$, total and phase-selective	-1 to +1	
Extension factor for cooling simulation of the rotor (running and stop)	1 to 10 (in steps of 0.1)	Power factor $\cos \varphi$	For $ \cos \varphi = 0.707$ to 1, typically < 5 %	
Restarting limit	$\Theta_{rottart} = \Theta_{rotmax} \cdot \frac{n_c - 1}{2}$	Metering		
5	$n_{\rm c}$	+ W _p kWh	In kWh, MWh, GWh forward	
	Θ _{restart} = Temperature limit below which restarting	- W _p kWh + W _q kvarh - W _g kvarh	In kWh reverse In kvarh inductive In kvarh, Mvarh, Gvarh capacitive	
	$\Theta_{\rm rotmaxperm} = Maximum permissible$	Long-term mean values		
	rotor overtemperature	Moop voluce	15. 30. 60 minutes mean values	
	$(= 100 \% \text{ in operational}$ $measured value$ $\Theta_{rot}/\Theta_{rot trip})$ $n_c = \text{Number of permissible}$	$I_{L1 dmd} in A, kA$ $I_{L2 dmd} in A, kA$ $I_{L3 dmd} in A, kA$	$P_{\rm dmd}$ in kW $Q_{\rm dmd}$ in kvar $S_{\rm dmd}$ in kVA	
	start-ups from cold			
Undergrungent mensioner (ANCLOT)				
Threehold	I < I = 0.1 to $A (in stars - f 0.01)$			
	$I_{\rm L} < /I_{\rm N} = 0.1$ to 4 (in steps of 0.01)			
Delay time for IL	0 to 320 s (in steps of 0.1 s)			

Min/max. LOG (memory)	
Measured values	With date and time
Reset automatic	Time of day (settable in minutes) Time range (settable in days; 1 to 365, ∞)
Reset manual	Via binary input Via keyboard Via communication
Min./max. values of primary cur- rents	$I_{L1}; I_{L2}; I_{L3}$
Min./max. values of primary volt- ages	V_{L1-E}
Min./max. values of power	S Apparent Power P Active power Q Reactive power Power factor $\cos \varphi$
Min./max. values of primary cur- rents mean values	IL1dmd, IL2dmd, IL3dmd
Min./max. values of power mean value	P _{dmd} , Q _{dmd} , S _{dmd}
Fault event log	
Storage	Storage of the last 8 faults
Time assignment	
Resolution for operational indications	1 s
Resolution for fault event indications	1 ms
Max. time deviation	0.01 %
Fault recording	
Storage	Storage of max. 8 fault events
Total storage time (fault detection or trip command = 0 ms)	Max. 5 s, selectable pre-trigger and post-fault time
Max. storage period per fault event T_{max}	0.30 s to 5 s (steps 0.01 s)
Pre-trigger time $T_{\rm pre}$	0.05 s to 0.50 s (steps 0.01 s)
Post-fault time T _{post}	0.05 s to 0.50 s (steps 0.01 s)
Sampling rate at 50 Hz	1 instantaneous value per ms
Sampling rate at 60 Hz	1 instantaneous value per 0.83 ms
Backup battery	Lithium battery 3 V/1 Ah, type CR ½ AA Self-discharge time > 5 years "Battery fault" battery charge warn ing

CE conformity

This product is in conformity with the Directives of the European Communities on the harmonization of the laws of the Member States relating to electromagnetic compatibility (EMC Council Directive 89/336/EEC) and electrical equipment designed for use within certain voltage limits (Council Directive 73/23/EEC).

This unit conforms to the international standard IEC 60255, and the German standard DIN 57435/Part 303 (corresponding to VDE 0435/ Part 303).

The unit has been developed and manufactured for application in an industrial environment according to the EMC standards.

This conformity is the result of a test that was performed by Siemens AG in accordance with Article 10 of the Council Directive complying with the generic standards EN 50081-2 and EN 50082-2 for the EMC Directive and standard EN 60255-6 for the "low-voltage Directive".

Selection and ordering data	Description	Order No.		Order
	7SJ602 multifunction overcurrent and motor protection relay	7SJ602□	- 00000 - 0000	
	Measuring inputs (4 x I), default settings $I_N = 1 A^{1}$, 15th position only with A $I_N = 5 A^{1}$, 15th position only with A	1		
	Measuring inputs (1 × V, 3 × I), default settings $I_{\rm ph} = 1 {\rm A}^1$, $I_{\rm e}$ = sensitive ($I_{\rm EE} = 0.003$ to 1.5 A),15th position only with B and J $I_{\rm ph} = 5 {\rm A}^1$, $I_{\rm e}$ = sensitive ($I_{\rm EE} = 0.015$ to 7.5 A),15th position only with B and J	2	See ne page	ext
	Auxiliary voltage 24/48 V DC, binary input threshold 19 V 60/110 V DC ²⁾ , binary input threshold 19 V ³⁾ 110/125/220/250 V DC, 115/230 V AC ²⁾ binary input threshold 88	V ³⁾	2 4 5	
	<i>Unit design</i> Surface-mounting housing, terminals on top and bottom Flush-mounting housing, screw-type terminals		B	
	<i>Region-specific default and language settings</i> Region World, 50/60 Hz, ANSI/IEC characteristic, languages: English, German, French, Spanish, Russian		B	
	System port (on bottom of unit) No system port IEC 60870-5-103, electrical RS232		<u> </u>	
	IEC 60870-5-103, electrical RS485 IEC 60870-5-103, optical 820 nm, ST connector Temperature monitoring box, electrical RS485 ⁴⁾		2 3 8	
	PROFIBUS-DP stave, electrical RS465 PROFIBUS-DP Slave, optical 820 nm, double ring, ST connector MODBUS, electrical RS485 MODBUS, optical 820 nm, ST connector		9 9 9 9 9	L 0 A L 0 B L 0 D L 0 E
	<i>Command (without process check back signal)</i> Without command With command		<u> </u>	
	Measuring / fault recording Oscillographic fault recording Oscillographic fault recording, slave pointer, mean values, min./m	ax. values	1	

1) Rated current can be selected by means of jumpers.

- 2) Transition between the two auxiliary voltage ranges can be selected by means of jumpers.
- 3) The binary input thresholds can be selected in two stages by means of jumpers.
- Temperature monitoring box 7XV5662-□AD10, refer to part 13.

Description

Selection and ordering data

Order No.

7SJ6020-0000-0000 7SJ602 multifunction overcurrent and motor protection relay ANSI No. Description Rasic version 50/51 Time-overcurrent protection TOC phase *I*>, *I*>>, *I*>>>, *I*_p, reverse interlocking 50N/51N Ground/earth-fault protection TOC ground/earth I_E >, I_E >>, I_{Ep} Overload protection 49 74TC Trip circuit supervision 50BF Breaker-failure protection Cold load pickup Negative sequence/unbalanced load protection F 46 Basic version + directional ground/earth-fault detection Time-overcurrent protection TOC phase 50/51 I>, I>>, I>>>, Ip, reverse interlocking 67Ns Directional sensitive ground/earth-fault detection $I_{\rm EE}$ >, $I_{\rm EE}$ >>, $I_{\rm Ep}$ Displacement voltage 64 49 Overload protection 74TC Trip circuit supervision Breaker-failure protection 50BF Cold load pickup F **B**²⁾ Negative sequence/unbalanced load protection 46 Basic version + sensitive ground/earth-fault detection + measuring Time-overcurrent protection TOC phase 50/51 $I >, I >>, I >>, I >>, I_p$, reverse interlocking Sensitive ground/earth-fault detection $I_{EE} >, I_{EE} >>, I_{Ep}$ 50Ns/51Ns 49 Overload protection 74TC Trip circuit supervision Breaker-failure protection 50BF Cold load pickup 46 Negative sequence/unbalanced load protection Voltage and power measuring F Basic version + motor protection Time-overcurrent protection TOC phase 50/51 I>, I>>, I>>>, Ip, reverse interlocking 50N/51N Ground/earth-fault protection TOC ground/earth I_E , $I_$ Overload protection 49 74TC Trip circuit supervision Breaker-failure protection 50BF Cold load pickup Negative sequence/unbalanced load protection 46 48 Starting time supervision 37 Undercurrent/loss of load monitoring Н 66/86 Restart inhibit Basic version + directional ground/earth fault protection + motor protection 50/51 Time-overcurrent protection TOC phase *I*>, *I*>>, *I*>>>, *I*_p, reverse interlocking 67Ns Directional sensitive ground/earth-fault detection IEE>, IEE>>, IEP 64 Displacement voltage 49 Overload protection 74TC Trip circuit supervision Breaker-failure protection 50BF Cold load pickup 46 Negative sequence/unbalanced load protection 48 Starting time supervision Undercurrent/loss of load monitoring 37 H B²⁾ 66/86 Restart inhibit Basic version + sensitive ground/earth-fault detection + measuring + motor protection Time-overcurrent protection TOC phase 50/51 *I*>, *I*>>, *I*>>>, *I*_p, reverse interlocking 50Ns/51Ns Sensitive ground/earth-fault detection $I_{\rm EE}$ >, $I_{\rm EE}$ >>, $I_{\rm Ep}$ 49 Overload protection 74TC Trip circuit supervision Breaker-failure protection 50BF Cold load pickup Negative sequence/unbalanced load protection 46 Voltage and power measuring 48 Starting time supervision Undercurrent/loss of load monitoring 37 66/86 Restart inhibit Auto-reclosure (ARC) Without auto-reclosure ARC 79 With auto-reclosure ARC

Only with position 7 = 1 or 5 Only with position 7 = 2 or 6

1)

2)

10	 ~~	01	
	 55		1123
	 	<u> </u>	

Description		Order No.
DIGSI 4		
Software for configura	tion and operation of Siemens protection units	
running under MS Wi	ndows 2000/XP Professional Edition,	
device templates, Com	trade Viewer, electronic manual included	
as well as "Getting star	ted" manual on paper, connecting cables (copper)	
Basis		
Full version with licens	se for 10 computers, on CD-ROM	
(authorization by seria	l number)	7XS5400-0AA00
Professional		
DIGSI 4 Basis and add	itionally SIGRA (fault record analysis),	
CFC Editor (logic edite	or), Display Editor (editor for default and	
control displays) and I	DIGSI 4 Remote (remote operation)	7XS5402-0AA00
SIGRA 4		
(generally contained ir	n DIGSI Professional, but can be ordered additionally)	
Software for graphic vi	sualization, analysis and evaluation of fault records.	
Can also be used for fa	ult records of devices of other manufacturers	
(Comtrade format). R	unning under MS Windows.	
Incl. templates, electro	nic manual with license for 10 PCs on CD-ROM.	7755410 04 400
Authorization by seria	i number.	7X33410-0AA00
Temperature monitori	ing box	
24 to 60 V AC/DC		7XV5662-2AD10
90 to 240 V AC/DC		7XV5662-5AD10
Connecting cable (cor	ntained in DIGSI 4, but can be ordered additionally)	
Cable between PC/not	ebook (9-pin con.) and protection unit (9-pin connector)	7XV5100-4
Cable between temper	rature monitoring box and SIPROTEC 4 unit	
- length 5 m / 16.4 ft		7XV5103-7AA05
- length 25 m / 82 ft		7XV5103-7AA25
- length 50 m / 164 ft		7XV5103-7AA50
Manual for 7SJ602		
English	please visit	www.siemens.com/siprotec
Snanish	nlease visit	www.siemens.com/sinrotec

Short-circuit links for current terminals

SP2289-af p.e

Mounting rail

Description	Order No.	Size of package	Supplier
Terminal safety cover			
Voltage/current terminal 18-pole	C73334-A1-C31-1	1	Siemens
Voltage/current terminal 8-pole	C73334-A1-C32-1	1	Siemens
Short-circuit links			
For current terminals	C73334-A1-C33-1	1	Siemens
For other terminals	C73334-A1-C34-1	1	Siemens
Mounting rail for 19" rack	C73165-A63-D200-1	1	Siemens

Your local Siemens representative can inform you on local suppliers.

Connection diagram

Fig. 5/54 Connection diagram according to IEC standard

Connection diagram

Fig. 5/55 Connection diagram according to IEC standard

5 Overcurrent Protection / 7SJ602

SIPROTEC 4 7SJ61 Multifunction Protection Relay

with text (left) and graphic display

Description

The SIPROTEC 4 7SJ61 relays can be used for line protection of high and medium voltage networks with earthed (grounded), low-resistance earthed, isolated or compensated neutral point. When protecting motors, the SIPROTEC 4 7SJ61 is suitable for asynchronous machines of all sizes. The relay performs all functions of backup protection supplementary to transformer differential protection.

The relay provides control of the circuitbreaker, further switching devices and automation functions. The integrated programmable logic (CFC) allows the user to implement their own functions, e. g. for the automation of switchgear (interlocking). The user is also allowed to generate user-defined messages.

The flexible communication interfaces are open for modern communication architectures with control systems.

Function overview

Protection functions

- Time-overcurrent protection (definite-time/inverse-time/user-def.)
- Sensitive earth-fault detection
- Intermittent earth-fault protection
- High-impedance restricted earth fault
- Inrush restraint
- Motor protection
 - Undercurrent monitoring
 - Starting time supervision
 - Restart inhibit
 - Locked rotor
 - Load jam protection
- Overload protection
- Temperature monitoring
- Breaker failure protection
- Negative-sequence protection
- Auto-reclosure
- Lockout

Control functions/programmable logic

- Commands for control of a circuit-breaker and of isolators
- Position of switching elements is shown on the graphic display
- Control via keyboard, binary inputs, DIGSI 4 or SCADA system
- User-defined logic with CFC (e.g. interlocking)

Monitoring functions

- Operational measured values I
- Circuit-breaker wear monitoring
- Slave pointer
- Time metering of operating hours
- Trip circuit supervision
- 8 oscillographic fault records
- Motor statistics

Communication interfaces

- System interface
- IEC 60870-5-103, IEC 61850
- PROFIBUS-FMS/-DP
- DNP 3.0/MODBUS RTU
- Service interface for DIGSI 4 (modem)
- Front interface for DIGSI 4
- Time synchronization via IRIG B/DCF77

Hardware

- 4 current transformers
- 3/8/11 binary inputs
- 4/8/6 output relays

Application

¹⁾ RTD = resistance temperature detector

Fig. 5/58 Function diagram

The SIPROTEC 4 7SJ61 unit is a numerical protection relay that also performs control and monitoring functions and therefore supports the user in cost-effective power system management, and ensures reliable supply of electric power to the customers. Local operation has been designed according to ergonomic criteria. A large, easy-to-read display was a major design aim.

Control

The integrated control function permits control of disconnect devices, earthing switches or circuit-breakers via the integrated operator panel, binary inputs, DIGSI 4 or the control and protection system (e.g. SICAM). The present status (or position) of the primary equipment can be displayed, in case of devices with graphic display. A full range of command processing functions is provided.

Programmable logic

The integrated logic characteristics (CFC) allow the user to implement their own functions for automation of switchgear (interlocking) or a substation via a graphic user interface. The user can also generate userdefined messages.

Line protection

The relay is a non-directional overcurrent relay which can be used for line protection of high and medium-voltage networks with earthed (grounded), low-resistance earthed, isolated or compensated neutral point.

Motor protection

When protecting motors, the 7SJ61 relay is suitable for asynchronous machines of all sizes.

Transformer protection

The relay performs all functions of backup protection supplementary to transformer differential protection. The inrush suppression effectively prevents tripping by inrush currents.

The high-impedance restricted earth-fault protection detects short-circuits and insulation faults on the transformer.

Backup protection

The 7SJ61can be used universally for backup protection.

Flexible protection functions

By configuring a connection between a standard protection logic and any measured or derived quantity, the functional scope of the relays can be easily expanded by up to 20 protection stages or protection functions.

Metering values

Extensive measured values, limit values and metered values permit improved system management.
Application

ANGING	IEC	Destaction functions
	IEC	Protection functions
(50, 50N)	I>, I>>, I>>> $I_{\rm E}>, I_{\rm E}>>, I_{\rm E}>>>$	Definite-time overcurrent protection (phase/neutral)
(51,51N)	$I_{\rm p}, I_{\rm Ep}$	Inverse-time overcurrent protection (phase/neutral)
50Ns, 51Ns	$I_{\rm EE}$ >, $I_{\rm EE}$ >>, $I_{\rm EEp}$	Sensitive earth-fault protection
_		Cold load pick-up (dynamic setting change)
_	$I_{\rm E}>$	Intermittent earth fault
(87N)		High-impedance restricted earth-fault protection
(50BF)		Breaker failure protection
79		Auto-reclosure
(46)	<i>I</i> ₂ >	Phase-balance current protection (negative-sequence protection)
(49)	ϑ>	Thermal overload protection
48		Starting time supervision
(51M)		Load jam protection
(14)		Locked rotor protection
66/86		Restart inhibit
37)	I<	Undercurrent monitoring
38		Temperature monitoring via external device (RTD-box), e.g. bearing temperature monitoring

Construction

Connection techniques and housing with many advantages

1/3-rack size (text display variants) and 1/2-rack size (graphic display variants) are the available housing widths of the 7SJ61 relays referred to a 19" module frame system. This means that previous models can always be replaced. The height is a uniform 244 mm for flush-mounting housings and 266 mm for surface-mounting housing. All cables can be connected with or without ring lugs.

In the case of surface mounting on a panel, the connection terminals are located above and below in the form of screw-type terminals. The communication interfaces are located in a sloped case at the top and bottom of the housing.

Fig. 5/59 Rear view with screw-type, 1/3-rack size

Time-overcurrent protection (ANSI 50, 50N, 51, 51N)

This function is based on the phase-selective measurement of the three phase currents and the earth current (four transformers). Three definite-time overcurrent protection elements (DMT) exist both for the phases and for the earth. The current threshold and the delay time can be set within a wide range. In addition, inverse-time overcurrent protection characteristics (IDMTL) can be activated.

Fig. 5/60

Definite-time overcurrent protection

Fig. 5/61 Inverse-time overcurrent protection

Available inverse-time characteristics

Characteristics acc. to	ANSI/IEEE	IEC 60255-3	
Inverse	•	•	
Short inverse	٠		
Long inverse	٠	•	
Moderately inverse	•		
Very inverse	•	•	
Extremely inverse	•	•	

Reset characteristics

For easier time coordination with electromechanical relays, reset characteristics according to ANSI C37.112 and IEC 60255-3 / BS 142 standards are applied. When using the reset characteristic (disk emulation), a reset process is initiated after the fault current has disappeared. This reset process corresponds to the reverse movement of the Ferraris disk of an electromechanical relay (thus: disk emulation).

User-definable characteristics

Instead of the predefined time characteristics according to ANSI, tripping characteristics can be defined by the user for phase and earth units separately. Up to 20 current/ time value pairs may be programmed. They are set as pairs of numbers or graphically in DIGSI 4.

Inrush restraint

The relay features second harmonic restraint. If the second harmonic is detected during transformer energization, pickup of non-directional normal elements (I>, I_p) are blocked.

Cold load pickup/dynamic setting change

For time-overcurrent protection functions the initiation thresholds and tripping times can be switched via binary inputs or by time control.

Flexible protection functions

The 7SJ61 units enable the user to easily add on up to 20 protective functions. To this end, parameter definitions are used to link a standard protection logic with any chosen characteristic quantity (measured or derived quantity). The standard logic consists of the usual protection elements such as the pickup message, the parameterdefinable delay time, the TRIP command, a blocking possibility, etc. The mode of operation for current quantities can be three-phase or single-phase. The quantities can be operated as greater than or less than stages. All stages operate with protection priority. Protection stages/functions attainable on the basis of the available characteristic quantities:

Function	ANSI No.	
<i>I</i> >, <i>I</i> _E >	50, 50N	
$3I_0>, I_1>, I_2>, I_2/I_1>$	50N, 46	
Binary input		

(Sensitive) earth-fault detection (ANSI 50Ns, 51Ns/50N, 51N)

For high-resistance earthed networks, a sensitive input transformer is connected to a phase-balance neutral current transformer (also called core-balance CT).

The function can also be operated in the insensitive mode as an additional short- circuit protection.

Intermittent earth-fault protection

Intermittent (re-striking) faults occur due to insulation weaknesses in cables or as a result of water penetrating cable joints. Such faults either simply cease at some stage or develop into lasting short-circuits. During intermittent activity, however, star-point resistors in networks that are impedance-earthed may undergo thermal overloading. The normal earth-fault protection cannot reliably detect and interrupt the current pulses, some of which can be very brief.

The selectivity required with intermittent earth faults is achieved by summating the duration of the individual pulses and by triggering when a (settable) summed time is reached. The response threshold I_{IE} > evaluates the r.m.s. value, referred to one systems period.

Breaker failure protection (ANSI 50BF)

If a faulted portion of the electrical circuit is not disconnected upon issuance of a trip command, another command can be initiated using the breaker failure protection which operates the circuit-breaker, e.g. of an upstream (higher-level) protection relay. Breaker failure is detected if after a trip command, current is still flowing in the faulted circuit. As an option it is possible to make use of the circuit-breaker position indication.

Phase-balance current protection (ANSI 46) (Negative-sequence protection)

In line protection, the two-element phasebalance current/negative-sequence protection permits detection on the high side of high-resistance phase-to-phase faults and phase-to-earth faults that are on the low side of a transformer (e.g. with the switch group Dy 5). This provides backup protection for high-resistance faults beyond the transformer.

Settable dropout delay times

If the devices are used in parallel with electromechanical relays in networks with intermittent faults, the long dropout times of the electromechanical devices (several hundred milliseconds) can lead to problems in terms of time grading. Clean time grading is only possible if the dropout time is approximately the same. This is why the parameter of dropout times can be defined for certain functions such as time-overcurrent protection, earth short-circuit and phase-balance current protection.

Auto-reclosure (ANSI 79)

Multiple reclosures can be defined by the user and lockout will occur if a fault is present after the last reclosure. The following functions are possible:

- 3-pole ARC for all types of faults
- Separate settings for phase and earth faults
- Multiple ARC, one rapid auto-reclosure (RAR) and up to nine delayed auto-reclosures (DAR)
- Starting of the ARC depends on the trip command selection (e.g. 46, 50, 51)
- Blocking option of the ARC via binary inputs
- ARC can be initiated externally or via CFC
- The overcurrent elements can either be blocked or operated non-delayed depending on the auto-reclosure cycle
- Dynamic setting change of the overcurrent elements can be activated depending on the ready AR

Thermal overload protection (ANSI 49)

For protecting cables and transformers, an overload protection with an integrated pre-warning element for temperature and current can be applied. The temperature is calculated using a thermal homogeneousbody model (according to IEC 60255-8), which takes account both of the energy entering the equipment and the energy losses. The calculated temperature is constantly adjusted accordingly. Thus, account is taken of the previous load and the load fluctuations.

For thermal protection of motors (especially the stator) a further time constant can be set so that the thermal ratios can be detected correctly while the motor is rotating and when it is stopped. The ambient temperature or the temperature of the coolant can be detected serially via an external temperature monitoring box (resistance-temperature detector box, also called RTD-box). The thermal replica of the

overload function is automatically adapted to the ambient conditions. If there is no RTD-box it is assumed that the ambient temperatures are constant.

High-impedance restricted earth-fault protection (ANSI 87N)

The high-impedance measurement principle is an uncomplicated and sensitive method for detecting earth faults, especially on transformers. It can also be applied to motors, generators and reactors when these are operated on an earthed network.

When the high-impedance measurement principle is applied, all current transformers in the protected area are connected in parallel and operated on one common resistor of relatively high R whose voltage is measured (see Fig. 5/61). In the case of 7SJ6 units, the voltage is measured by detecting the current through the (external) resistor R at the sensitive current measurement input IEE. The varistor V serves to limit the voltage in the event of an internal fault. It cuts off the high momentary voltage spikes occurring at transformer saturation. At the same time, this results in smoothing of the voltage without any noteworthy reduction of the average value. If no faults have occurred and in the event of external faults, the system is at equilibrium, and the voltage through the resistor is approximately zero. In the event of internal faults, an imbalance occurs which leads to a voltage and a current flow through the resistor *R*.

The current transformers must be of the same type and must at least offer a separate core for the high-impedance restricted earth-fault protection. They must in particular have the same transformation ratio and an approximately identical knee-point voltage. They should also demonstrate only minimal measuring errors.

Protection functions/Functions

Motor protection

Starting time supervision (ANSI 48)

Starting time supervision protects the motor against long unwanted start-ups that might occur when excessive load torque occurs, excessive voltage drops occur within the motor or if the rotor is locked. Rotor temperature is calculated from measured stator current. The tripping time is calculated according to the following equation:

for $I > I_{MOTOR START}$

$$t = \left(\frac{I_{\rm A}}{I}\right)^2 \cdot T_{\rm A}$$

I = Actual current flowing *I*_{MOTOR START} = Pickup current to detect a motor start

t	=	Tripping time	

 $I_{\rm A}$ = Rated motor starting current

*T*_A = Tripping time at rated motor starting current (2 times, for warm and cold motor)

The characteristic (equation) can be adapted optimally to the state of the motor by applying different tripping times T_A in dependence of either cold or warm motor state. For differentiation of the motor state the thermal model of the rotor is applied.

If the trip time is rated according to the above formula, even a prolonged start-up and reduced voltage (and reduced start-up current) will be evaluated correctly. The tripping time is inverse (current dependent).

A binary signal is set by a speed sensor to detect a blocked rotor. An instantaneous tripping is effected.

Temperature monitoring (ANSI 38)

Up to 2 temperature monitoring boxes with a total of 12 measuring sensors can be used for temperature monitoring and detection by the protection relay. The thermal status of motors, generators and transformers can be monitored with this device. Additionally, the temperature of the bearings of rotating machines are monitored for limit value violation. The temperatures are being measured with the help of temperature detectors at various locations of the device to be protected. This data is transmitted to the protection relay via one or two temperature monitoring boxes (see "Accessories", page 5/78).

Load jam protection (ANSI 51M)

Sudden high loads can cause slowing down and blocking of the motor and mechanical damages. The rise of current due to a load jam is being monitored by this function (alarm and tripping). The overload protection function is too slow and therefore not suitable under these circumstances.

Phase-balance current protection (ANSI 46) (Negative-sequence protection)

The negative-sequence / phase-balance current protection detects a phase failure or load unbalance due to network asymmetry and protects the rotor from impermissible temperature rise.

Restart inhibit (ANSI 66/86)

If a motor is started up too many times in succession, the rotor can be subject to thermal overload, especially the upper edges of the bars. The rotor temperature is calculated from the stator current. The reclosing lockout only permits start-up of the motor if the rotor has sufficient thermal reserves for a complete start- up (see Fig. 5/62).

Emergency start-up

This function disables the reclosing lockout via a binary input by storing the state of the thermal replica as long as the binary input is active. It is also possible to reset the thermal replica to zero.

Undercurrent monitoring (ANSI 37)

With this function, a sudden drop in current, that can occur due to a reduced motor load, is detected. This may be due to shaft breakage, no-load operation of pumps or fan failure.

Motor statistics

Essential information on start-up of the motor (duration, current, voltage) and general information on number of starts, total operating time, total down time, etc. are saved as statistics in the device.

Circuit-breaker wear monitoring

Methods for determining circuit-breaker contact wear or the remaining service life of a circuit-breaker (CB) allow CB maintenance intervals to be aligned to their actual degree of wear. The benefit lies in reduced maintenance costs.

There is no mathematically exact method of calculating the wear or the remaining service life of circuit-breakers that takes into account the arc-chamber's physical conditions when the CB opens. This is why various methods of determining CB wear have evolved which reflect the different operator philosophies. To do justice to these, the devices offer several methods:

- ΣI
- ΣI^{x} , with x = 1...3
- $\Sigma i^2 t$

The devices additionally offer a new method for determining the remaining service life:

• Two-point method

Protection functions/Functions

The CB manufacturers double-logarithmic switching cycle diagram (see Fig. 5/63) and the breaking current at the time of contact opening serve as the basis for this method. After CB opening, the two-point method calculates the number of still possible switching cycles. To this end, the two points P1 and P2 only have to be set on the device. These are specified in the CB's technical data.

All of these methods are phase-selective and a limit value can be set in order to obtain an alarm if the actual value falls below or exceeds the limit value during determination of the remaining service life.

Commissioning

Commissioning could hardly be easier and is fully supported by DIGSI 4. The status of the binary inputs can be read individually and the state of the binary outputs can be set individually. The operation of switching elements (circuit-breakers, disconnect devices) can be checked using the switching functions of the bay controller. The analog measured values are represented as wide-ranging operational measured values.

To prevent transmission of information to the control center during maintenance, the bay controller communications can be disabled to prevent unnecessary data from being transmitted. During commissioning, all indications with test marking for test purposes can be connected to a control and protection system.

Test operation

During commissioning, all indications can be passed to an automatic control system for test purposes.

Control and automatic functions

Control

In addition to the protection functions, the SIPROTEC 4 units also support all control and monitoring functions that are required for operating medium-voltage or high-voltage substations.

The main application is reliable control of switching and other processes.

The status of primary equipment or auxiliary devices can be obtained from auxiliary contacts and communicated to the 7SJ61 via binary inputs. Therefore it is possible to detect and indicate both the OPEN and CLOSED position or a fault or intermediate circuit-breaker or auxiliary contact position.

The switchgear or circuit-breaker can be controlled via:

- integrated operator panel
- binary inputs

– substation control and protection system
 – DIGSI 4

Automation / user-defined logic

With integrated logic, the user can set, via a graphic interface (CFC), specific functions for the automation of switchgear or substation. Functions are activated via function keys, binary input or via communication interface.

Switching authority

Switching authority is determined according to parameters and communication.

If a source is set to "LOCAL", only local switching operations are possible. The following sequence of switching authority is laid down: "LOCAL"; DIGSI PC program, "REMOTE".

Command processing

All the functionality of command processing is offered. This includes the processing of single and double commands with or without feedback, sophisticated monitoring of the control hardware and software, checking of the external process, control actions using functions such as runtime monitoring and automatic command termination after output. Here are some typical applications:

- Single and double commands using 1, 1 plus 1 common or 2 trip contacts
- User-definable bay interlocks
- Operating sequences combining several switching operations such as control of circuit-breakers, disconnectors and earthing switches
- Triggering of switching operations, indications or alarm by combination with existing information

Fig. 5/64 CB switching cycle diagram

Assignment of feedback to command

The positions of the circuit-breaker or switching devices and transformer taps are acquired by feedback. These indication inputs are logically assigned to the corresponding command outputs. The unit can therefore distinguish whether the indication change is a consequence of switching operation or whether it is a spontaneous change of state.

Chatter disable

Chatter disable feature evaluates whether, in a configured period of time, the number of status changes of indication input exceeds a specified figure. If exceeded, the indication input is blocked for a certain period, so that the event list will not record excessive operations.

Function

Indication filtering and delay

Binary indications can be filtered or delayed.

Filtering serves to suppress brief changes in potential at the indication input. The indication is passed on only if the indication voltage is still present after a set period of time. In the event of indication delay, there is a wait for a preset time. The information is passed on only if the indication voltage is still present after this time.

Indication derivation

A further indication (or a command) can be derived from an existing indication. Group indications can also be formed. The volume of information to the system interface can thus be reduced and restricted to the most important signals.

Measured values

The r.m.s. values are calculated from the acquired current. The following functions are available for measured value processing:

- Currents I_{L1} , I_{L2} , I_{L3} , I_E , I_{EE} (50Ns)
- Symmetrical components *I*₁, *I*₂, 3*I*₀
- Mean as well as minimum and maximum current values
- · Operating hours counter
- Mean operating temperature of overload function
- Limit value monitoring
- Limit values are monitored using programmable logic in the CFC. Commands can be derived from this limit value indication.
- Zero suppression In a certain range of very low measured values, the value is set to zero to suppress interference.

Metered values

If an external meter with a metering pulse output is available, the SIPROTEC 4 unit can obtain and process metering pulses via an indication input.

The metered values can be displayed and passed on to a control center as an accumulation with reset.

Switchgear cubicles for high/medium voltage

All units are designed specifically to meet the requirements of high/medium-voltage applications.

In general, no separate measuring instruments or additional control components are necessary.

Fig. 5/65 NXAIR panel (air-insulated)

Communication

In terms of communication, the units offer substantial flexibility in the context of connection to industrial and power automation standards. Communication can be extended or added on thanks to modules for retrofitting on which the common protocols run. Therefore, also in the future it will be possible to optimally integrate units into the changing communication infrastructure, for example in Ethernet networks (which will also be used increasingly in the power supply sector in the years to come).

Serial front interface

There is a serial RS232 interface on the front of all the units. All of the unit's functions can be set on a PC by means of the DIGSI 4 protection operation program. Commissioning tools and fault analysis are also built into the program and are available through this interface.

Rear-mounted interfaces¹⁾

A number of communication modules suitable for various applications can be fitted in the rear of the flush-mounting housing. In the flush-mounting housing, the modules can be easily replaced by the user. The interface modules support the following applications:

• Time synchronization interface All units feature a permanently integrated electrical time synchronization interface. It can be used to feed timing telegrams in IRIG-B or DCF77 format into the units via time synchronization receivers.

• System interface Communication with a central control system takes place through this interface. Radial or ring type station bus topologies can be configured depending on the chosen interface. Furthermore, the units can exchange data through this interface via Ethernet and IEC 61850 protocol and can also be operated by DIGSI.

• Service interface

The service interface was conceived for remote access to a number of protection units via DIGSI. On all units, it can be an electrical RS232/RS485 or an optical interface. For special applications, a maximum of two temperature monitoring boxes (RTD-box) can be connected to this interface as an alternative.

System interface protocols (retrofittable)

IEC 61850 protocol

The Ethernet-based IEC 61850 protocol is the worldwide standard for protection and control systems used by power supply corporations. Siemens was the first manufacturer to support this standard. By means of this protocol, information can also be exchanged directly between bay units so as to set up simple masterless systems for bay and system interlocking. Access to the units via the Ethernet bus is also possible with DIGSI.

IEC 60870-5-103 protocol

The IEC 60870-5-103 protocol is an international standard for the transmission of protective data and fault recordings. All messages from the unit and also control commands can be transferred by means of published, Siemens-specific extensions to the protocol.

Redundant solutions are also possible. Optionally it is possible to read out and alter individual parameters (only possible with the redundant module).

PROFIBUS-DP protocol

PROFIBUS-DP is the most widespread protocol in industrial automation. Via PROFIBUS-DP, SIPROTEC units make their information available to a SIMATIC controller or, in the control direction, receive commands from a central SIMATIC. Measured values can also be transferred.

MODBUS RTU protocol

This uncomplicated, serial protocol is mainly used in industry and by power supply corporations, and is supported by a number of unit manufacturers. SIPROTEC units function as MODBUS slaves, making their information available to a master or receiving information from it. A time-stamped event list is available.

Fig. 5/66

IEC 60870-5-103: Radial fiber-optic connection

Fig. 5/67

Bus structure for station bus with Ethernet and IEC 61850, fiber-optic ring

1) For units in panel surface-mounting housings please refer to note on page 5/77.

Communication

DNP 3.0 protocol

Power supply corporations use the serial DNP 3.0 (Distributed Network Protocol) for the station and network control levels. SIPROTEC units function as DNP slaves, supplying their information to a master system or receiving information from it.

System solutions for protection and station control

Together with the SICAM power automation system, SIPROTEC 4 can be used with PROFIBUS-FMS. Over the low-cost electrical RS485 bus, or interference-free via the optical double ring, the units exchange information with the control system.

Units featuring IEC 60870-5-103 interfaces can be connected to SICAM in parallel via the RS485 bus or radially by fiber-optic link. Through this interface, the system is open for the connection of units of other manufacturers (see Fig. 5/65).

Because of the standardized interfaces, SIPROTEC units can also be integrated into systems of other manufacturers or in SIMATIC. Electrical RS485 or optical interfaces are available. The optimum physical data transfer medium can be chosen thanks to opto-electrical converters. Thus, the RS485 bus allows low-cost wiring in the cubicles and an interference-free optical connection to the master can be established.

For IEC 61850, an interoperable system solution is offered with SICAM PAS. Via the 100 Mbits/s Ethernet bus, the units are linked with PAS electrically or optically to the station PC. The interface is standardized, thus also enabling direct connection of units of other manufacturers to the Ethernet bus. With IEC 61850, however, the units can also be used in other manufacturers' systems (see Fig. 5/66).

Fig. 5/67 System solution/communication

Fig. 5/68 Optical Ethernet communication module for IEC 61850 with integrated Ethernet-switch

Typical connections

Connection of current and voltage transformers

Standard connection

For earthed networks, the earth current is obtained from the phase currents by the residual current circuit.

Typical applications

Overview of connection types

Type of network	Function	Current connection
(Low-resistance) earthed network	Time-overcurrent protection phase/earth non-directional	Residual circuit, with 3 phase-current transformers required, phase-balance neutral current transformer possible
(Low-resistance) earthed networks	Sensitive earth-fault protection	Phase-balance neutral current transformers required
Isolated or compensated networks	Time-overcurrent protection phases non-directional	Residual circuit, with 3 or 2 phase current transformers possible
Isolated networks	Sensitive earth-fault protection	Phase-balance neutral current transformers required
Compensated networks	Sensitive earth-fault protection	Phase-balance neutral current transformers required

Trip circuit supervision (ANSI 74TC)

One or two binary inputs can be used for monitoring the circuit-breaker trip coil including its incoming cables. An alarm signal occurs whenever the circuit is interrupted.

Fig. 5/71 Trip circuit supervision with 2 binary inputs

Protection indications

52

511* General trip 2851* CB close command 6852* Trip circuit supervision: Trip relay 6853* Trip circuit supervision: CB aux

52a open, when CB is open 52b open, when CB is closed

Breaker

closed H L

open

closed

BI1 BI2

н н

LL

L H

BI Binary input

closed open

TRIP

open

open c**l**osed

contact

Technical data

General unit data					
Measuring circuits					
System frequency		50 /	60 Hz (setta	ible)	
Current transformer					
Rated current Inom		1 01	r 5 A (settabl	e)	
Option: sensitive earth-fault	CT	$I_{\rm EE}$ ·	< 1.6 A		
Power consumption at $I_{nom} = 1$ A at $I_{nom} = 5$ A for sensitive earth-fault CT at 1 A		Арр Арр Арр	prox. 0.05 VA prox. 0.3 VA prox. 0.05 VA	A per phas per phase A	e
Thermal (effective)	t)	100 30 2 4 x	x I_{nom} for 1 x I_{nom} for 10 I_{nom} continu	s ous cycle)	
Overload capability if equip	ved with	250	A Inom (IIali	cycic)	
sensitive earth-fault CT Thermal (effective)	t)	300 100 15 4 750	A for 1 s A for 10 s A continuous A (half cycle	s 2)	
Auxiliary voltage (via integr	ated con	verter)		.,	
Rated auxiliary voltage V _{aux}	DC 24/ AC	/48 V	60/125 V 1	10/250 V 15/230 V	
Permissible tolerance	DC 19- AC	–58 V	48–150 V 8	8–330 V 2–138 V	184–265 V
Ripple voltage, peak-to-peak	≤ 12 %				
Power consumption Quiescent Energized	Approx Approx	. 3 W . 7 W			
Backup time during $\geq 50 \text{ ms a}$ loss/short-circuit of $\geq 20 \text{ ms a}$ auxiliary voltage $\geq 200 \text{ ms}$		s at V s at V ns at 1	≥ 110 V DC ≥ 24 V DC 15 V/230 V A	AC	
Binary inputs/indication inp	outs				
Туре	7SJ610		7SJ611, 7SJ613	7SJ6 7SJ6	12, 14
Number	3		8	11	
Voltage range	24-250	V DC	2		
Pickup threshold	Modifi	able by	y plug-in jun	npers	
Pickup threshold	DC 19	V		88 V	τ
For rated control voltage	DC 24	/48/60/	/110/125 V	110/	220/250 V
Response time/drop-out time	Approx	x. 3.5 r	ns		
Power consumption energized	1.8 mA	(inde	pendent of o	perating v	voltage)
Binary outputs/command c	outputs				
Туре			7SJ610	7SJ611, 7SJ613	7SJ612, 7SJ614
Number command/indication	on relay		4	8	6
Contacts per command/ indication relay			1 NO / f (2 conta NC/forn	orm A cts change n B, via jui	able to mpers)
Live status contact			1 NO / N A / B	NC (jumpe	er) / form
Switching capacity		Make	1000 W	/ VA	
		Break	30 W / V 25 W at I	A / 40 W r L/R $\leq 50 r$	esistive / ns
Switching voltage		≤250	V DC		

5 A continuous, 30 A for 0.5 s making current, 2000 switching cycles

Electrical tests	
Specification	
Standards	IEC 60255 ANSI C37.90, C37.90.1, C37.90.2, UL508
Insulation tests	
Standards	IEC 60255-5; ANSI/IEEE C37.90.0
Voltage test (100 % test) all circuits except for auxiliary voltage and RS485/RS232 and time synchronization	2.5 kV (r.m.s. value), 50/60 Hz
Auxiliary voltage	3.5 kV DC
Communication ports and time synchronization	500 V AC
Impulse voltage test (type test) all circuits, except communication ports and time synchronization, class III	5 kV (peak value); 1.2/50 μs; 0.5 J 3 positive and 3 negative impulses at intervals of 5 s
EMC tests for interference immunit	y; type tests
Standards	IEC 60255-6; IEC 60255-22 (product standard) EN 50082-2 (generic specification) DIN 57435 Part 303
High-frequency test IEC 60255-22-1, class III and VDE 0435 Part 303, class III	2.5 kV (peak value); 1 MHz; τ =15 ms; 400 surges per s; test duration 2 s
Electrostatic discharge IEC 60255-22-2 class IV and EN 61000-4-2, class IV	8 kV contact discharge; 15 kV air gap discharge; both polarities; 150 pF; $R_i = 330 \Omega$
Irradiation with radio-frequency field, non-modulated IEC 60255-22-3 (Report) class III	10 V/m; 27 to 500 MHz
Irradiation with radio-frequency field, amplitude-modulated IEC 61000-4-3; class III	10 V/m, 80 to 1000 MHz; AM 80 %; 1 kHz
Irradiation with radio-frequency field, pulse-modulated IEC 61000-4-3/ENV 50204; class III	10 V/m, 900 MHz; repetition rate 200 Hz, on duration 50 %
Fast transient interference/burst IEC 60255-22-4 and IEC 61000-4-4, class IV	4 kV; 5/50 ns; 5 kHz; burst length = 15 ms; repetition rate 300 ms; both polarities; $R_i = 50 \Omega$; test duration 1 min
High-energy surge voltages (Surge) IEC 61000-4-5; class III Auxiliary voltage	From circuit to circuit: 2 kV; 12 Ω ; 9 μ F
Binary inputs/outputs	From circuit to circuit: 2 kV ; 42Ω ; $0.5 \mu\text{F}$ across contacts: 1 kV ; 42Ω ; $0.5 \mu\text{F}$
Line-conducted HF, amplitude-modulated IEC 61000-4-6, class III	10 V; 150 kHz to 80 MHz; AM 80 %; 1 kHz
Power frequency magnetic field IEC 61000-4-8, class IV IEC 60255-6	30 A/m; 50 Hz, continuous 300 A/m; 50 Hz, 3 s 0.5 mT, 50 Hz
Oscillatory surge withstand capability ANSI/IEEE C37.90.1	2.5 to 3 kV (peak value), 1 to 1.5 MHz damped wave; 50 surges per s; duration 2 s, $R_i = 150$ to 200 Ω

Siemens SIP · Edition No. 6

Permissible current

Technical data

EMC tests for interference immunity; type tests (cont'd)

Fast transient surge withstand capability ANSI/IEEE C37.90.1 Radiated electromagnetic interference ANSI/IEEE C37.90.2

IEC 60694 / IEC 61000-4-12

4 to 5 kV; 10/150 ns; 50 surges per s both polarities; duration 2 s, $R_i = 80 \Omega$ 35 V/m; 25 to 1000 MHz; amplitude and pulse-modulated

2.5 kV (peak value, polarity alternating) 100 kHz, 1 MHz, 10 and 50 MHz, $R_{\rm i} = 200 \ \Omega$

EN 50081-* (generic specification)

150 kHz to 30 MHz

30 to 1000 MHz

Limit class B

EMC tests for interference emission; type tests

Standard

Damped wave

Conducted interferences only auxiliary voltage IEC/CISPR 22 Limit class B

Radio interference field strength IEC/CISPR 11

Units with a detached operator panel must be installed in a metal cubicle to maintain limit class B

Mechanical stress tests

Vibration, shock stress and seismic vibration

During operation

Standards Vibration IEC 60255-21-1, class 2

IEC 60068-2-6

Shock IEC 60255-21-2, class 1 IEC 60068-2-27

Seismic vibration IEC 60255-21-3, class 1 IEC 60068-3-3

During transportation

Standards

Vibration IEC 60255-21-1, class 2 IEC 60068-2-6

Shock IEC 60255-21-2, Class 1 IEC 60068-2-27

Continuous shock IEC 60255-21-2, class 1 IEC 60068-2-29

IEC 60255-21 and IEC 60068-2 Sinusoidal 10 to 60 Hz; +/- 0.075 mm amplitude; 60 to 150 Hz; 1 g acceleration frequency sweep 1 octave/min 20 cycles in 3 perpendicular axes Semi-sinusoidal Acceleration 5 g, duration 11 ms; 3 shocks in both directions of 3 axes Sinusoidal 1 to 8 Hz: \pm 3.5 mm amplitude (horizontal axis) 1 to 8 Hz: ± 1.5 mm amplitude (vertical axis) 8 to 35 Hz: 1 g acceleration (horizontal axis) 8 to 35 Hz: 0.5 g acceleration (vertical axis) Frequency sweep 1 octave/min 1 cycle in 3 perpendicular axes IEC 60255-21 and IEC 60068-2 Sinusoidal 5 to 8 Hz: \pm 7.5 mm amplitude; 8 to 150 Hz; 2 g acceleration, frequency sweep 1 octave/min 20 cycles in 3 perpendicular axes Semi-sinusoidal Acceleration 15 g, duration 11 ms 3 shocks in both directions of 3 axes Semi-sinusoidal

Acceleration 10 g, duration 16 ms 1000 shocks in both directions of 3 axes

Climatic stress tests

Temperatures

Гуре-tested acc. to IEC 60068-2-1 and -2, test Bd, for 16 h	-25 °C to +85 °C /-13 °F to +185 °F
Temporarily permissible operating emperature, tested for 96 h	-20 °C to +70 °C /-4 °F to -158 °F
Recommended permanent operat- ng temperature acc. to IEC 60255-6 (Legibility of display may be mpaired above +55 °C /+131 °F)	-5 °C to +55 °C /+25 °F to +131 °F
- Limiting temperature during	-25 °C to +55 °C /-13 °F to +131 °F
 permanent storage Limiting temperature during transport 	-25 °C to +70 °C /-13 °F to +158 °F
Humidity	
Permissible humidity (it is recommended to arrange the units in such a way that they are not exposed to direct sunlight or pronounced temperature changes that could cause condensation.	Annual average 75 % relative humi- dity; on 56 days a year up to 95 % relative humidity; condensation not permissible!
Unit design	
Housing	7XP20
Dimensions	See dimension drawings, part 15
Weight 1/3 19", surface-mounting housing 1/3 19", flush-mounting housing	4.5 kg 4.0 kg
1/2 19", surface-mounting housing 1/2 19", flush-mounting housing	7.5 kg 6.5 kg
Degree of protection acc. to EN 60529 Surface-mounting housing	IP 51
Flush-mounting housing Operator safety	Front: IP 51, rear: IP 20; IP 2x with cover

Serial interfaces

Operating interface (front of unit)	
Connection	Non-isolated, RS232; front panel, 9-pin subminiature connector
Transmission rate	Factory setting 115200 baud, min. 4800 baud, max. 115200 baud
Service/modem interface (rear of un	it)
Isolated interface for data transfer	Port C: DIGSI 4/modem/RTD-box
Transmission rate	Factory setting 38400 baud, min. 4800 baud, max. 115200 baud
RS232/RS485	
Connection For flush-mounting housing/ surface-mounting housing with detached operator panel For surface-mounting housing with two-tier terminal at the top/bottom part	9-pin subminiature connector, mounting location "C" At the bottom part of the housing: shielded data cable
Distance RS232	15 m /49.2 ft
Distance RS485	Max. 1 km/3300 ft
Test voltage	500 V AC against earth

chn	100	dat	
c_{IIII}	псин	uuu	u

System interface (rear of unit)

IEC 60870-5-103 protocol Isolated interface for data transfer I to a control center

Transmission rate

RS232/RS485

Connection

For flush-mounting housing/ surface-mounting housing with detached operator panel For surface-mounting housing with two-tier terminal on the top/bottom part Distance RS232 Distance RS485 Test voltage <u>Fiber optic</u> Connection fiber-optic cable For flush-mounting housing/ surface-mounting housing with

detached operator panel For surface-mounting housing with two-tier terminal on the top/bottom part

Optical wavelength Permissible path attenuation

Distance

IEC 60870-5-103 protocol, redundant

<u>RS485</u>

Connection For flush-mounting housing/ surface-mounting housing with detached operator panel For surface-mounting housing with two-tier terminal on the top/bottom part Distance RS485

Test voltage

IEC 61850 protocol

Isolated interface for data transfer: - to a control center

- with DIGSI

- between SIPROTEC 4 relays Transmission rate

Ethernet, electrical

Connection

For flush-mounting housing/ surface-mounting housing with detached operator panel

Distance

Test voltage

Ethernet, optical

Connection For flush-mounting housing/ surface-mounting housing with detached operator panel Optical wavelength Distance Port B

Factory setting 9600 baud, min. 1200 baud, max. 115200 baud

Mounting location "B"

At the bottom part of the housing: shielded data cable

Max. 15 m/49 ft Max. 1 km/3300 ft 500 V AC against earth

Integrated ST connector for fiberoptic connection Mounting location "B"

At the bottom part of the housing

820 nm Max. 8 dB, for glass fiber 62.5/125 μm Max. 1.5 km/0.9 miles

Mounting location "B"

(not available)

Max. 1 km/3300 ft 500 V AC against earth

Port B, 100 Base T acc. to IEEE802.3

100 Mbit

Two RJ45 connectors mounting location "B"

Max. 20 m / 65.6 ft 500 V AC against earth

Integr. LC connector for FO connection Mounting location "B" Distance

1300 nm 1.5 km/0.9 miles

	PROFIBUS-FMS/DP	
	Isolated interface for data transfer to a control center	Port B
	Transmission rate	Up to 1.5 Mbaud
1	<u>RS485</u>	
I	Connection For flush-mounting housing/ surface-mounting housing with detached operator panel For surface-mounting housing with two-tier terminal on the top/bottom part	9-pin subminiature connector, mounting location "B" At the bottom part of the housing: shielded data cable
	Distance Test voltage	1000 m/3300 ft \leq 93.75 kbaud; 500 m/1500 ft \leq 187.5 kbaud; 200 m/600 ft \leq 1.5 Mbaud; 100 m/300 ft \leq 12 Mbaud 500 V AC against earth
	Fiber optic	
	Connection fiber-optic cable For flush-mounting housing/ surface-mounting housing with detached operator panel	Integr. ST connector for FO connection Mounting location "B"
	For surface-mounting housing with two-tier terminal on the top/bottom part	At the bottom part of the housing $\frac{\text{Important:}}{^{1)}$ and $^{2)}$ on page 5/99
	Optical wavelength	820 nm
μm	Permissible path attenuation Distance	Max. 8 dB, for glass fiber 62.5/125 μm 500 kB/s 1.6 km/0.99 miles 1500 kB/s 530 m/0.33 miles
	MODBUS RTU, ASCII, DNP 3.0	
	Isolated interface for data transfer to a control center	Port B
	Transmission rate	Up to 19200 baud
	<u>RS485</u>	
	Connection For flush-mounting housing/ surface-mounting housing with detached operator panel For surface-mounting housing with two-tier terminal at the	9-pin subminiature connector, mounting location "B" At bottom part of the housing: shielded data cable
.3	top/bottom part Distance	Max. 1 km/3300 ft max. 32 units
	Test voltage	500 V AC against earth
	Fiber-optic	
	Connection fiber-optic cable	Integrated ST connector for fiber-optic
	For flush-mounting housing/ surface-mounting housing with detached operator panel	connection Mounting location "B"
	For surface-mounting housing with two-tier terminal at the top/bottom part	At the bottom part of the housing <u>Important:</u> Please refer to footnotes ¹⁾ and ²⁾ on page 5/77
	Optical wavelength Permissible path attenuaion	820 nm Max. 8 dB, for glass fiber 62.5/125 μm

Max. 8 dB, for glass fiber 62.5/125 μm Max. 1.5 km/0.9 miles

Technical data

Time synchronization DCF77/IRIG-B signal (Format IRIG-B000)		
Connection	9-pin subminiature connector (SUB-D) (terminal with surface-mounting bousing)	
Voltage levels	5 V. 12 V or 24 V (optional)	
Functions	5 (, 12 (of 21 ((optional)	
Definite-time overcurrent protectio	n (ANSI 50, 50N)	
Operating mode phase protection	3-phase (standard) or 2-phase	
(ANSI 50)	(L1 and L3)	
Number of elements (stages)	$I_{E}^{(1)}, I_{E}^{(2)}, I_{E}^{(2)} >> (parts)$ $I_{E}^{(2)}, I_{E}^{(2)} >> (earth)$	
Setting ranges		
Pickup phase elements Pickup earth elements	0.5 to 175 A or $\infty^{(1)}$ (in steps of 0.01 A) 0.25 to 175 A or $\infty^{(1)}$ (in steps of 0.01 A)	
Delay times T Dropout delay time $T_{\rm DO}$	0 to 60 s or ∞ (in steps of 0.01 s) 0 to 60 s (in steps of 0.01 s)	
Times Pickup times (without inrush restraint, with inrush restraint + 10 ms)		
With twice the setting value With five times the setting value	Approx. 30 ms Approx. 20 ms	
Dropout times	Approx. 40 ms	
Dropout ratio	Approx. 0.95 for $I/I_{\text{nom}} \ge 0.3$	
Tolerances Pickup Delay times <i>T</i> , <i>T</i> _{DO}	2 % of setting value or 50 mA ¹⁾ 1 % or 10 ms	
Inverse-time overcurrent protection	(ANSI 51, 51N)	
Operating mode phase protection	3-phase (standard) or 2-phase	
(ANSI 51)	(L1 and L3)	
(ANSI 51) Setting ranges Pickup phase element <i>I</i> _P Pickup earth element <i>I</i> _{EP} Time multiplier <i>T</i> (IEC characteristics) Time multiplier <i>D</i> (ANSI characteristics)	(L1 and L3) 0.5 to 20 A or ∞^{1} (in steps of 0.01 A) 0.25 to 20 A or ∞^{1} (in steps of 0.01 A) 0.05 to 3.2 s or ∞ (in steps of 0.01 s) 0.05 to 15 s or ∞ (in steps of 0.01 s)	
 (ANSI 51) Setting ranges Pickup phase element I_P Pickup earth element I_{EP} Time multiplier T (IEC characteristics) Time multiplier D (ANSI characteristics) Trip characteristics IEC ANSI 	(L1 and L3) 0.5 to 20 A or ∞^{11} (in steps of 0.01 A) 0.25 to 20 A or ∞^{11} (in steps of 0.01 A) 0.05 to 3.2 s or ∞ (in steps of 0.01 s) 0.05 to 15 s or ∞ (in steps of 0.01 s) Normal inverse, very inverse, extremely inverse, long inverse Inverse, short inverse, long inverse extremely inverse, very inverse, extremely inverse, definite inverse	
(ANSI 51) Setting ranges Pickup phase element <i>I</i> _P Pickup earth element <i>I</i> _{EP} Time multiplier <i>T</i> (IEC characteristics) Time multiplier <i>D</i> (ANSI characteristics) Trip characteristics IEC ANSI User-defined characteristic	(L1 and L3) 0.5 to 20 A or ∞^{11} (in steps of 0.01 A) 0.25 to 20 A or ∞^{11} (in steps of 0.01 A) 0.05 to 3.2 s or ∞ (in steps of 0.01 s) 0.05 to 15 s or ∞ (in steps of 0.01 s) Normal inverse, very inverse, extremely inverse, long inverse Inverse, short inverse, long inverse moderately inverse, very inverse, extremely inverse, definite inverse Defined by a maximum of 20 value pairs of current and time delay	
 (ANSI 51) Setting ranges Pickup phase element IP Pickup earth element IEP Time multiplier T (IEC characteristics) Time multiplier D (ANSI characteristics) Trip characteristics IEC ANSI User-defined characteristic Dropout setting Without disk emulation 	(L1 and L3) 0.5 to 20 A or ∞^{11} (in steps of 0.01 A) 0.25 to 20 A or ∞^{11} (in steps of 0.01 A) 0.05 to 3.2 s or ∞ (in steps of 0.01 s) 0.05 to 15 s or ∞ (in steps of 0.01 s) Normal inverse, very inverse, extremely inverse, long inverse Inverse, short inverse, long inverse moderately inverse, very inverse, extremely inverse, definite inverse Defined by a maximum of 20 value pairs of current and time delay Approx. 1.05 · setting value I_p for $I_p/I_{nom} \ge 0.3$, corresponds to approx. 0.95 · pickup threshold	
 (ANSI 51) Setting ranges Pickup phase element IP Pickup earth element IEP Time multiplier T (IEC characteristics) Time multiplier D (ANSI characteristics) Trip characteristics IEC ANSI User-defined characteristic Dropout setting Without disk emulation With disk emulation	(L1 and L3) 0.5 to 20 A or ∞^{11} (in steps of 0.01 A) 0.25 to 20 A or ∞^{11} (in steps of 0.01 A) 0.05 to 3.2 s or ∞ (in steps of 0.01 s) 0.05 to 15 s or ∞ (in steps of 0.01 s) Normal inverse, very inverse, extremely inverse, long inverse Inverse, short inverse, long inverse moderately inverse, very inverse, extremely inverse, definite inverse Defined by a maximum of 20 value pairs of current and time delay Approx. 1.05 · setting value I_p for $I_p/I_{nom} \ge 0.3$, corresponds to approx. 0.95 · pickup threshold Approx. 0.90 · setting value I_p	
(ANSI 51) Setting ranges Pickup phase element I_P Pickup earth element I_{EP} Time multiplier T (IEC characteristics) Time multiplier D (ANSI characteristics) Trip characteristics IEC ANSI User-defined characteristic Dropout setting Without disk emulation With disk emulation Tolerances Pickup/dropout thresholds I_P , I_{EP} Pickup time for $2 \le I/I_P \le 20$	(L1 and L3) 0.5 to 20 A or ∞^{11} (in steps of 0.01 A) 0.25 to 20 A or ∞^{11} (in steps of 0.01 A) 0.05 to 3.2 s or ∞ (in steps of 0.01 s) 0.05 to 15 s or ∞ (in steps of 0.01 s) Normal inverse, very inverse, extremely inverse, long inverse Inverse, short inverse, long inverse moderately inverse, very inverse, extremely inverse, definite inverse Defined by a maximum of 20 value pairs of current and time delay Approx. 1.05 · setting value I_p for $I_p/I_{nom} \ge 0.3$, corresponds to approx. 0.95 · pickup threshold Approx. 0.90 · setting value I_p 2 % of setting value or 50 mA ¹¹ 5 % of reference (calculated) value + 2 % current tolerance, respectively 30 ms	

Inrush blocking Influenced functions Time-overcurrent elements, I >, $I_E >$, $I_{\rm p}, I_{\rm Ep}$ Lower function limit phases At least one phase current (50 Hz and 100 Hz) \geq 125 mA $^{1)}$ Earth current (50 Hz and 100 Hz) Lower function limit earth \geq 125 mA⁻¹ Upper function limit (setting range) 1.5 to 125 A¹⁾ (in steps of 0.01 A) 10 to 45 % (in steps of 1 %) Setting range I2f/I Crossblock (IL1, IL2, IL3) ON/OFF Dynamic setting change Controllable function Pickup, tripping time Start criteria Current criteria, CB position via aux. contacts, binary input, auto-reclosure ready Time control 3 timers Current criteria Current threshold (reset on dropping below threshold; monitoring with timer) (Sensitive) earth-fault detection (ANSI 50 Ns, 51Ns) Earth-fault pickup for all types of earth faults Definite-time characteristic (ANSI 50Ns) Setting ranges Pickup threshold *I*_{EE}>, *I*_{EE}>> For sensitive input 0.001 to 1.5 A (in steps of 0.001 A) 0.25 to 175 A¹⁾ (in steps of 0.01 A) For normal input Delay times T for $I_{\rm EE}$, $I_{\rm EE}$ >> 0 to 320 s or ∞ (in steps of 0.01 s) Dropout delay time T_{DO} 0 to 60 s (in steps of 0.01 s) Times Pickup times Approx. 50 ms Dropout ratio Approx. 0.95 Tolerances Pickup threshold *I*_{EE}>, *I*_{EE}>> 2 % of setting value or 1 mA Delay times 1 % of setting value or 20 ms Earth-fault pickup for all types of earth faults Inverse-time characteristic (ANSI 51Ns) User-defined characteristic Defined by a maximum of 20 pairs of current and delay time values Sett Р

Setting ranges	
Pickup threshold <i>I</i> EEP	
For sensitive input	0.001 A to 1.4 A (in steps of 0.001 A)
For normal input	0.25 to 20 A ¹ (in steps of 0.01 A)
User defined	
Time multiplier T	0.1 to 4 s or ∞ (in steps of 0.01 s)
Times	
Pickup times	Approx. 50 ms
Pickup threshold	Approx. $1.1 \cdot I_{EEp}$
Dropout ratio	Approx. $1.05 \cdot I_{EEp}$
Tolerances	
Pickup threshold	
For sensitive input	2 % of setting value or 1 mA
For normal input	2 % of setting value or 50 mA ¹⁾
Dropout times in linear range	7 % of reference value for $2 \le I/I_{\text{EEp}}$
	\leq 20 + 2 % current tolerance, or 70 ms
Logarithmic inverse	Refer to the manual
Logarithmic inverse with knee point	Refer to the manual

Teel	hnical	data
reci	inicai	aata

High-impedance restricted earth-fault protection (ANSI 87N) / single-phase overcurrent protection

Setting ranges Pickup thresholds I>, I>> 0.003 to 1.5 A or ∞ (in steps of 0.001 A) 0.25 to 175 A¹⁾ or ∞ (in steps of 0.01 A) 0 to 60 s or ∞ (in steps of 0.01 s) For sensitive input For normal input Delay times $T_I >$, $T_I >>$ Times Pickup times Minimum Approx. 20 ms Approx. 30 ms Typical Approx. 30 ms Dropout times Dropout ratio Approx. 0.95 for $I/I_{nom} \ge 0.5$ Tolerances 3 % of setting value or Pickup thresholds 1 % rated current at $I_{nom} = 1$ or 5 A; 5 % of setting value or 3 % rated current at $I_{\text{nom}} = 0.1 \text{ A}$

1 % of setting value or 10 ms

Delay times

Intermittent earth-fault protection

Setting ranges

$I_{\rm IE}>$	0.25 to 175 A^{1} (in steps of 0.01 A)
$I_{\rm IE}>$	0.25 to 175 A ¹⁾ (in steps of 0.01 A)
$I_{\rm IE}>$	0.005 to 1.5 A (in steps of 0.001 A)
$T_{\rm V}$	0 to 10 s (in steps of 0.01 s)
T_{sum}	0 to 100 s (in steps of 0.01 s)
$T_{\rm res}$	1 to 600 s (in steps of 1 s)
	2 to 10 (in steps of 1)
p value	Approx. 30 ms
value	Approx. 22 ms
	Approx. 22 ms
	3 % of setting value, or 50 $mA^{1)}$
	1 % of setting value or 10 ms
ion (ANSI	49)
	I _{IE} > I _{IE} > I _{IE} > T _V T _{sum} T _{res} p value value

Factor k	0.1 to 4 (in steps of 0.01)
Time constant	1 to 999.9 min (in steps of 0.1 min)
Warning overtemperature $\Theta_{alarm}/\Theta_{trip}$	50 to 100 % with reference to the tripping overtemperature (in steps of 1 %)
Current warning stage Ialarm	0.5 to 20 A (in steps of 0.01 A)
Extension factor when stopped k_r factor	1 to 10 with reference to the time constant with the machine running (in steps of 0.1)
Rated overtemperature (for I_{nom})	40 to 200 °C (in steps of 1 °C)

Tripping characteristic For $(I/k \cdot I_{nom}) \le 8$	$t = \tau_{\text{th}} \cdot \ln \frac{\left(I/k \cdot I_{\text{nom}}\right)^2 - \left(I_{\text{pre}}/k \cdot I_{\text{nom}}\right)^2}{\left(I/k \cdot I_{\text{nom}}\right)^2 - 1}$
	t = Tripping time $\tau_{\text{th}} = \text{Temperature rise time constant}$
	I = Load current $I_{\text{pre}} = \text{Preload current}$ k = Setting factor acc. to VDE 0435
	Part 3011 and IEC 60255-8 $I_{nom} = Rated (nominal) current of the protection relay$
Dropout ratios $\Theta/\Theta_{\mathrm{Trip}}$ $\Theta/\Theta_{\mathrm{Alarm}}$ I/I_{Alarm}	Drops out with Θ_{Alarm} Approx. 0.99 Approx. 0.97
Folerances With reference to $k \cdot I_{nom}$ With reference to tripping time	Class 5 acc. to IEC 60255-8 5 % +/- 2 s acc. to IEC 60255-8
Auto-reclosure (ANSI 79)	
Number of reclosures	0 to 9 Shot 1 to 4 individually adjustable
Program for phase fault Start-up by	Time-overcurrent elements, negative sequence, binary input
Program for earth fault Start-up by	Time-overcurrent elements, sensitive earth-fault protection, binary input
Blocking of ARC	Pickup of protection functions, three-phase fault detected by a protec- tive element, binary input, last TRIP command after the reclosing cycle is complete (unsuccessful reclosing), TRIP command by the breaker failure protection (50BF), opening the CB without ARC initiation, external CLOSE command
Setting ranges Dead time (separate for phase and earth and individual for shots 1 to 4)	0.01 to 320 s (in steps of 0.01 s)
Blocking duration for manual- CLOSE detection	0.5 s to 320 s or 0 (in steps of 0.01 s)
Blocking duration after reclosure	0.5 s to 320 s (in steps of 0.01 s)
Blocking duration after dynamic blocking	0.01 to 320 s (in steps of 0.01 s)
Start-signal monitoring time	0.01 to 320 s or ∞ (in steps of 0.01 s)
Circuit-breaker supervision time	0.1 to 320 s (in steps of 0.01 s)
Max. delay of dead-time start	0 to 1800 s or ∞ (in steps of 0.1 s)
Maximum dead time extension	0.5 to 320 s or ∞ (in steps of 0.01 s)
Action time	0.01 to 320 s or ∞ (in steps of 0.01 s)
The delay times of the following pro- ndividually by the ABC for shots 1 t	tection function can be altered

(setting value T = T, non-delayed T = 0, blocking $T = \infty$): I>>>, I>>, I>, I>, Ip, $I_{\rm E}$ >>>, $I_{\rm E}$ >>, $I_{\rm E}$ >, $I_{\rm E}$ >, $I_{\rm Ep}$

Additional functions

Auto-reclosure (ANSI 79) (cont'd)

i	Lockout (final trip), delay of dead-time start via binary input (monitored), dead-time extension via binary input (monitored), co-ordination with other protection relays, circuit-breaker monitoring, evaluation of the CB contacts

Breaker failure protection (ANSI 50 BF)

Setting ranges Pickup thresholds	0.2 to 5 A ¹⁾ (in steps of 0.01 A)
Delay time	0.06 to 60 s or ∞ (in steps of 0.01 s)
Times Pickup times with internal start with external start Dropout times	is contained in the delay time is contained in the delay time Approx. 25 ms
Tolerances Pickup value Delay time	2 % of setting value (50 mA) ¹⁾ 1 % or 20 ms

Flexible protection functions (ANSI 47, 50, 50N)

Operating modes/measuring	
quantities	
3-phase	$I, I_1, I_2, I_2/I_1, 3I_0$
1-phase	$I, I_{\rm E}, I_{\rm E}$ sens.
Without fixed phase relation	Binary input
Pickup when	Exceeding or falling below threshold value
Setting ranges	
Current I, I_1 , I_2 , $3I_0$, I_E	0.15 to 200 A ¹⁾ (in steps of 0.01 A)
Current ratio I ₂ / I ₁	15 to 100 % (in steps of 1 %)
Sensitive earth current IE sens.	0.001 to 1.5 A (in steps of 0.001 A)
Dropout ratio >- stage	1.01 to 3 (in steps of 0.01)
Dropout ratio <- stage	0.7 to 0.99 (in steps of 0.01)
Pickup delay time	0 to 60 s (in steps of 0.01 s)
Trip delay time	0 to 3600 s (in steps of 0.01 s)
Dropout delay time	0 to 60 s (in steps of 0.01 s)
Times	
Pickup times, phase quantities With 2 times the setting value With 10 times the setting value Pickup times, symmetrical	Approx. 30 ms Approx. 20 ms
With 2 times the setting value	Approx 40 ms
With 10 times the setting value	Approx 30 ms
Binary input	Approx. 20 ms
Dron out time of	
Propout times Phase quantities Symmetrical components Binary input	< 20 ms < 30 ms < 10 ms
Tolerances Pickup threshold Phase quantities Symmetrical components	1 % of setting value or 50 mA ¹⁾ 2 % of setting value or 100 mA ¹⁾
Times	1 % of setting value or 10 ms
Negative-sequence current detection	n (ANSI 46)

Definite-time characteristic (ANSI 46-1 and 46-2)

Setting ranges Pickup current I_2 , I_2 >> Delay times

Dropout delay time $T_{\rm DO}$ Functional limit

0.5 to 15 A or ∞ (in steps of 0.01 A) 0 to 60 s or ∞ (in steps of 0.01 s) 0 to 60 s (in steps of 0.01 s) All phase currents $\leq 50 \text{ A}^{1)}$

Fimes Pickup times Dropout times	Approx. 35 ms
Dropout ratio	Approx. 0.95 for $I_2 / I_{nom} > 0.3$
Folerances Pickup thresholds Delay times	3 % of the setting value or 50 mA ¹⁾ 1 % or 10 ms
nverse-time characteristic (ANSI 46	-TOC)
Setting ranges Pickup current Time multiplier T (IEC characteristics) Time multiplier D	0.5 to 10 A ¹⁾ (in steps of 0.01 A) 0.05 to 3.2 s or ∞ (in steps of 0.01 s) 0.5 to 15 s or ∞ (in steps of 0.01 s)
(ANSI characteristics)	
Functional limit	All phase currents $\leq 50 \text{ A}^{1)}$
Гrip characteristics IEC	Normal inverse, very inverse,
ANSI	extremely inverse Inverse, moderately inverse, very inverse, extremely inverse
Pickup threshold	Approx. 1.1 $\cdot I_{2p}$ setting value
Dropout	
IEC and ANSI (without disk emulation) ANSI with disk emulation	Approx. $1.05 \cdot I_{2p}$ setting value, which is approx. $0.95 \cdot pickup$ threshold Approx. $0.90 \cdot I_{2p}$ setting value
Folerances	
Pickup threshold Time for $2 \le M \le 20$	3 % of the setting value or 50 mA ¹ / 5 % of setpoint (calculated) +2 % current tolerance, at least 30 ms
Starting time monitoring for motors	s (ANSI 48)
Setting ranges Motor starting current I _{STARTUP} Pickup threshold I _{MOTOR START} Permissible starting time T _{STARTUP} , cold motor Permissible starting	2.5 to 80 A ¹⁾ (in steps of 0.01) 2 to 50 A ¹⁾ (in steps of 0.01) 1 to 180 s (in steps of 0.1 s) 0.5 to 180 s (in steps of 0.1 s)
time T_{STARTUP} , warm motor Temperature threshold cold motor Permissible blocked rotor time $T_{\text{LOCKED-ROTOR}}$	0 to 80 % (in steps of 1 %) 0.5 to 120 s or ∞ (in steps of 0.1 s)
Fripping time characteristic	2

For $I > I_{MOTOR START}$

$$t = \left(\frac{I_{\text{STARTUP}}}{I}\right)^2 \cdot T_{\text{STARTUP}}$$

	$I_{\text{STARTUP}} = \text{Rated motor starting} \\ \text{current} \\ I = \text{Actual current flowing} \\ T_{\text{STARTUP}} = \text{Tripping time for rated} \\ \text{motor starting current} \\ t = \text{Tripping time in seconds} $	
Dropout ratio IMOTOR START	Approx. 0.95	
Tolerances Pickup threshold Delay time	2 % of setting value or 50 mA ¹⁾ 5 % or 30 ms	
Load jam protection for motors (ANSI 51M)		
Setting ranges Current threshold for alarm and trip Delay times Blocking duration after close signal detection	0.25 to 60 A ¹⁾ (in steps of 0.01 A) 0 to 600 s (in steps of 0.01 s) 0 to 600 s (in steps of 0.01 s)	
Tolerances Pickup threshold Delay time	2 % of setting value or 50 mA ¹⁾ 1 % of setting value or 10 ms	
1) At $I_{\text{nom}} = 1$ A, all limits divided by 5.		

Restart inhibit for motors (ANSI 66)

S

Setting ranges	
Motor starting current relative to rated motor current	1.1 to 10 (in steps of 0.1)
IMOTOR START/IMotor Nom Rated motor current I _{Motor Nom} Max. permissible starting time	1 to 6 A ¹⁾ (in steps of 0.01 A) 1 to 320 s (in steps of 1 s)
¹ _{Start Max} Equilibrium time T _{Equal} Minimum inhibit time	0 min to 320 min (in steps of 0.1 min) 0.2 min to 120 min (in steps of 0.1 min)
<i>I</i> _{MIN. INHIBIT TIME} Max. permissible number of	1 to 4 (in steps of 1)
Difference between cold and warm starts	1 to 2 (in steps of 1)
Extension k-factor for cooling simulations of rotor at zero speed	0.2 to 100 (in steps of 0.1)
$k_{t at STOP}$ Extension factor for cooling time constant with motor running $k_{t RUNNING}$	0.2 to 100 (in steps of 0.1)
Restarting limit	
	$\Theta_{\text{restart}} = \Theta_{\text{rot max perm}} \cdot \frac{n_c - 1}{n_c}$
	$ \begin{aligned} \Theta_{\text{restart}} &= \text{Temperature limit below} \\ & \text{which restarting is possible} \\ \Theta_{\text{rot max perm}} &= \text{Maximum permissible} \\ & \text{rotor overtemperature} \\ & (= 100 \% \text{ in operational} \\ & \text{measured value} \\ & \Theta_{\text{rot}} (\Theta_{\text{rot trip}}) \\ n_{\text{c}} &= \text{Number of permissible} \\ & \text{start-ups from cold state} \end{aligned} $
Undersurrent manitoring (ANSI 27)	start-ups nom cold state
Signal from the operational measured values	Predefined with programmable logic
Temperature monitoring box (ANSI	38)
Temperature detectors	
Connectable boxes Number of temperature detectors per box	1 or 2 Max. 6
Type of measuring Mounting identification	Pt 100 Ω or Ni 100 Ω or Ni 120 Ω "Oil" or "Environment" or "Stator" or "Bearing" or "Other"
Thresholds for indications For each measuring detector	
Stage 1	-50 °C to 250 °C (in steps of 1 °C) -58 °F to 482 °F (in steps of 1 °F)

or ∞ (no indication)

or ∞ (no indication)

-50 °C to 250 °C (in steps of 1 °C) -58 °F to 482 °F (in steps of 1 °F)

Stage 2

Additional functions **Operational measured values**

operation and a rando	
Currents I_{L1}, I_{L2}, I_{L3} Positive-sequence component I_1 Negative-sequence component I_2 I_E or $3I_0$	In A (kA) primary, in A secondary or in $\%I_{\rm nom}$
Range Tolerance ¹⁾	10 to 200 % <i>I</i> _{nom} 1 % of measured value or 0.5 % <i>I</i> _{nom}
Temperature overload protection Θ/Θ_{Trip}	In %
Range Tolerance ¹⁾	0 to 400 % 5 % class accuracy per IEC 60255-8
Temperature restart inhibit $\Theta_L / \Theta_{L Trip}$	In %
Range Tolerance ¹⁾	0 to 400 % 5 % class accuracy per IEC 60255-8
Restart threshold $\Theta_{Restart}/\Theta_{L Trip}$	In %
Reclose time T_{Reclose}	In min
Current of sensitive ground fault detection $I_{\rm EE}$	In A (kA) primary and in mA secondary
Range Tolerance ¹⁾	0 mA to 1600 mA 2 % of measured value or 1 mA
RTD-box	See section "Temperature monitoring box"
Long-term averages	
Time window	5, 15, 30 or 60 minuets
Frequency of updates	Adjustable
Long-term averages of currents	I _{L1dmd} , I _{L2dmd} , I _{L3dmd} , I _{1dmd} in A (kA)
Max. / Min. report	
Report of measured values	With date and time
Reset, automatic	Time of day adjustable (in minutes, 0 to 1439 min) Time frame and starting time adjust- able (in days, 1 to 365 days, and ∞)
Reset, manual	Using binary input, using keypad, via communication
Min./Max. values for current	<i>I</i> _{L1} , <i>I</i> _{L2} , <i>I</i> _{L3} <i>I</i> ₁ (positive-sequence component)
Min./Max. values for overload pro- tection	$\Theta/\Theta_{\mathrm{Trip}}$
Min./Max. values for mean values	$I_{L1dmd}, I_{L2dmd}, I_{L3dmd}$ I_1 (positive-sequence component)
Local measured values monitoring	
Current asymmetry	$I_{\text{max}}/I_{\text{min}}$ > balance factor, for $I > I_{\text{balance limit}}$
Current phase sequence	Clockwise (ABC) / counter-clockwise (ACB)
Limit value monitoring	Predefined limit values, user-defined expansions via CFC
Fault recording	
Recording of indications of the last	

F

R 8 power system faults

Recording of indications of the last 3 power system ground faults

Technical date

Time stamping	
Resolution for event log (operational annunciations)	1 ms
Resolution for trip log (fault annunciations)	1 ms
Maximum time deviation (internal clock)	0.01 %
Battery	Lithium battery 3 V/1 Ah, type CR 1/2 AA, message "Battery Fault" for insufficient battery charge
Oscillographic fault recording	, , , , , , , , , , , , , , , , , , , ,
Maximum 8 fault records saved, memory maintained by buffer bat- tery in case of loss of power supply	
Recording time	Total 20 s Pre-trigger and post-fault recording and memory time adjustable
Sampling rate for 50 Hz Sampling rate for 60 Hz	1 sample/1.25 ms (16 samples/cycle) 1 sample/1.04 ms (16 samples/cycle)
Statistics	
Saved number of trips	Up to 9 digits
Number of automatic reclosing commands (segregated according to 1^{st} and $\ge 2^{nd}$ cycle)	Up to 9 digits
Circuit-breaker wear	
Methods	 Σ<i>I</i>^x with x = 1 3 2-point method (remaining service life) Σ<i>i</i>²<i>t</i>
Operation	Phase-selective accumulation of mea- sured values on TRIP command, up to 8 digits, phase-selective limit values, monitoring indication
Motor statistics	
Total number of motor start-ups Total operating time Total down-time Ratio operating time/down-time Motor start-up data: – start-up time – start-up current (primary)	0 to 9999 (resolution 1) 0 to 99999 h (resolution 1 h) 0 to 99999 h (resolution 1 h) 0 to 100 % (resolution 0.1 %) of the last 5 start-ups 0.30 s to 9999.99 s 0.30 s to 9999.99 s (resolution 10 ms) 0 A to 1000 kA (resolution 1 A)
Operating hours counter	
Display range Criterion	Up to 7 digits Overshoot of an adjustable current
	threshold (BkrClosed I _{MIN})
Trip circuit monitoring	
With one or two binary inputs	
Commissioning aids	
Phase rotation field check, operational measured values, circuit-breaker/switching device test, creation of a test measurement report	
Clock	
Time synchronization	DCF77/IRIG-B signal (telegram format IRIG-B000), binary input, communication

Setting group switchover of the function parameters

4 (parameter group A, B, C and D)		
Via keypad, DIGSI, system (SCADA) interface or binary input		
Depends on the binary inputs and outputs		
Programmable		
Feedback, close, open, intermediate position		
Single command / double command 1, 1 plus 1 common or 2 trip contacts		
CFC logic, graphic input tool		
Control via menu, assignment of a function key		
Via communication interfaces, using a substation automation and control system (e.g. SICAM), DIGSI 4 (e.g. via modem)		

CE conformity

This product is in conformity with the Directives of the European Communities on the harmonization of the laws of the Member States relating to electromagnetic compatibility (EMC Council Directive 89/336/EEC) and electrical equipment designed for use within certain voltage limits (Council Directive 73/23/EEC).

This unit conforms to the international standard IEC 60255, and the German standard DIN 57435/Part 303 (corresponding to VDE 0435/Part 303).

Further applicable standards: ANSI/IEEE C37.90.0 and C37.90.1.

The unit conforms to the international standard IEC 60255, and the German standard DIN 57435/Part 303 (corresponding to VDE 0435/Part 303).

This conformity is the result of a test that was performed by Siemens AG in accordance with Article 10 of the Council Directive complying with the generic standards EN 50081-2 and EN 50082-2 for the EMC Directive and standard EN 60255-6 for the "low-voltage Directive".

c(UL)us	
LISTED	

Selection and orderina data	Description	Order No.				
	7SJ61 multifunction protection relay	7SJ6100	-0000	0-000		
	Housing, binary inputs (BI) and outputs (BO)	**				
	Housing $\frac{1}{3}$ 19", 4 line text display, 3 BI, 4 BO, 1 live status contact	0				
	Housing 1/3 19", 4 line text display, 8 BI, 8 BO, 1 live status contact	1				
	Housing 1/319", 4 line text display, 11 BI, 6 BO, 1 live status contact	2		see		
	Housing 1/2 19", graphic display, 8 BI, 8 BO, 1 live status contact ⁷	3		next		
	Housing 1/2 19", graphic display, 11 BI, 6 BO, 1 live status contact "	4		page		
	Measuring inputs $(4 \times I)$					
	$I_{\rm ph} = 1 {\rm A}^{1)}, I_{\rm e} = 1 {\rm A}^{1)} ({\rm min.} = 0.05 {\rm A})$					
	Position 15 only with A	1				
	$I_{\rm ph} = 1 \text{ A}^{-1}, I_{\rm e} = \text{sensitive (min. = 0.001 A)}$ Position 15 only with <i>B</i>	2				
	$I_{\rm ph} = 5 {\rm A}^{1}, I_{\rm e} = 5 {\rm A}^{1}$ (min. = 0.25 A)					
	Position 15 only with A	5				
	$I_{\rm ph} = 5 {\rm A}^{1}$, $I_{\rm e} = {\rm sensitive (min. = 0.001 A)}$	6				
	Position 15 only with B $L_1 = 5 A^{(1)} L = 1 A^{(1)} (\min = 0.05 A)$	0				
	Position 15 only with A	7				
		_				
	Kated auxiliary voltage (power supply, indication voltage)		2			
	24 to 46 V DC, threshold binary input 19 DC ³		4			
	1000000000000000000000000000000000000)	5			
	$\frac{110 \text{ to } 250 \text{ V DC}^3}{110 \text{ to } 250 \text{ V DC}^2}, 115 \text{ to } 230 \text{ V}^4) \text{ AC, threshold binary input 176 V DC}^3) \qquad 6$					
	Unit version For panel surface mounting, 2 tier terminal top/bottom B					
	For panel flush mounting, plug-in terminal (2/3 pin connector)					
	For panel flush mounting, screw-type terminal (direct connection/ring-type cable lugs)					
	Region-specific default settings/function versions and language settings					
	Region DE, 50 Hz, IEC, language: German, selectable		Α			
	Region World, 50/60 Hz, IEC/ANSI, language: English (GB), selectable B Region US, 60 Hz, ANSI, language: English (US), selectable C					
	Region FR, 50/60 Hz, IEC/ANSI, language: French, selectable					
	Region World, 50/60 Hz, IEC/ANSI, language: Spanish, selectable <u>E</u>					
	Region 11, 50/60 Hz, IEC/AINSI, language: Italian, selectable					
	System interface (Port B): Refer to page 5/77No system interface0					
	Protocols see page 5/77					
	Service interface (Port C)					
	No interface at rear side			0		
	DIGSI 4/modem, electrical RS232			1		
	DIGSI 4/modem/RTD-box ⁵ , electrical RS485			2		
1) Rated current can be selected by means of jumpers	DIGSI 4/modem/RTD-box ^{3/6/} , optical 820 nm wavelength, ST connect	or		3		
2) Transition between the two auxiliary	Measuring/tault recording			1		
voltage ranges can be selected by means of jumpers.	Slave pointer, mean values, min/max values, fault recording			3		
3) The binary input thresholds can be selected per binary input by means of ium	nners					
4) 230 V AC, starting from device version	./EE.					
5) Temperature monitoring box	· · ·					
7XV5662-⊔AD10, reter to "Accessories".6) When using the temperature monitoring						
box at an optical interface, the additional RS485 fiber-optic converter 7XV5650-0□A00 is required.						

7) starting from device version .../GG and FW-Version V4.82

Selection and ordering data

Description Order No. 75J6100 - 00000 - 0000-0000 7SJ61 multifunction protection relay Description ANSI No. Designation Basic version Control 50/51 Time-overcurrent protection I>, I>>, I>>>, Ip 50N/51N Earth-fault protection *I*_E>, *I*_E>>, *I*_E>>>, *I*_{Ep} 50N/51N Earth-fault protection via insensitive IEE function: I_{EE} , I_{EE} , I_{EEp} ¹⁾ Flexible protection functions (index quantities 50/50N derived from current): Additional time-overcurrent protection stages I2>, I>>>>, IE>>>> 49 Overload protection (with 2 time constants) 46 Phase balance current protection (negative-sequence protection) 50BF Breaker failure protection Undercurrent monitoring 37 74TC Trip circuit supervision

			4 setting groups, cold-load pickup Inrush blocking					
		86	Lockout	F	Α			
	IEI	3	Intermittent earth fault	Р	Α			
•		50Ns/51Ns 87N	Sensitive earth-fault detection (non-directional) High-impedance restricted earth fault	F	B ²	9		
•	IEI	F 50Ns/51Ns 87N	Sensitive earth-fault detection (non-directional) High-impedance restricted earth fault Intermittent earth fault	Р	B ²)		
	Motor IEI	50Ns/51Ns 87N	Sensitive earth-fault detection (non-directional) High-impedance restricted earth fault Intermittent earth fault					
		48/14	Starting time supervision, locked rotor					
		51M	Load jam protection, motor statistics	R	B ²	9		
•	Motor	50Ns/51Ns 87N 48/14	Sensitive earth-fault detection (non-directional) High-impedance restricted earth fault Starting time supervision, locked rotor					
		66/86	Restart inhibit	ц	20			
		51M	Load jam protection, motor statistics	п	D			
	Motor	48/14 66/86 51M	Starting time supervision, locked rotor Restart inhibit Load jam protection, motor statistics	Н	A			
ARC			Without		(0		

Basic version included

IEF = Intermittent earth fault

1) 50N/51N only with insensitive earth-current transformer when position 7 = 1, 5, 7.

2) Sensitive earth-current transformer

only when position 7 = 2, 6.

3) This variant will be supplied with a previous firmware version.

Order code

A A

Order numbers for system port B	Description	Order No.		(c)rde ode	r
	7SJ61 multifunction protection relay	7SJ6100 – 00	000-000			
	System interface (on rear of unit, Port B)		A			
	No system interface		0			
	IEC 60870-5-103 protocol, RS232		1			
	IEC 60870-5-103 protocol, RS485		2			
	IEC 60870-5-103 protocol, 820 nm fiber, ST connector		3			
	PROFIBUS-FMS Slave, RS485		4			
	PROFIBUS-FMS Slave, 820 nm wavelength, single ring, S	T connector ¹)	5			
	PROFIBUS-FMS Slave, 820 nm wavelength, double ring,	ST connector ¹)	6			
	PROFIBUS-DP Slave, RS485		9	L	0 /	١
	PROFIBUS-DP Slave, 820 nm wavelength, double ring, ST	connector ¹)	9	L	0 E	3
	MODBUS, RS485		9	L	0 L)
	MODBUS, 820 nm wavelength, ST connector ²)		9	L	0 E	Ξ
	DNP 3.0, RS485		9	L	00	3
	DNP 3.0, 820 nm wavelength, ST connector ²)		9	L	0 F	1
	IEC 60870-5-103 protocol, redundant, RS485, RJ45 conne	ector ²⁾	9	L	0 F	>
	IEC 61850, 100 Mbit Ethernet, electrical, double, RSJ45 co	onnector (EN 100)	9	L	0 F	?
	IEC 61850, 100 Mbit Ethernet, optical, double, LC connec	$(EN \ 100)^{2}$	9	L	05	;

Not with position 9 = "B"; if 9 = "B", please order 7SJ6 unit with RS485 port and separate fiber-optic converters. For single ring, please order converter 6GK1502-3AB10, not available with position 9 = "B". For double ring, please order converter 6GK1502-4AB10, not available with position 9 = "B". The converter requires a 24 V AC power supply (e.g. power supply 7XV5810-0BA00).
 Not available with position 9 = "B".

Position	1	Order No. + Order code
		7SJ6125-5EC91-3FA1+L0G
6	I/O's: 11 BI/6 BO, 1 live status contact	
7	Current transformer: 5 A	5
8	Power supply: 110 to 250 V DC, 115 V AC to 230 V AC	5
9	Unit version: Flush-mounting housing, screw-type terminals	E
10	Region: US, English language (US); 60 Hz, ANSI	С
11	Communication: System interface: DNP 3.0, RS485	9 LOG
12	Communication: DIGSI 4, electric RS232	1
13	Measuring/fault recording: Extended measuring and fault record	rds 3
14/15	Protection function package: Basic version	FA
16	With auto-reclosure	1

Sample order

ncc	000	- C - P	101
	-	10/8	1-0

Description		Order No.
DIGSI 4		
Software for o	configuration and operation of Siemens protection units	
running unde	er MS Windows 2000/XP Professional Edition	
Basis	Full version with license for 10 computers on CD-ROM	
Dubio	(authorization by serial number)	7XS5400-0AA00
Professional	DIGSI 4 Basis and additionally SIGRA (fault record analysis)	
roressionar	CEC Editor (logic editor) Display Editor (editor for default	
	and control displays) and DIGSI 4 Remote (remote operation)	7XS5402-0AA00
Professional	+ IEC 61850	
	Complete version:	
	DIGSI 4 Basis and additionally SIGRA (fault record analysis),	\ \
	CFC Editor (logic editor), Display Editor (editor for control displ	ays),
	DIGSI 4 Remote (remote operation)	7/05/02 04/02
	+ IEC 61850 system configurator	7XS5403-0AA00
IEC 61050 Sur	tom configurator	
EC 01050 Sys	configuration of stations with IEC (1850 communication under	
DICSI minni	ng under MS Windows 2000 or XD Professional Edition	
Ontional page	lage for DICSI 4 Resis or Professional	
Optional pac	DCo. Authorization by conicl number On CD DOM	7856460 04400
generally co	ntained in DIGSI Professional, but can be ordered additionally)	785410-04400
Authorizatio	i by serial number. On CD-ROM.	7X33410-0AA00
Temperature	monitoring box	
24 to 60 V A	C/DC	7XV5662-2AD10
90 to 240 V A	C/DC	7XV5662-5AD10
0 10 210 11		77770002 0770 70
Varistor/Volta	ige Arrester	
Voltage arres	ter for high-impedance REF protection	
125 Vrms; 60	0 A: 1S/S 256	C53207-A401-D76-1
240 Vrms; 60	0 A; 1S/S 1088	C53207-A401-D77-1
Connecting co	able	
Cable betwee	n PC/notebook (9-pin con.) and protection unit (9-pin connector)	
contained in	DIGSI 4, but can be ordered additionally)	7XV5100-4
Cable betwee	n temperature monitoring box and SIPROTEC 4 unit	
length 5 m	/16.4 ft	7XV5103-7AA05
length 25 m	/82 ft	7XV5103-7AA25
- length 50 m	/164 ft	7XV5103-7AA50
Manual for 79	J61	
English		C53000-G1140-C118-x ¹⁾

5

Accessories		Description	Order No.	Size of package	Supplier
Mounting rail		Terminal safety cover Voltage/current terminal 18-pole/12-pole	C73334-A1-C31-1	1	Siemens
		Voltage/current terminal 12-pole/8-pole	C73334-A1-C32-1	1	Siemens
		Connector 2-pin	C73334-A1-C35-1	1	Siemens
		Connector 3-pin	C73334-A1-C36-1	1	Siemens
s a		Crimp connector CI2 0.5 to 1 mm ²	0-827039-1	4000 taped on reel	AMP ¹⁾
SP2090-afp.ep	SP2091-afp.ep	Crimp connector CI2 0.5 to 1 mm ²	0-827396-1	1	$\mathrm{AMP}^{\ 1)}$
		Crimp connector: Type III+ 0.75 to 1.5 mm ²	0-163084-2	1	AMP ¹⁾
2-pin connector	3-pin connector	Crimp connector: Type III+ 0.75 to 1.5 mm ²	0-163083-7	4000 taped on reel	AMP ¹⁾
		Crimping tool for Type III+	0-539635-1	1	AMP ¹⁾
		and matching female	0-539668-2	1	AMP ¹⁾
se se	(0	Crimping tool for CI2	0-734372-1	1	AMP^{1}
A O de		and matching female	1-734387-1	1	AMP ¹⁾
2093	032-a	Short-circuit links			
LSP	SP2G	for current terminals	C73334-A1-C33-1	1	Siemens
Short-circuit links	 Short-circuit links	for other terminals	C73334-A1-C34-1	1	Siemens
for current termi-	for other terminals	Mounting rail for 19" rack	C73165-A63-D200-1	1	Siemens

1) Your local Siemens representative can inform you on local suppliers.

Connection diagram

*) For pinout of communication ports see part 15 of this catalog. For the allocation of the terminals of the panel surface-mounting version refer to the manual (http://www.siemens.com/siprotec).

F6 26

F7 25

F8

9

F9 24

Fig. 5/73 7SJ611, 7SJ613 connection diagram

*) For pinout of communication ports see part 15 of this catalog. For the allocation of the terminals of the panel surface-mounting version refer to the manual (http://www.siemens.com/siprotec). Connection diagram

Fig. 5/74 7SJ612, 7SJ614 connection diagram

*) For pinout of communication ports see part 15 of this catalog. For the allocation of the terminals of the panel surface-mounting version refer to the manual (http://www.siemens.com/siprotec).

SIPROTEC 4 7SJ62 Multifunction Protection Relay

Fig. 5/75 SIPROTEC 4 7SJ62 multifunction protection relay with text (left) and graphic display

Description

The SIPROTEC 4 7SJ62 relays can be used for line protection of high and medium voltage networks with earthed (grounded), low-resistance earthed, isolated or compensated neutral point. With regard to motor protection, the SIPROTEC 4 7SJ62 is suitable for asynchronous machines of all sizes. The relay performs all functions of backup protection supplementary to transformer differential protection.

7SJ62 is featuring the "flexible protection functions". Up to 20 protection functions can be added according to individual requirements. Thus, for example, a rateof-frequency-change protection or reverse power protection can be implemented.

The relay provides control of the circuitbreaker, further switching devices and automation functions. The integrated programmable logic (CFC) allows the user to implement their own functions, e. g. for the automation of switchgear (interlocking). The user is also allowed to generate user-defined messages.

The flexible communication interfaces are open for modern communication architectures with control systems.

Function overview

Protection functions

- Time-overcurrent protection
- Directional time-overcurrent protection
- Sensitive dir. earth-fault detection
- Displacement voltage
- Intermittent earth-fault protection
- High-impedance restricted earth fault
- Inrush restraint
- Motor protection
 - Undercurrent monitoring
 - Starting time supervision
 - Restart inhibit
 - Locked rotor
 - Load jam protection
- Overload protection
- Temperature monitoring
- Under-/overvoltage protection
- Under-/overfrequency protection
- Breaker failure protection
- Negative-sequence protection
- Phase-sequence monitoring
- Synchro-check
- Fault locator
- Lockout
- Auto-reclosure
- *Control functions/programmable logic*
- Commands f. ctrl of CB and of isolators
 Position of switching elements is shown
- on the graphic display
- Control via keyboard, binary inputs, DIGSI 4 or SCADA system
- User-defined logic with CFC (e.g. interlocking)

Monitoring functions

- Operational measured values V, I, f
- Energy metering values $W_{\rm p}$, $W_{\rm q}$
- Circuit-breaker wear monitoring
- Slave pointer
- Trip circuit supervision
- Fuse failure monitor
- 8 oscillographic fault records
- Motor statistics
- Communication interfaces
- System interface
- IEC 60870-5-103/ IEC 61850 – PROFIBUS-FMS/-DP
- DNP 3.0/MODBUS RTU
- Service interface for DIGSI 4 (modem)
- Front interface for DIGSI 4
- Time synchronization via IRIG B/DCF77 Hardware
- 4 current transformers
- 3/4 voltage transformers
- 8/11 binary inputs
- 8/6 output relays

Application

¹⁾ RTD = resistance temperature detector

Fig. 5/76 Function diagram

The SIPROTEC 4 7SJ62 unit is a numerical protection relay that also performs control and monitoring functions and therefore supports the user in cost-effective power system management, and ensures reliable supply of electric power to the customers. Local operation has been designed according to ergonomic criteria. A large, easy-toread display was a major design aim.

Control

The integrated control function permits control of disconnect devices, earthing switches or circuit-breakers via the integrated operator panel, binary inputs, DIGSI 4 or the control and protection system (e.g. SICAM). The present status (or position) of the primary equipment can be displayed, in case of devices with graphic display. A full range of command processing functions is provided.

Programmable logic

The integrated logic characteristics (CFC) allow the user to implement their own functions for automation of switchgear (interlocking) or a substation via a graphic user interface. The user can also generate user-defined messages.

Line protection

The 7SJ62 units can be used for line protection of high and medium-voltage networks with earthed (grounded), lowresistance earthed, isolated or compensated neutral point.

Synchro-check

In order to connect two components of a power system, the relay provides a synchrocheck function which verifies that switching ON does not endanger the stability of the power system.

Motor protection

When protecting motors, the 7SJ62 relay is suitable for asynchronous machines of all sizes.

Transformer protection

The relay performs all functions of backup protection supplementary to transformer differential protection. The inrush suppression effectively prevents tripping by inrush currents.

The high-impedance restricted earth-fault protection detects short-circuits and insulation faults on the transformer.

Backup protection

The 7SJ62can be used universally for backup protection.

Flexible protection functions

By configuring a connection between a standard protection logic and any measured or derived quantity, the functional scope of the relays can be easily expanded by up to 20 protection stages or protection functions.

Metering values

Extensive measured values, limit values and metered values permit improved system management.

Application

ANSI No.	IEC	Protection functions
(50, 50N)	$I >, I >>, I >>>, I_E >, I_E >>, I_E >>>$	Definite time-overcurrent protection (phase/neutral)
51,51V,51N	I _p , I _{Ep}	Inverse time-overcurrent protection (phase/neutral), phase function with voltage-dependent option
(67,67N)	$I_{ m dir}$ >, $I_{ m dir}$ >>, $I_{ m p \ dir}$ $I_{ m Edir}$ >, $I_{ m Edir}$ >>, $I_{ m Ep \ dir}$	Directional time-overcurrent protection (definite/inverse, phase/neutral), Directional comparison protection
67Ns/50Ns	$I_{\rm EE}$ >, $I_{\rm EE}$ >>, $I_{\rm EEp}$	Directional/non-directional sensitive earth-fault detection
_		Cold load pick-up (dynamic setting change)
59N/64	V _E , V ₀ >	Displacement voltage, zero-sequence voltage
_	$I_{\rm IE}$ >	Intermittent earth fault
(87N)		High-impedance restricted earth-fault protection
(50BF)		Breaker failure protection
79		Auto-reclosure
25		Synchro-check
(46)	<i>I</i> ₂ >	Phase-balance current protection (negative-sequence protection)
(47)	V ₂ >, phase-sequence	Unbalance-voltage protection and/or phase-sequence monitoring
(49)	ϑ>	Thermal overload protection
(48)		Starting time supervision
(51M)		Load jam protection
14)		Locked rotor protection
66/86		Restart inhibit
37)	Ι<	Undercurrent monitoring
38)		Temperature monitoring via external device (RTD-box), e.g. bearing temperature monitoring
27,59	V<, V>	Undervoltage/overvoltage protection
(59R)	dV/dt	Rate-of-voltage-change protection
32)	<i>P</i> <>, <i>Q</i> <>	Reverse-power, forward-power protection
55	$\cos \varphi$	Power factor protection
(810/U)	f>,f<	Overfrequency/underfrequency protection
(81R)	df/dt	Rate-of-frequency-change protection
(21FL)		Fault locator

Construction

Connection techniques and housing with many advantages

1/3-rack size (text display variants) and 1/2-rack size (graphic display variants) are the available housing widths of the 7SJ62 relays, referred to a 19" module frame system. This means that previous models can always be replaced. The height is a uniform 244 mm for flush-mounting housings and 266 mm for surface-mounting housing. All cables can be connected with or without ring lugs.

In the case of surface mounting on a panel, the connection terminals are located above and below in the form of screw-type terminals. The communication interfaces are located in a sloped case at the top and bottom of the housing.

Protection functions

Time-overcurrent protection (ANSI 50, 50N, 51, 51V, 51N)

This function is based on the phaseselective measurement of the three phase currents and the earth current (four transformers). Three definite-time overcurrent protection elements (DMT) exist both for the phases and for the earth. The current threshold and the delay time can be set within a wide range. In addition, inversetime overcurrent protection characteristics (IDMTL) can be activated. The inverse-time function provides – as an option – voltage-restraint or voltagecontrolled operating modes.

Available inverse-time characteristics

Characteristics acc. to	ANSI/IEEE	IEC 60255-3
Inverse	•	•
Short inverse	٠	
Long inverse	٠	•
Moderately inverse	•	
Very inverse	•	•
Extremely inverse	•	•

t Delay

50-1

50-2

Fig. 5/77

50-1

Definite-time overcurrent protection

Reset characteristics

For easier time coordination with electromechanical relays, reset characteristics according to ANSI C37.112 and IEC 60255-3 /BS 142 standards are applied. When using the reset characteristic (disk emulation), a reset process is initiated after the fault current has disappeared. This reset process corresponds to the reverse movement of the Ferraris disk of an electromechanical relay (thus: disk emulation).

Fig. 5/78 Inverse-time overcurrent protection

User-definable characteristics

Instead of the predefined time characteristics according to ANSI, tripping characteristics can be defined by the user for phase and earth units separately. Up to 20 current/time value pairs may be programmed. They are set as pairs of numbers or graphically in DIGSI 4.

I_{nom}

Inrush restraint

The relay features second harmonic restraint. If the second harmonic is detected during transformer energization, pickup of non-directional and directional normal elements are blocked.

Cold load pickup/dynamic setting change

For directional and non-directional timeovercurrent protection functions the initiation thresholds and tripping times can be switched via binary inputs or by time control.

Directional time-overcurrent protection (ANSI 67, 67N)

Directional phase and earth protection are separate functions. They operate in parallel to the non-directional overcurrent elements. Their pickup values and delay times can be set separately. Definite-time and inverse-time characteristics are offered. The tripping characteristic can be rotated about \pm 180 degrees.

By means of voltage memory, directionality can be determined reliably even for close-in (local) faults. If the switching device closes onto a fault and the voltage is too low to determine direction, directionality (directional decision) is made with voltage from the voltage memory. If no voltage exists in the memory, tripping occurs according to the coordination schedule.

For earth protection, users can choose whether the direction is to be determined via zero-sequence system or negative-sequence system quantities (selectable). Using negative-sequence variables can be advantageous in cases where the zero voltage tends to be very low due to unfavorable zero-sequence impedances.

Directional comparison protection (cross-coupling)

It is used for selective protection of sections fed from two sources with instantaneous tripping, i.e. without the disadvantage of time coordination. The directional comparison protection is suitable if the distances between the protection stations are not significant and pilot wires are available for signal transmission. In addition to the directional comparison protection, the directional coordinated time-overcurrent protection is used for complete selective backup protection. If operated in a closed-circuit connection, an interruption of the transmission line is detected.

(Sensitive) directional earth-fault detection (ANSI 64, 67Ns, 67N)

For isolated-neutral and compensated networks, the direction of power flow in the zero sequence is calculated from the zerosequence current I_0 and zero-sequence voltage V_0 .

For networks with an isolated neutral, the reactive current component is evaluated; for compensated networks, the active current component or residual resistive current is evaluated. For special network conditions, e.g. high-resistance earthed networks with ohmic-capacitive earth-fault current or low-resistance earthed networks with ohmic-inductive current, the tripping characteristics can be rotated approximately \pm 45 degrees.

Two modes of earth-fault direction detection can be implemented: tripping or "signalling only mode".

It has the following functions:

- TRIP via the displacement voltage V_E.
- Two instantaneous elements or one instantaneous plus one user-defined characteristic.

- Each element can be set in forward, reverse, or non-directional.
- The function can also be operated in the insensitive mode as an additional short-circuit protection.

(Sensitive) earth-fault detection (ANSI 50Ns, 51Ns / 50N, 51N)

For high-resistance earthed networks, a sensitive input transformer is connected to a phase-balance neutral current transformer (also called core-balance CT).

The function can also be operated in the insensitive mode as an additional short-circuit protection.

Intermittent earth-fault protection

Intermittent (re-striking) faults occur due to insulation weaknesses in cables or as a result of water penetrating cable joints. Such faults either simply cease at some stage or develop into lasting short-circuits. During intermittent activity, however, star-point resistors in networks that are impedance-earthed may undergo thermal overloading. The normal earth-fault protection cannot reliably detect and interrupt the current pulses, some of which can be very brief.

The selectivity required with intermittent earth faults is achieved by summating the duration of the individual pulses and by triggering when a (settable) summed time is reached. The response threshold $I_{\rm IE}$ > evaluates the r.m.s. value, referred to one systems period.

Phase-balance current protection (ANSI 46) (Negative-sequence protection)

In line protection, the two-element phasebalance current/negative-sequence protection permits detection on the high side of high-resistance phase-to-phase faults and phase-to-earth faults that are on the low side of a transformer (e.g. with the switch group Dy 5). This provides backup protection for high-resistance faults beyond the transformer.

Breaker failure protection (ANSI 50BF)

If a faulted portion of the electrical circuit is not disconnected upon issuance of a trip command, another command can be initiated using the breaker failure protection which operates the circuit-breaker, e.g. of an upstream (higher-level) protection relay. Breaker failure is detected if, after a trip command, current is still flowing in the faulted circuit. As an option, it is possible to make use of the circuit-breaker position indication.

High-impedance restricted earth-fault protection (ANSI 87N)

The high-impedance measurement principle is an uncomplicated and sensitive method for detecting earth faults, especially on transformers. It can also be applied to motors, generators and reactors when these are operated on an earthed network.

When the high-impedance measurement principle is applied, all current transformers in the protected area are connected in parallel and operated on one common resistor of relatively high R whose voltage is measured (see Fig. 5/82). In the case of 7SJ6 units, the voltage is measured by detecting the current through the (external) resistor R at the sensitive current measurement input I_{EE} . The varistor V serves to limit the voltage in the event of an internal fault. It cuts off the high momentary voltage spikes occurring at transformer saturation. At the same time, this results in smoothing of the voltage without any noteworthy reduction of the average value. If no faults have occurred and in the event of external faults, the system is at equilibrium, and the voltage through the resistor is approximately zero. In the event of internal faults, an imbalance occurs which leads to a voltage and a current flow through the resistor *R*.

The current transformers must be of the same type and must at least offer a separate core for the high-impedance restricted earth-fault protection. They must in particular have the same transformation ratio and an approximately identical knee-point voltage. They should also demonstrate only minimal measuring errors.

Flexible protection functions

The 7SJ62 units enable the user to easily add on up to 20 protective functions. To this end, parameter definitions are used to link a standard protection logic with any chosen characteristic quantity (measured or derived quantity) (Fig. 5/80). The standard logic consists of the usual protection elements such as the pickup message, the parameter-definable delay time, the TRIP command, a blocking possibility, etc. The mode of operation for current, voltage, power and power factor quantities can be three-phase or single-phase. Almost all quantities can be operated as greater than or less than stages. All stages operate with protection priority.

Protection stages/functions attainable on the basis of the available characteristic quantities:

Function	ANSI No.
I>, I _E >	50, 50N
$V<, V>, V_{\rm E}>, {\rm d}V/{\rm d}t$	27, 59, 59R, 64
$\overline{3I_0>, I_1>, I_2>, I_2/I_1}$ $3V_0>, V_1><, V_2><$	50N, 46 59N, 47
P><, Q><	32
$\cos \varphi$ (p.f.)><	55
	81O, 81U
df/dt><	81R

For example, the following can be implemented:

- Reverse power protection (ANSI 32R)
- Rate-of-frequency-change protection (ANSI 81R)

Synchro-check (ANSI 25)

In case of switching ON the circuitbreaker, the units can check whether the two subnetworks are synchronized. Voltage-, frequency- and phase-angledifferences are being checked to determine whether synchronous conditions are existent.

Auto-reclosure (ANSI 79)

Multiple reclosures can be defined by the user and lockout will occur if a fault is present after the last reclosure. The following functions are possible:

- 3-pole ARC for all types of faults
- Separate settings for phase and earth faults
- Multiple ARC, one rapid auto-reclosure (RAR) and up to nine delayed auto-reclosures (DAR)
- Starting of the ARC depends on the trip command selection (e.g. 46, 50, 51, 67)
- Blocking option of the ARC via binary inputs
- ARC can be initiated externally or via CFC
- The directional and non-directional elements can either be blocked or operated non-delayed depending on the autoreclosure cycle
- Dynamic setting change of the directional and non-directional elements can be activated depending on the ready AR

Thermal overload protection (ANSI 49)

For protecting cables and transformers, an overload protection with an integrated pre-warning element for temperature and current can be applied. The temperature is calculated using a thermal homogeneousbody model (according to IEC 60255-8), which takes account both of the energy entering the equipment and the energy losses. The calculated temperature is constantly adjusted accordingly. Thus, account is taken of the previous load and the load fluctuations.

For thermal protection of motors (especially the stator) a further time constant can be set so that the thermal ratios can be detected correctly while the motor is rotating and when it is stopped. The ambient temperature or the temperature of the coolant can be detected serially via an external temperature monitoring box (resistance-temperature detector box, also called RTD- box). The thermal replica of the overload function is automatically adapted to the ambient conditions. If there is no RTD-box it is assumed that the ambient temperatures are constant.

Settable dropout delay times

If the devices are used in parallel with electromechanical relays in networks with intermittent faults, the long dropout times of the electromechanical devices (several hundred milliseconds) can lead to problems in terms of time grading. Clean time grading is only possible if the dropout time is approximately the same. This is why the parameter of dropout times can be defined for certain functions such as time-overcurrent protection, earth short-circuit and phase-balance current protection.

Motor protection

Restart inhibit (ANSI 66/86)

If a motor is started up too many times in succession, the rotor can be subject to thermal overload, especially the upper edges of the bars. The rotor temperature is calculated from the stator current. The reclosing lockout only permits start-up of the motor if the rotor has sufficient thermal reserves for a complete start-up (see Fig. 5/84).

Emergency start-up

This function disables the reclosing lockout via a binary input by storing the state of the thermal replica as long as the binary input is active. It is also possible to reset the thermal replica to zero.

Temperature monitoring (ANSI 38)

Up to two temperature monitoring boxes with a total of 12 measuring sensors can be used for temperature monitoring and detection by the protection relay. The thermal status of motors, generators and transformers can be monitored with this device. Additionally, the temperature of the bearings of rotating machines are monitored for limit value violation. The temperatures are being measured with the help of temperature detectors at various locations of the device to be protected. This data is transmitted to the protection relay via one or two temperature monitoring boxes (see "Accessories", page 5/115).

Starting time supervision (ANSI 48/14)

Starting time supervision protects the motor against long unwanted start-ups that might occur in the event of excessive load torque or excessive voltage drops within the motor, or if the rotor is locked. Rotor temperature is calculated from measured stator current. The tripping time is calculated according to the following equation:

for $I > I_{MOTOR START}$

$$t = \left(\frac{I_{\rm A}}{I}\right)^2 \cdot T_{\rm A}$$

I = Actual current flowing $I_{\text{MOTOR START}}$ = Pickup current to detect a motor

start

t = Tripping time

 $I_{\rm A}$ = Rated motor starting current

*T*_A = Tripping time at rated motor starting current (2 times, for warm and cold motor)

The characteristic (equation) can be adapted optimally to the state of the motor by applying different tripping times T_A in dependence of either cold or warm motor state. For differentiation of the motor state the thermal model of the rotor is applied.

If the trip time is rated according to the above formula, even a prolonged start-up and reduced voltage (and reduced start-up current) will be evaluated correctly. The tripping time is inverse (current dependent).

A binary signal is set by a speed sensor to detect a blocked rotor. An instantaneous tripping is effected.

Load jam protection (ANSI 51M)

Sudden high loads can cause slowing down and blocking of the motor and mechanical damages. The rise of current due to a load jam is being monitored by this function (alarm and tripping).

The overload protection function is too slow and therefore not suitable under these circumstances.

Phase-balance current protection (ANSI 46) (Negative-sequence protection)

The negative-sequence / phase-balance current protection detects a phase failure or load unbalance due to network asymmetry and protects the rotor from impermissible temperature rise.

Undercurrent monitoring (ANSI 37)

With this function, a sudden drop in current, which can occur due to a reduced motor load, is detected. This may be due to shaft breakage, no-load operation of pumps or fan failure.

Motor statistics

Essential information on start-up of the motor (duration, current, voltage) and general information on number of starts, total operating time, total down time, etc. are saved as statistics in the device.

Voltage protection

Overvoltage protection (ANSI 59)

The two-element overvoltage protection detects unwanted network and machine overvoltage conditions. The function can operate either with phase-to-phase, phase-to-earth, positive phase-sequence or negative phase-sequence system voltage. Three-phase and single-phase connections are possible.

Undervoltage protection (ANSI 27)

The two-element undervoltage protection provides protection against dangerous voltage drops (especially for electric machines). Applications include the isolation of generators or motors from the network to avoid undesired operating states and a possible loss of stability. Proper operating conditions of electrical machines are best evaluated with the positive-sequence quantities. The protection function is active over a wide frequency range (45 to 55, 55 to 65 Hz)¹¹. Even when falling below this frequency range the function continues to work, however, with a greater tolerance band.

1) The 45 to 55, 55 to 65 Hz range is available for $f_{\rm N} = 50/60$ Hz.

Protection functions/Functions

The function can operate either with phase-to-phase, phase-to-earth or positive phase-sequence voltage and can be monitored with a current criterion. Three-phase and single-phase connections are possible.

Frequency protection (ANSI 810/U)

Frequency protection can be used for overfrequency and underfrequency protection. Electric machines and parts of the system are protected from unwanted speed deviations. Unwanted frequency changes in the network can be detected and the load can be removed at a specified frequency setting.

Frequency protection can be used over a wide frequency range (40 to 60, 50 to 70 Hz)¹⁾. There are four elements (select-able as overfrequency or underfrequency) and each element can be delayed separately. Blocking of the frequency protection can be performed if using a binary input or by using an undervoltage element.

Fault locator (ANSI 21FL)

The integrated fault locator calculates the fault impedance and the distance-to-fault. The results are displayed in Ω , kilometers (miles) and in percent of the line length.

Circuit-breaker wear monitoring

Methods for determining circuit-breaker contact wear or the remaining service life of a circuit-breaker (CB) allow CB maintenance intervals to be aligned to their actual degree of wear. The benefit lies in reduced maintenance costs.

There is no mathematically exact method of calculating the wear or the remaining service life of circuit-breakers that takes into account the arc-chamber's physical conditions when the CB opens. This is why various methods of determining CB wear have evolved which reflect the different operator philosophies. To do justice to these, the devices offer several methods:

- ΣI
- ΣI^x , with x = 1... 3
- $\sum i^2 t$

The devices additionally offer a new method for determining the remaining service life:

- Two-point method
- 1) The 40 to 60, 50 to 70 Hz range is available for $f_{\rm N}$ = 50/60 Hz

The CB manufacturers double-logarithmic switching cycle diagram (see Fig. 5/107) and the breaking current at the time of contact opening serve as the basis for this method. After CB opening, the two-point method calculates the number of still possible switching cycles. To this end, the two points P1 and P2 only have to be set on the device. These are specified in the CB's technical data.

All of these methods are phase-selective and a limit value can be set in order to obtain an alarm if the actual value falls below or exceeds the limit value during determination of the remaining service life.

Customized functions (ANSI 32, 51V, 55, etc.)

Additional functions, which are not time critical, can be implemented via the CFC using measured values. Typical functions include reverse power, voltage controlled overcurrent, phase angle detection, and zero-sequence voltage detection.

Commissioning

Commissioning could hardly be easier and is fully supported by DIGSI 4. The status of the binary inputs can be read individually and the state of the binary outputs can be set individually. The operation of switching elements (circuit-breakers, disconnect devices) can be checked using the switching functions of the bay controller. The analog measured values are represented as wide-ranging operational measured values. To prevent transmission of information to the control center during maintenance, the bay controller communications can be disabled to prevent unnecessary data from being transmitted. During commissioning, all indications with test marking for test purposes can be connected to a control and protection system.

Test operation

During commissioning, all indications can be passed to an automatic control system for test purposes.

Control and automatic functions

Control

In addition to the protection functions, the SIPROTEC 4 units also support all control and monitoring functions that are required for operating medium-voltage or highvoltage substations.

The main application is reliable control of switching and other processes.

The status of primary equipment or auxiliary devices can be obtained from auxiliary

Fig. 5/85 CB switching cycle diagram

contacts and communicated to the 7SJ62 via binary inputs. Therefore it is possible to detect and indicate both the OPEN and CLOSED position or a fault or intermediate circuit-breaker or auxiliary contact position.

The switchgear or circuit-breaker can be controlled via:

- integrated operator panel
- binary inputs
- substation control and protection system
 DIGSI 4

Automation / user-defined logic

With integrated logic, the user can set, via a graphic interface (CFC), specific functions for the automation of switchgear or substation. Functions are activated via function keys, binary input or via communication interface.

Switching authority

Switching authority is determined according to parameters and communication.

If a source is set to "LOCAL", only local switching operations are possible. The following sequence of switching authority is laid down: "LOCAL"; DIGSI PC program, "REMOTE".

Command processing

All the functionality of command processing is offered. This includes the processing of single and double commands with or without feedback, sophisticated monitoring of the control hardware and software, checking of the external process, control actions using functions such as runtime

Functions

monitoring and automatic command termination after output. Here are some typical applications:

- Single and double commands using 1, 1 plus 1 common or 2 trip contacts
- User-definable bay interlocks
- Operating sequences combining several switching operations such as control of circuit-breakers, disconnectors and earthing switches
- Triggering of switching operations, indications or alarm by combination with existing information

Assignment of feedback to command

The positions of the circuit-breaker or switching devices and transformer taps are acquired by feedback. These indication inputs are logically assigned to the corresponding command outputs. The unit can therefore distinguish whether the indication change is a consequence of switching operation or whether it is a spontaneous change of state.

Chatter disable

Chatter disable feature evaluates whether, in a configured period of time, the number of status changes of indication input exceeds a specified figure. If exceeded, the indication input is blocked for a certain period, so that the event list will not record excessive operations.

Indication filtering and delay

Binary indications can be filtered or delayed.

Filtering serves to suppress brief changes in potential at the indication input. The indication is passed on only if the indication voltage is still present after a set period of time. In the event of indication delay, there is a wait for a preset time. The information is passed on only if the indication voltage is still present after this time.

Indication derivation

A further indication (or a command) can be derived from an existing indication. Group indications can also be formed. The volume of information to the system interface can thus be reduced and restricted to the most important signals.

Switchgear cubicles for high/medium voltage

All units are designed specifically to meet the requirements of high/medium-voltage applications.

In general, no separate measuring instruments (e.g., for current, voltage, frequency, ...) or additional control components are necessary.

Measured values

The r.m.s. values are calculated from the acquired current and voltage along with the power factor, frequency, active and reactive power. The following functions are available for measured value processing:

- Currents I_{L1} , I_{L2} , I_{L3} , I_E , I_{EE} (67Ns)
- Voltages *V*_{L1}, *V*_{L2}, *V*_{L3}, *V*_{L1L2}, *V*_{L2L3}, *V*_{L3L1}
- Symmetrical components *I*₁, *I*₂, 3*I*₀; *V*₁, *V*₂, *V*₀
- Power Watts, Vars, VA/P, Q, S (P, Q: total and phase selective)
- Power factor (cos φ), (total and phase selective)
- Frequency
- Energy ± kWh, ± kVarh, forward and reverse power flow
- Mean as well as minimum and maximum current and voltage values
- Operating hours counter
- Mean operating temperature of overload function
- Limit value monitoring Limit values are monitored using programmable logic in the CFC. Commands can be derived from this limit value indication.
- Zero suppression In a certain range of very low measured values, the value is set to zero to suppress interference.

Metered values

For internal metering, the unit can calculate an energy metered value from the measured current and voltage values. If an external meter with a metering pulse output is available, the SIPROTEC 4 unit can obtain and process metering pulses via an indication input.

The metered values can be displayed and passed on to a control center as an accumulation with reset. A distinction is made between forward, reverse, active and reactive energy.

NX4R

SIEMENS

Π

Fig. 5/86 NXAIR panel (air-insulated)
Communication

In terms of communication, the units offer substantial flexibility in the context of connection to industrial and power automation standards. Communication can be extended or added on thanks to modules for retrofitting on which the common protocols run. Therefore, also in the future it will be possible to optimally integrate units into the changing communication infrastructure, for example in Ethernet networks (which will also be used increasingly in the power supply sector in the years to come).

Serial front interface

There is a serial RS232 interface on the front of all the units. All of the unit's functions can be set on a PC by means of the DIGSI 4 protection operation program. Commissioning tools and fault analysis are also built into the program and are available through this interface.

Rear-mounted interfaces¹⁾

A number of communication modules suitable for various applications can be fitted in the rear of the flush-mounting housing. In the flush-mounting housing, the modules can be easily replaced by the user. The interface modules support the following applications:

- Time synchronization interface All units feature a permanently integrated electrical time synchronization interface. It can be used to feed timing telegrams in IRIG-B or DCF77 format into the units via time synchronization receivers.
- System interface Communication with a central control system takes place through this interface. Radial or ring type station bus topologies can be configured depending on the chosen interface. Furthermore, the units can exchange data through this interface via Ethernet and IEC 61850 protocol and can also be operated by DIGSI.
- Service interface

The service interface was conceived for remote access to a number of protection units via DIGSI. On all units, it can be an electrical RS232/RS485 or an optical interface. For special applications, a maximum of two temperature monitoring boxes (RTD-box) can be connected to this interface as an alternative.

System interface protocols (retrofittable)

IEC 61850 protocol

The Ethernet-based IEC 61850 protocol is the worldwide standard for protection and control systems used by power supply corporations. Siemens was the first manufacturer to support this standard. By means of this protocol, information can also be exchanged directly between bay units so as to set up simple masterless systems for bay and system interlocking. Access to the units via the Ethernet bus is also possible with DIGSI.

IEC 60870-5-103 protocol

The IEC 60870-5-103 protocol is an international standard for the transmission of protective data and fault recordings. All messages from the unit and also control commands can be transferred by means of published, Siemens-specific extensions to the protocol.

Redundant solutions are also possible. Optionally it is possible to read out and alter individual parameters (only possible with the redundant module).

PROFIBUS-DP protocol

PROFIBUS-DP is the most widespread protocol in industrial automation. Via PROFIBUS-DP, SIPROTEC units make their information available to a SIMATIC controller or, in the control direction, receive commands from a central SIMATIC. Measured values can also be transferred.

MODBUS RTU protocol

This uncomplicated, serial protocol is mainly used in industry and by power supply corporations, and is supported by a number of unit manufacturers. SIPROTEC units function as MODBUS slaves, making their information available to a master or receiving information from it. A timestamped event list is available.

Fig. 5/87 IEC 60870-5-103: Radial fiber-optic connection

Fig. 5/88

Bus structure for station bus with Ethernet and IEC 61850, fiber-optic ring

1) For units in panel surface-mounting housings please refer to note on page 5/114.

Communication

DNP 3.0 protocol

Power supply corporations use the serial DNP 3.0 (Distributed Network Protocol) for the station and network control levels. SIPROTEC units function as DNP slaves, supplying their information to a master system or receiving information from it.

System solutions for protection and station control

Together with the SICAM power automation system, SIPROTEC 4 can be used with PROFIBUS-FMS. Over the low-cost electrical RS485 bus, or interference-free via the optical double ring, the units exchange information with the control system.

Units featuring IEC 60870-5-103 interfaces can be connected to SICAM in parallel via the RS485 bus or radially by fiber-optic link. Through this interface, the system is open for the connection of units of other manufacturers (see Fig. 5/87).

Because of the standardized interfaces, SIPROTEC units can also be integrated into systems of other manufacturers or in SIMATIC. Electrical RS485 or optical interfaces are available. The optimum physical data transfer medium can be chosen thanks to opto-electrical converters. Thus, the RS485 bus allows low-cost wiring in the cubicles and an interference-free optical connection to the master can be established.

For IEC 61850, an interoperable system solution is offered with SICAM PAS. Via the 100 Mbits/s Ethernet bus, the units are linked with PAS electrically or optically to the station PC. The interface is standardized, thus also enabling direct connection of units of other manufacturers to the Ethernet bus. With IEC 61850, however, the units can also be used in other manufacturers' systems (see Fig. 5/88).

Fig. 5/90

```
System solution/communication
```


Fig. 5/89 Optical Ethernet communication module for IEC 61850 with integrated Ethernet-switch

5/94

Typical connections

Connection of current and voltage transformers

Standard connection

For earthed networks, the earth current is obtained from the phase currents by the residual current circuit.

Typical connections

Connection for compensated networks

The figure shows the connection of two phase-to-earth voltages and the $V_{\rm E}$ voltage of the open delta winding and a phase-balance neutral current transformer for the earth current. This connection maintains maximum precision for directional earthfault detection and must be used in compensated networks. Fig. 5/94 shows sensitive directional

Fig. 5/94 shows sensitive directional earth-fault detection.

Fig. 5/94 Sensitive directional earth-fault detection with directional element for phases

Connection for isolated-neutral or compensated networks only

If directional earth-fault protection is not used, the connection can be made with only two phase current transformers. Directional phase short-circuit protection can be achieved by using only two primary transformers.

Fig. 5/95 Isolated-neutral or compensated networks

Connection for the synchro-check function

The 3-phase system is connected as reference voltage, i. e. the outgoing voltages as well as a single-phase voltage, in this case a busbar voltage, that has to be checked for synchronism.

Fig. 5/96 Measuring of the busbar voltage and the outgoing feeder voltage for the synchro-check

Typical applications

Overview of connection types

Type of network	Function	Current connection	Voltage connection
(Low-resistance) earthed network	Time-overcurrent protection phase/earth non-directional	Residual circuit, with 3 phase-current transformers required, phase-balance neutral current transformer possible	-
(Low-resistance) earthed networks	Sensitive earth-fault protection	Phase-balance neutral current transformers required	-
Isolated or compensated networks	Time-overcurrent protection phases non-directional	Residual circuit, with 3 or 2 phase current transformers possible	-
(Low-resistance) earthed networks	Time-overcurrent protection phases directional	Residual circuit, with 3 phase-current transformers possible	Phase-to-earth connection or phase-to-phase connection
Isolated or compensated networks	Time-overcurrent protection phases directional	Residual circuit, with 3 or 2 phase- current transformers possible	Phase-to-earth connection or phase-to-phase connection
(Low-resistance) earthed networks	Time-overcurrent protection earth directional	Residual circuit, with 3 phase-current transformers required, phase-balance neutral current transformers possible	Phase-to-earth connection required
Isolated networks	Sensitive earth-fault protection	Residual circuit, if earth current $> 0.05 I_N$ on secondary side, otherwise phase-balance neutral current transformers required	3 times phase-to-earth connection or phase-to-earth connection with open delta winding
Compensated networks	Sensitive earth-fault protection $\cos \varphi$ measurement	Phase-balance neutral current transformers required	Phase-to-earth connection with open delta winding required

Connection of circuit-breaker

Undervoltage releases

Undervoltage releases are used for automatic tripping of high-voltage motors.

Example:

DC supply voltage of control system fails and manual electric tripping is no longer possible.

Automatic tripping takes place when voltage across the coil drops below the trip limit. In Fig. 5/97, tripping occurs due to failure of DC supply voltage, by automatic opening of the live status contact upon failure of the protection unit or by shortcircuiting the trip coil in event of network fault.

In Fig. 5/98 tripping is by failure of auxiliary voltage and by interruption of tripping circuit in the event of network failure. Upon failure of the protection unit, the tripping circuit is also interrupted, since contact held by internal logic drops back into open position.

Fig. 5/98 Undervoltage trip with locking contact (trip signal 50 is inverted)

Typical applications

Trip circuit supervision (ANSI 74TC)

One or two binary inputs can be used for monitoring the circuit-breaker trip coil including its incoming cables. An alarm signal occurs whenever the circuit is interrupted.

Lockout (ANSI 86)

All binary outputs can be stored like LEDs and reset using the LED reset key. The lockout state is also stored in the event of supply voltage failure. Reclosure can only occur after the lockout state is reset.

Reverse-power protection for dual supply (ANSI 32R)

If power is fed to a busbar through two parallel infeeds, then in the event of any fault on one of the infeeds it should be selectively interrupted. This ensures a continued supply to the busbar through the remaining infeed. For this purpose, directional devices are needed which detect a short-circuit current or a power flow from the busbar in the direction of the infeed. The directional time-overcurrent protection is usually set via the load current. It cannot be used to deactivate low-current faults. Reverse-power protection can be set far below the rated power. This ensures that it also detects power feedback into the line in the event of low-current faults with levels far below the load current. Reverse-power protection is performed via the "flexible protection functions" of the 7SJ62.

Fig. 5/99 Trip circuit supervision with 2 binary inputs

Fig. 5/100 Reverse-power protection for dual supply

00		n	<u>ca</u>			20
eu	-		เน	u	u	

General unit data				
Measuring circuits				
System frequency		50 / 60 Hz (settable)	
Current transformer				
Rated current Inom		1 or 5 A (se	ttable)	
Option: sensitive earth-fault	СТ	$I_{\rm EE} < 1.6~{\rm A}$		
Power consumption at $I_{nom} = 1$ A at $I_{nom} = 5$ A for sensitive earth-fault C	Γat 1 A	Approx. 0.0 Approx. 0.3 Approx. 0.0	95 VA per pha 9 VA per phas 95 VA	ase se
Overload capability Thermal (effective)		100 x I_{nom} fo 30 x I_{nom} fo 4 x I_{nom} con 250 x I_{nom} (or 1 s r 10 s itinuous half cycle)	
Overload capability if equipped with sensitive earth-fault CT Thermal (effective)		300 A for 1 100 A for 10 15 A contin 750 A (half	s) s uous cvcle)	
Voltaae transformer	· /			
Туре		7SJ621, 7SJ622	7SJ623, 7SJ622	7SJ625, 7SJ626
Number		3	4	4
Rated voltage Vnom		100 V to 22	5 V	
Measuring range		0 V to 170 V		
Power consumption at V_{nom}	= 100 V	< 0.3 VA per phase		
Overload capability in voltag (phase-neutral voltage) Thermal (effective)	ge path	230 V conti	nuous	
Auxiliary voltage				
Rated auxiliary voltage V _{aux}	DC 24/48 AC	3V 60/125	V 110/250 V 115/230 V	r r
Permissible tolerance	DC 19–5 AC	8 V 48–150	V 88–300 V 92-138 V	184–265 \
Ripple voltage, peak-to-peak	≤ 12 %			
Power consumption Quiescent Energized	Approx. 4 Approx. 7	W		
Backup time during loss/short circuit of auxiliary voltage	$\geq 50 \text{ ms a}$ $\geq 20 \text{ ms a}$ $\geq 200 \text{ ms}$	at $V \ge 110 V$ at $V \ge 24 V$ at 115 V/23	' DC DC 0 V AC	
Binary inputs/indication inp	outs			
Туре	7SJ621, 7SJ623, 7SJ625		7SJ622, 7SJ624, 7SJ626	
Number	8		11	
Voltage range	24–250 V	DC /		
Pickup threshold modifiable	by plug-ir	n jumpers		
Pickup threshold	19 V DC		88 V DC	
For rated control voltage	24/48/60 110/125	/ V	110/125/ 220/250 V	DC
Response time/drop-out time	Approx.	3.5		
Power consumption energized	1.8 mA (independent	of operating	voltage)

Binary outputs/command outputs		
Туре	7SJ621, 7SJ623, 7SJ625	7SJ622 7SJ624 7SJ626
Command/indication relay	8	6
Contacts per command/ indication relay	1 NO / form A (Two contacts changeable to NC/for B, via jumpers)	
Live status contact	1 NO / NC	(jumper) / form A/B
Switching capacity Make	1000 W / V.	A
Break	30 W / VA / 40 W resistive / 25 W at L/R \leq 50 ms	
Switching voltage	$\leq 250 \text{ V DC}$	2
Permissible current	5 A continuous, 30 A for 0.5 s making current, 2000 switching cycles	
Electrical tests		
Specification		
Standards	IEC 60255 ANSI C37.9 UL508	0, C37.90.1, C37.90.2,
Insulation tests		
Standards	IEC 60255-5	5; ANSI/IEEE C37.90.0
Voltage test (100 % test) all circuits except for auxiliary voltage and RS485/RS232 and time synchronization	2.5 kV (r.m.	.s. value), 50/60 Hz
Auxiliary voltage	3.5 kV DC	
Communication ports and time synchronization	500 V AC	
Impulse voltage test (type test) all circuits, except communication ports and time synchronization, class III	5 kV (peak v 3 positive ar at intervals o	value); 1.2/50 µs; 0.5 J nd 3 negative impulses of 5 s
EMC tests for interference immunity	r; type tests	
Standards	IEC 60255-0 (product sta EN 50082-2 DIN 57435	6; IEC 60255-22 indard) (generic specification) Part 303
High-frequency test IEC 60255-22-1, class III and VDE 0435 Part 303, class III	2.5 kV (peal 400 surges p	k value); 1 MHz; τ =15 ms; per s; test duration 2 s
Electrostatic discharge IEC 60255-22-2 class IV and EN 61000-4-2, class IV	8 kV contac 15 kV air ga both polarit	t discharge; p discharge; ies; 150 pF; R _i = 330 Ω
Irradiation with radio-frequency field, non-modulated IEC 60255-22-3 (Report) class III	10 V/m; 27	to 500 MHz
Irradiation with radio-frequency field, amplitude-modulated IEC 61000-4-3; class III	10 V/m, 80 AM 80 %; 1	to 1000 MHz; kHz
Irradiation with radio-frequency field, pulse-modulated IEC 61000-4-3/ENV 50204; class III	10 V/m, 900 rate 200 Hz,) MHz; repetition , on duration 50 %
Fast transient interference/burst IEC 60255-22-4 and IEC 61000-4-4, class IV	4 kV; 5/50 m burst length repetition ra $R_i = 50 \Omega$; to	ns; 5 kHz; a = 15 ms; ate 300 ms; both polarities; est duration 1 min

Technical data

EMC tests for interference immunity; type tests (cont'd)

High-energy surge voltages (Surge) IEC 61000-4-5; class III Auxiliary voltage

Binary inputs/outputs

Line-conducted HF, amplitude-modulated IEC 61000-4-6, class III

Power frequency magnetic field IEC 61000-4-8, class IV IEC 60255-6

Oscillatory surge withstand capability ANSI/IEEE C37.90.1

Fast transient surge withstand capability ANSI/IEEE C37.90.1

interference ANSI/IEEE C37.90.2

IEC 60694 / IEC 61000-4-12

From circuit to circuit: 2 kV; 12 Ω ; 9 μ F across contacts: 1 kV; 2 Ω ;18 µF From circuit to circuit: 2 kV; 42Ω ; 0.5μ F

across contacts: 1 kV; 42 Ω; 0.5 µF 10 V; 150 kHz to 80 MHz; AM 80 %; 1 kHz

30 A/m; 50 Hz, continuous 300 A/m; 50 Hz, 3 s 0.5 mT, 50 Hz

2.5 to 3 kV (peak value), 1 to 1.5 MHz damped wave; 50 surges per s; duration 2 s, $R_i = 150$ to 200 Ω

4 to 5 kV; 10/150 ns; 50 surges per s both polarities; duration 2 s, $R_i = 80 \Omega$

35 V/m; 25 to 1000 MHz; amplitude and pulse-modulated

2.5 kV (peak value, polarity alternating) 100 kHz, 1 MHz, 10 and 50 MHz, $R_{\rm i} = 200 \ \Omega$

EMC tests for interference emission; type tests

Standard

Conducted interferences only auxiliary voltage IEC/CISPR 22 Limit class B

Radio interference field strength IEC/CISPR 11

Units with a detached operator panel must be installed in a metal cubicle to maintain limit class B

Mechanical stress tests

Vibration, shock stress and seismic vibration

During operation

Standards

Vibration IEC 60255-21-1, class 2 IEC 60068-2-6

Shock IEC 60255-21-2, class 1 IEC 60068-2-27

Seismic vibration IEC 60255-21-3, class 1 IEC 60068-3-3

IEC 60255-21 and IEC 60068-2 Sinusoidal 10 to 60 Hz; +/- 0.075 mm amplitude; 60 to 150 Hz; 1 g acceleration frequency sweep 1 octave/min 20 cycles in 3 perpendicular axes Semi-sinusoidal Acceleration 5 g, duration 11 ms; 3 shocks in both directions of 3 axes Sinusoidal 1 to 8 Hz: ± 3.5 mm amplitude (horizontal axis) 1 to 8 Hz: \pm 1.5 mm amplitude (vertical axis) 8 to 35 Hz: 1 g acceleration (horizontal axis) 8 to 35 Hz: 0.5 g acceleration (vertical axis) Frequency sweep 1 octave/min 1 cycle in 3 perpendicular axes

During transportation

Standards Vibration IEC 60255-21-1, class 2 IEC 60068-2-6

Shock IEC 60255-21-2, Class 1 IEC 60068-2-27 Continuous shock IEC 60255-21-2, class 1

IEC 60255-21 and IEC 60068-2 Sinusoidal 5 to 8 Hz: \pm 7.5 mm amplitude; 8 to 150 Hz; 2 g acceleration, frequency sweep 1 octave/min 20 cycles in 3 perpendicular axes Semi-sinusoidal Acceleration 15 g, duration 11 ms 3 shocks in both directions of 3 axes

Semi-sinusoidal Acceleration 10 g, duration 16 ms 1000 shocks in both directions of 3 axes

Temperatures	
Type-tested acc. to IEC 60068-2-1 and -2, test Bd, for 16 h	-25 °C to +85 °C /-13 °F to +185 °C
Temporarily permissible operating temperature, tested for 96 h	-20 °C to +70 °C /-4 °F to -158 °F
Recommended permanent operat- ing temperature acc. to IEC 60255-6 (Legibility of display may be impaired above +55 °C /+131 °F)	-5 °C to +55 °C /+25 °F to +131 °F
 Limiting temperature during permanent storage 	-25 °C to +55 °C /-13 °F to +131 °.
 Limiting temperature during transport 	-25 °C to +70 °C /-13 °F to +158 °.
Humidity	
Permissible humidity	Annual average 75 % relative

It is recommended to arrange the humidity; on 56 days a year up to units in such a way that they are not 95 % relative humidity; condensation exposed to direct sunlight or not permissible! pronounced temperature changes that could cause condensation.

Unit design

Flush-mounting housing

Operator safety

Housing	7XP20
Dimensions	See dimension drawings, part 15
Weight Surface-mounting housing Flush-mounting housing	4.5 kg 4.0 kg
Degree of protection acc. to EN 60529	
Surface-mounting housing	IP 51

IP 51 Front: IP 51, rear: IP 20; IP 2x with cover

Radiated electromagnetic

Damped wave

EN 50081-* (generic specification)

150 kHz to 30 MHz

30 to 1000 MHz Limit class B

IEC 60068-2-29

Climatic stress tests

Technical data		
Serial interfaces		IEC 61850 pr
Operating interface (front of unit)		Isolated inter
Connection	Non-isolated, RS232; front panel, 9-pin subminiature connector	- to a control - with DIGSI - between SI
Transmission rate	Factory setting 115200 baud, min. 4800 baud, max. 115200 baud	Transmission
Service/modem interface (rear of un	nit)	Ethernet, elec
Isolated interface for data transfer	Port C: DIGSI 4/modem/RTD-box	Connection
Transmission rate	Factory setting 38400 baud, min. 4800 baud, max. 115200 baud	For flush-m surface-mo detached o
<u>RS232/RS485</u>		Distance
Connection For flush-mounting housing/ surface-mounting housing with	9-pin subminiature connector, mounting location "C"	Test voltage Ethernet, opt
detached operator panel For surface-mounting housing with two-tier terminal at the top/bottom part	At the bottom part of the housing: shielded data cable	Connection For flush-mo
Distance RS232	15 m /49.2 ft	detached ope
Distance RS485	Max. 1 km/3300 ft	Optical wavel
Test voltage	500 V AC against earth	Distance
System interface (rear of unit)	U	PROFIBUS-FI
IEC 60870-5-103 protocol		Isolated inter
Isolated interface for data transfer	Port B	to a control c
to a control center		I ransmission
Transmission rate	Factory setting 9600 baud, min. 1200 baud, max. 115200 baud	Connection
RS232/RS485 Connection For flush-mounting housing/	Mounting location "B"	For flush-n surface-mo detached o For surface
detached operator panel For surface-mounting housing with two-tier terminal on the top/bottom part	At the bottom part of the housing: shielded data cable	top/bottom Distance
Distance RS232	Max. 15 m/49 ft	
Distance RS485	Max. 1 km/3300 ft	Test voltag
Test voltage	500 V AC against earth	Fiber optic
Fiber optic		Connection f
Connection fiber-optic cable For flush-mounting housing/ surface-mounting housing with	Integrated ST connector for fiber- optic connection Mounting location "B"	For flush-n surface-mo detached o
For surface-mounting housing with two-tier terminal on the top/bottom part	At the bottom part of the housing	For surface with two-ti top/bottom Optical wave

Permissible path attenuationMax. 8 dB, for glass fiber 62.5/125 μmDistanceMax. 1.5 km/0.9 milesIEC 60870-5-103 protocol, redundant

RS485

Optical wavelength

Connection For flush-mounting housing/ surface-mounting housing with detached operator panel For surface-mounting housing with two-tier terminal on the top/bottom part Distance RS485 Test voltage

Mounting location "B"

(not available)

820 nm

Max. 1 km/3300 ft 500 V AC against earth

IEC 61850 protocol	
Isolated interface for data transfer: - to a control center - with DIGSI - between SIPROTEC 4 relays	Port B, 100 Base T acc. to IEEE802.3
Transmission rate	100 Mbit
Ethernet, electrical	
Connection For flush-mounting housing/ surface-mounting housing with detached operator panel	Two RJ45 connectors mounting location "B"
Distance	Max. 20 m / 65.6 ft
Test voltage	500 V AC against earth
Ethernet, optical	
Connection For flush-mounting housing/ surface-mounting housing with detached operator name!	Intergr. LC connector for FO connection Mounting location "B"
Optical wavelength	1300 nmm
Distance	1.5 km/0.9 miles
PROFIBUS-FMS/DP	
Isolated interface for data transfer to a control center	Port B
Transmission rate	Up to 1.5 Mbaud
<u>RS485</u>	
Connection For flush-mounting housing/ surface-mounting housing with detached operator panel For surface-mounting housing with two-tier terminal on the top/bottom part	9-pin subminiature connector, mounting location "B" At the bottom part of the housing: shielded data cable
Distance Test voltage	1000 m/3300 ft \leq 93.75 kbaud; 500 m/1500 ft \leq 187.5 kbaud; 200 m/600 ft \leq 1.5 Mbaud; 100 m/300 ft \leq 12 Mbaud 500 V AC against earth
Eiber ontic	
Connection fiber-optic cable	Integr. ST connector for FO connection
For flush-mounting housing/ surface-mounting housing with detached operator panel	Mounting location "B"
For surface-mounting housing with two-tier terminal on the top/bottom part	At the bottom part of the housing $\underline{\text{Important:}}$ Please refer to footnotes $^{1)}$ and $^{2)}$ on page 5/136
Optical wavelength	820 nm
Permissible path attenuation Distance	Max. 8 dB, for glass fiber 62.5/125 μm 500 kB/s 1.6 km/0.99 miles 1500 kB/s 530 m/0 33 miles
MODBUS RTU, ASCIL DNP 3.0	1565 KD/5 556 H/0.55 Hilles
Isolated interface for data transfer to a control center	Port B
Transmission rate	Up to 19200 baud

System interface (rear of unit) (cont'd) R\$485

K3403	
Connection For flush-mounting housing/ surface-mounting housing with detached operator panel For surface-mounting housing with two-tier terminal at the top/bottom part	9-pin subminiature connector, mounting location "B" At bottom part of the housing: shielded data cable
Test voltage	500 V AC against earth
Fiber-optic	
Connection fiber-optic cable	Integrated ST connector for fiber-optic connection
For flush-mounting housing/ surface-mounting housing with detached operator panel	Mounting location "B"
For surface-mounting housing with two-tier terminal at the top/bottom part	At the bottom part of the housing <u>Important:</u> Please refer to footnotes ¹⁾ and ²⁾ on page 5/136
Optical wavelength	820 nm
Permissible path attenuation	Max 8 dB. for glass fiber 62.5/125 μm
Distance	Max. 1.5 km/0.9 miles
Time synchronization DCF77/IRIG-E	3 signal (Format IRIG-B000)
Connection	9-pin subminiature connector (SUB-D) (terminal with surface-mounting housing)
Voltage levels	5 V, 12 V or 24 V (optional)
Functions	

Definite-time overcurrent protectio /ANSI 50, 50N, 67, 67N)	n, directional/non-directional
Dperating mode non-directional bhase protection (ANSI 50)	3-phase (standard) or 2-phase (L1 and L3)
Number of elements (stages)	I>, I>>, I>>> (phases) $I_E>, I_E>>>$ (earth)
Setting ranges	
Pickup phase elements Pickup earth elements	0.5 to 175 A or ∞^{11} (in steps of 0.01 A) 0.25 to 175 A or ∞^{11} (in steps of 0.01 A)
Delay times <i>T</i> Dropout delay time <i>T</i> _{DO}	0 to 60 s or ∞ (in steps of 0.01 s) 0 to 60 s (in steps of 0.01 s)
Fimes Pickup times (without inrush restraint, with inrush restraint + 10 ms)	
With twice the setting value With five times the setting value	Non-directionalDirectionalApprox. 30 ms45 msApprox. 20 ms40 ms
Dropout times	Approx. 40 ms
Dropout ratio	Approx. 0.95 for $I/I_{\text{nom}} \ge 0.3$
Folerances	
Pickup	2 % of setting value or 50 mA ¹⁾
Delay times T, T_{DO}	1 % or 10 ms

Inverse-time overcurrent protectior (ANSI 51, 51N, 67, 67N)	n, directional/non-directional
Operating mode non-directional phase protection (ANSI 51)	3-phase (standard) or 2-phase (L1 and L3)
Setting ranges Pickup phase element <i>I</i> _P Pickup earth element <i>I</i> _{EP} Time multiplier <i>T</i> (IEC characteristics)	0.5 to 20 A or ∞^{11} (in steps of 0.01 A) 0.25 to 20 A or ∞^{11} (in steps of 0.01 A) 0.05 to 3.2 s or ∞ (in steps of 0.01 s)
Time multiplier <i>D</i> (ANSI characteristics)	0.05 to 15 s or ∞ (in steps of 0.01 s)
Undervoltage threshold V< for release I _p	10.0 to 125.0 V (in steps of 0.1 V)
Trip characteristics IEC	Normal inverse, very inverse,
ANSI	extremely inverse, long inverse Inverse, short inverse, long inverse moderately inverse, very inverse, extremely inverse, definite inverse
User-defined characteristic	Defined by a maximum of 20 value pairs of current and time delay
Dropout setting Without disk emulation	Approx. 1.05 · setting value I_p for $I_p/I_{nom} \ge 0.3$, corresponds to approx. 0.95 · pickup threshold
With disk emulation	Approx. $0.90 \cdot \text{setting value } I_p$
Tolerances Pickup/dropout thresholds I_p , I_{Ep} Pickup time for $2 \le I/I_p \le 20$	2 % of setting value or 50 mA ¹⁾ 5 % of reference (calculated) value + 2 % current tolerance, respectively 20 ms
Dropout ratio for $0.05 \le I/I_p$ ≤ 0.9	50 ms 5 % of reference (calculated) value + 2 % current tolerance, respectively 30 ms
Direction detection	
For phase faults	
Polarization	With cross-polarized voltages; With voltage memory for measure- ment voltages that are too low
Forward range Rotation of reference voltage $V_{\text{ref,rot}}$	$V_{\text{ref,rot}} \pm 86^{\circ}$ - 180° to 180° (in steps of 1°)
Direction sensitivity	For one and two-phase faults unlimited; For three-phase faults dynamically unlimited; Steady-state approx. 7 V phase-to-phase
For earth faults	
Polarization	With zero-sequence quantities $3V_0$, $3I_0$ or with negative-sequence quantities $3V_2$, $3I_2$
Forward range Rotation of reference voltage $V_{\rm ref,rot}$	$V_{\text{ref,rot}} \pm 86^{\circ}$ - 180° to 180° (in steps of 1°)
Direction sensitivity Zero-sequence quantities $3V_0$, $3I_0$	$V_{\rm E} \approx 2.5 \text{ V}$ displacement voltage, measured; $3V_0 \approx 5 \text{ V}$ displacement voltage, calculated
Negative-sequence quantities $3V_2, 3I_2$	$3V_2 \approx 5$ V negative-sequence voltage; $3I_2 \approx 225$ mA negative-sequence current ¹⁾

Tolerances (phase angle error under reference conditions) For phase and earth faults ± 3 ° electrical

1) At $I_{nom} = 1$ A, all limits divided by 5.

Inrush blocking

Influenced functions

	$I_{\rm Ep}$ (directional, non-directional)
Lower function limit phases	At least one phase current $(50 \text{ Hz and } 100 \text{ Hz}) \ge 125 \text{ mA}^{1)}$
Lower function limit earth	Earth current $(50 \text{ Hz and } 100 \text{ Hz}) \ge 125 \text{ mA}^{1)}$
Upper function limit (setting range)	1.5 to 125 $A^{1)}$ (in steps of 0.01 A)
Setting range <i>I</i> _{2<i>f</i>} / <i>I</i>	10 to 45 % (in steps of 1 %)
Crossblock (IL1, IL2, IL3)	ON/OFF
Dynamic setting change	
Controllable function	Directional and non-directional pickup, tripping time
Start criteria	Current criteria, CB position via aux. contacts, binary input, auto-reclosure ready
Time control	3 timers
Current criteria	Current threshold (reset on dropping below threshold; monitoring with timer)

Time-overcurrent elements, I>, I_E >, I_p ,

(Sensitive) earth-fault detection (ANSI 64, 50 Ns, 51Ns, 67Ns)

Displacement voltage starting for all types of earth fault (ANSI 64)

Setting ranges

Pickup threshold $V_{\rm E}$ > (measured)	1.8 to 170 V (in steps of 0.1 V)
Pickup threshold $3V_0$ >	10 to 225 V (in steps of 0.1 V)
(calculated)	
Delay time T _{Delay pickup}	0.04 to 320 s or ∞ (in steps of 0.01 s)
Additional trip delay T _{VDELAY}	0.1 to 40000 s or ∞ (in steps of 0.01 s)
Times	
Pickup time	Approx. 50 ms
Dropout ratio	0.95 or (pickup value -0.6 V)
Tolerances	
Pickup threshold V _E (measured)	3 % of setting value or 0.3 V
Pickup threshold $3V_0$ (calculated)	3 % of setting value or 3 V
Delay times	1 % of setting value or 10 ms
Phase detection for earth fault in an unearthed system	
Measuring principle	Voltage measurement (phase-to-earth)
Setting ranges	

ting ranges	
V _{ph min} (earth-fault phase)	10 to 100 V (in steps of 1 V)

$V_{\rm phmax}$ (unfaulted phases)	10 to 100 V (in steps of 1 V)
Measuring tolerance	3 % of setting value, or 1 V
acc. to DIN 57435 part 303	

Earth-fault pickup for all types of earth faults

Definite-time characteristic (ANSI 50Ns)

Setting ranges Pickup threshold <i>I</i> _{FF} >, <i>I</i> _{FF} >>	
For sensitive input	0.001 to 1.5 A (in steps of 0.001 A)
For normal input	0.25 to 175 A ¹⁾ (in steps of 0.01 A)
Delay times T for I_{EE} , I_{EE} >>	0 to 320 s or ∞ (in steps of 0.01 s)
Dropout delay time $T_{\rm DO}$	0 to 60 s (in steps of 0.01 s)
Times	
Pickup times	Approx. 50 ms
Dropout ratio	Approx. 0.95

Tolerances Pickup threshold For sensitive input	2 % of setting value or 1 mA
For normal input Delay times	2 % of setting value of 7 mA ¹⁾ 2 % of setting value or 50 mA ¹⁾ 1 % of setting value or 20 ms
Earth-fault pickup for all types of ear	rth faults
Inverse-time characteristic (ANSI 51	Ns)
User-defined characteristic	Defined by a maximum of 20 pairs of current and delay time values
Setting ranges Pickup threshold I _{EEp} For sensitive input For normal input User defined Time multiplier T	0.001 A to 1.4 A (in steps of 0.001 A) 0.25 to 20 A ¹⁾ (in steps of 0.01 A) 0.1 to 4 s or ∞ (in steps of 0.01 s)
Times Pickup times	Approx. 50 ms
Pickup threshold	Approx. $1.1 \cdot I_{\text{FER}}$
Dropout ratio	Approx $1.05 \cdot I_{\text{EER}}$
Tolerances Pickup threshold For sensitive input For normal input Delay times in linear range	2 % of setting value or 1 mA 2 % of setting value or 50 mA ¹⁾ 7 % of reference value for $2 \le I/I_{\text{EEp}} \le 20 + 2$ % current tolerance, or 70 ms
Logarithmic inverse	Refer to the manual
Logarithmic inverse with knee point	Refer to the manual
Direction detection for all types of ed	arth-faults (ANSI 67Ns)
Measuring method " $\cos \varphi / \sin \varphi$ "	
Direction measurement	I_E and V_E measured or $3I_0$ and $3V_0$ calculated
Measuring principle	Active/reactive power measurement
Setting ranges Measuring enable $I_{\text{Release direct.}}$ For sensitive input For normal input Direction phasor $\varphi_{\text{Correction}}$ Dropout delay $T_{\text{Reset delay}}$ Reduction of dir. area α Red dir.area	0.001 to 1.2 A (in steps of 0.001 A) 0.25 to 150 A ¹⁾ (in steps of 0.01 A) - 45 ° to + 45 ° (in steps of 0.1 °) 1 to 60 s (in steps of 1 s) 1 ° to 15 ° (in steps of 1 °)
Tolerances Pickup measuring enable For sensitive input For normal input Angle tolerance	2 % of setting value or 1 mA 2 % of setting value or 50 mA ¹⁾ 3 °
Direction measurement	Is and Va measured or
Minimum voltage V_{min} , measured Minimum voltage V_{min} , calculated Phase angle φ Delta phase angle $\Delta \varphi$ Tolerances Pickup threshold V_E (measured) Pickup threshold $3V_0$ (calculated)	$\begin{array}{l} I_{2} \text{ and } V_{2} \text{ Interstruct} of \\ I_{0} \text{ and } 3V_{0} \text{ calculated} \\ 0.4 \text{ to } 50 \text{ V} \text{ (in steps of } 0.1 \text{ V)} \\ 10 \text{ to } 90 \text{ V} \text{ (in steps of } 1 \text{ V)} \\ -180^{\circ} \text{ to } 180^{\circ} \text{ (in steps of } 0.1^{\circ}) \\ 0^{\circ} \text{ to } 180^{\circ} \text{ (in steps of } 0.1^{\circ}) \\ 3 \% \text{ of setting value or } 0.3 \text{ V} \\ 3 \% \text{ of setting value or } 3 \text{ V} \end{array}$
Angle tolerance	3 °
Angle correction for cable CT	
Angle correction F1, F2 Current value I ₁ , I ₂ For sensitive input For normal input	0 ° to 5 ° (in steps of 0.1 °) 0.001 to 1.5 A (in steps of 0.001 A) 0.25 to 175 A ¹⁾ (in steps of 0.01 A)

For normal input Note: Due to the high sensitivity the linear range of the measuring input IN with integrated sensitive input transformer is from 0.001 A to 1.6 A. For currents greater than 1.6 A, correct directionality can no longer be guaranteed.

High-impedance restricted earth-fault protection (ANSI 87N) / single-phase overcurrent protection

Setting ranges Pickup thresholds I>, I>> For sensitive input For normal input Delay times $T_I >$, $T_I >>$

Times Pickup times Minimum Typical

Dropout times Dropout ratio

Tolerances Pickup thresholds

0.003 to 1.5 A or ∞ (in steps of 0.001 A) 0.25 to 175 A¹⁾ or ∞ (in steps of 0.01 A) 0 to 60 s or ∞ (in steps of 0.01 s)

Approx. 20 ms Approx. 30 ms Approx. 30 ms Approx. 0.95 for $I/I_{nom} \ge 0.5$

3 % of setting value or 1 % rated current at $I_{nom} = 1$ or 5 A; 5 % of setting value or 3 % rated current at $I_{\text{nom}} = 0.1 \text{ A}$ 1 % of setting value or 10 ms

Intermittent earth-fault protection

Setting ranges

Delay times

Pickup threshold		
For I _E	$I_{\rm IE}>$	0.25 to 175 A ¹⁾ (in steps of 0.01 A)
For $3I_0$	$I_{\rm IE}>$	0.25 to $175 \text{ A}^{(1)}$ (in steps of 0.01 A)
For <i>I</i> _{EE}	$I_{\rm IE}>$	0.005 to 1.5 A (in steps of 0.001 A)
Pickup prolon- gation time	$T_{\rm V}$	0 to 10 s (in steps of 0.01 s)
Earth-fault accu- mulation time	T_{sum}	0 to 100 s (in steps of 0.01 s)
Reset time for accumulation	$T_{\rm res}$	1 to 600 s (in steps of 1 s)
Number of pickups fo intermittent earth faul	r t	2 to 10 (in steps of 1)
Times Pickup times		
Current = $1.25 \cdot \text{pick}$	cup value	Approx. 30 ms
Current $\geq 2 \cdot picku$	p value	Approx. 22 ms
Dropout time		Approx. 22 ms
Tolerances		
Pickup threshold <i>I</i> _{IE} >		3 % of setting value, or 50 mA ¹⁾
Times T_V , T_{sum} , T_{res}		1 % of setting value or 10 ms

T

Inermal overload protection (ANSI-	49)
Setting ranges	
Factor k	0.1 to 4 (in steps of 0.01)
Time constant	1 to 999.9 min (in steps of 0.1 min)
Warning overtemperature $\Theta_{alarm}/\Theta_{trip}$	50 to 100 % with reference to the tripping overtemperature (in steps of 1 %)
Current warning stage Ialarm	0.5 to 20 A (in steps of 0.01 A)
Extension factor when stopped k_r factor	1 to 10 with reference to the time constant with the machine running (in steps of 0.1)
Rated overtemperature (for I_{nom})	40 to 200 °C (in steps of 1 °C)
Tripping characteristic For $(I/k \cdot I_{nom}) \le 8$	$t = \tau_{\rm th} \cdot \ln \frac{\left(I / \mathrm{k} \cdot I_{\rm nom}\right)^2 - \left(I_{\rm pre} / \mathrm{k} \cdot I_{\rm nom}\right)}{\left(I / \mathrm{k} \cdot I_{\rm nom}\right)^2 - 1}$

	Part 3011 and IEC 60255-8 $I_{nom} =$ Rated (nominal) current of the protection relay
Dropout ratios Θ/Θ_{Trip} Θ/Θ_{Alarm} I/I_{Alarm}	Drops out with Θ_{Alarm} Approx. 0.99 Approx. 0.97
Tolerances With reference to $k \cdot I_{nom}$ With reference to tripping time	Class 5 acc. to IEC 60255-8 5 % +/- 2 s acc. to IEC 60255-8
Auto-reclosure (ANSI 79)	
Number of reclosures	0 to 9 Shot 1 to 4 individually adjustable
Program for phase fault Start-up by	Time-overcurrent elements (dir., non-dir.), negative sequence, binary input
Program for earth fault Start-up by	Time-overcurrent elements (dir., non-dir.), sensitive earth-fault protection, binary input
Blocking of ARC	Pickup of protection functions, three-phase fault detected by a protec- tive element, binary input, last TRIP command after the reclosing cycle is complete (unsuccessful reclosing), TRIP command by the breaker failure protection (50BF), opening the CB without ARC initia- tion, external CLOSE command
Setting ranges Dead time (separate for phase and earth and individual for shots 1 to 4)	0.01 to 320 s (in steps of 0.01 s)
Blocking duration for manual- CLOSE detection	0.5 s to 320 s or 0 (in steps of 0.01 s)
Blocking duration after reclosure Blocking duration after duration blocking	0.5 s to 320 s (in steps of 0.01 s) 0.01 to 320 s (in steps of 0.01 s)
Start-signal monitoring time	0.01 to 320 s or ∞ (in steps of 0.01 s)
Circuit-breaker supervision time	0.1 to 320 s (in steps of 0.01 s)
Max. delay of dead-time start	0 to 1800 s or ∞ (in steps of 0.1 s)
Maximum dead time extension	0.5 to 320 s or ∞(in steps of 0.01 s)
Action time	0.01 to 320 s or ∞ (in steps of 0.01 s)
The delay times of the following pro individually by the ARC for shots 1 (setting value $T = T$, non-delayed T $I >>>, I >>, I >>, I_p, I_{dir} >>, I_{dir} >, I_{pdir}$ $I_E >>>, I_E >>, I_E, I_{Ep}, I_{Edir} >>, I_{Edir} >>, I_{Edir} >>, I_E$	tection function can be altered to 4 = 0, blocking $T = \infty$): I_{Edir}
Additional functions	Lockout (final trip), delay of dead-time start via binary input (monitored), dead time extension via binary input

= Tripping time

= Load current

*I*_{pre} = Preload current

= Temperature rise time constant

= Setting factor acc. to VDE 0435

t

 $au_{
m th}$

I

k

dead-time tored), tension via binary input (monitored), co-ordination with other protection relays, circuit-breaker monitoring, evaluation of the CB contacts

Technical data

Procker failure protection (ANSI 50 PE)

breaker fundle protection (ANSI 50 L	ן וכ
Setting ranges Pickup thresholds	0.2 to 5 A ¹⁾ (in steps of 0.01 A)
Delay time	0.06 to 60 s or ∞ (in steps of 0.01 s)
Times Pickup times with internal start with external start Dropout times Tolerances Pickup value Delay time	is contained in the delay time is contained in the delay time Approx. 25 ms 2 % of setting value (50 mA) ¹⁾ 1 % or 20 ms
Synchro- and voltage check (ANSI 2.	5)
Operating mode	• Synchro-check
Additional release conditions	 Live-bus / dead line Dead-bus / live-line Dead-bus and dead-line Bypassing
Voltages	
Max. operating voltage V _{max}	20 to 140 V (phase-to-phase) (in steps of 1 V)
Min. operating voltage V _{min}	20 to 125 V (phase-to-phase) (in steps of 1 V)
V< for live_line / live_bus check	1 to 60 V (phase-to-phase) (in steps of 1 V) 20 to 140 V (phase-to-phase)
Primary rated voltage of	(in steps of 1 V) 0.1 to 800 kV (in steps of 0.01 kV)
transformer V2 _{nom}	
Drop-off to pickup ratios	approx. 0.9 (V >) or 1.1 (V <)
ΔV-measurement Voltage difference	0.5 to 50 V (phase-to-phase) (in steps of 1 V)
1 olerance	l v
Δƒ-measurement Δƒ-measurement (ƒ2>ƒ1; ƒ2<ƒ1) Tolerance	0.01 to 2 Hz (in steps of 0.01 Hz) 15 mHz
$\Delta \alpha$ -measurement $\Delta \alpha$ -measurement $(\alpha 2 > \alpha 1; \alpha 2 > \alpha 1)$	2 ° to 80 ° (in steps of 1 °)
Tolerance Max. phase displacement	2° 5° for $\Delta f \le 1$ Hz 10° for $\Delta f > 1$ Hz
Adaptation Vector group adaptation by angle Different voltage transformers V ₁ /V ₂	0 ° to 360 ° (in steps of 1 °) 0.5 to 2 (in steps of 0.01)
Times Minimum measuring time Max. duration $T_{SYN DURATION}$ Supervision time $T_{SUP VOLTAGE}$ Closing time of CB $T_{CB close}$ Tolerance of all timers	Approx. 80 ms 0.01 to 1200 s; ∞ (in steps of 0.01 s) 0 to 60 s (in steps of 0.01 s) 0 to 60 s (in steps of 0.01 s) 1 % of setting value or 10 ms
Measuring values of synchro-check f	unction
Reference voltage V1 Range Tolerance*)	In kV primary, in V secondary or in % V_{nom} 10 to 120 % $V_{\text{nom}} \le 1$ % of measured value or 0.5 % of V_{nom}
Voltage to be synchronized V2 Range	In kV primary, in V secondary or in % V _{nom} 10 to 120 % V _{nom}

 $f_{\rm N} \pm 5 \, {\rm Hz}$ Range Tolerance*) 20 mHz Voltage difference (V2 - V1)In kV primary, in V secondary or in % V_{nom} 10 to 120 % V_{nom} Range Tolerance*) \leq 1 % of measured value or 0.5 % of V_{nom} Frequency difference $(f_2 - f_1)$ In mHz $f_{\rm N} \pm 5 \, {\rm Hz}$ Range Tolerance*) 20 mHz Angle difference $(\alpha 2 - \alpha 1)$ In ° Range 0 to 180 ° 0.5 ° Tolerance*) Flexible protection functions (ANSI 27, 32, 47, 50, 55, 59, 81R) Operating modes / measuring quantities 3-phase I, I1, I2, I2/I1, 3I0, V, V1, V2, 3V0, dV/dt, P, 1-phase $Q, \cos \varphi I, I_{\rm E}, I_{\rm E sens.}, V, V_{\rm E}, P, Q, \cos \varphi$

 f_1, f_2 in Hz

Frequency of V1 and V2

Without fixed phase relation f, df/dt, binary input Pickup when Exceeding or falling below threshold value Setting ranges 0.15 to 200 A¹⁾ (in steps of 0.01 A) Current I, I1, I2, 3I0, IE Current ratio I2/I1 15 to 100 % (in steps of 1 %) Sens. earth curr. I_{E sens} 0.001 to 1.5 A (in steps of 0.001 A) Voltages $V, V_1, V_2, 3V_0$ 2 to 260 V (in steps of 0.1 V) Displacement voltage VE 2 to 200 V (in steps of 0.1 V) 0.5 to 10000 W (in steps of 0.1 W) Power P, QPower factor $(\cos \varphi)$ -0.99 to +0.99 (in steps of 0.01) Frequency $f_N = 50$ Hz 40 to 60 Hz (in steps of 0.01 Hz) $f_{\rm N} = 60 \text{ Hz}$ 50 to 70 Hz (in steps of 0.01 Hz) Rate-of-frequency change df/dt 0.1 to 20 Hz/s (in steps of 0.01 Hz/s) Voltage change dV/dt 4 V/s to 100 V/s (in steps of 1 V/s) Dropout ratio >- stage 1.01 to 3 (insteps of 0.01) Dropout ratio <- stage 0.7 to 0.99 (in steps of 0.01) Dropout differential f 0.02 to 1.00 Hz (in steps of 0.01 Hz) Pickup delay time 0 to 60 s (in steps of 0.01 s) Trip delay time 0 to 3600 s (in steps of 0.01 s) Dropout delay time 0 to 60 s (in steps of 0.01 s) Times Pickup times Current, voltage (phase quantities) With 2 times the setting value Approx. 30 ms With 10 times the setting value Approx. 20 ms Current, voltages (symmetrical components) With 2 times the setting value Approx. 40 ms With 10 times the setting value Approx. 30 ms Power Typical Approx. 120 ms Maximum (low signals and Approx. 350 ms thresholds) Power factor 300 to 600 ms Frequency Approx. 100 ms Rate-of-frequency change With 1.25 times the setting value Approx. 220 ms Voltage change dV/dt For 2 times pickup value Approx. 220 ms Binary input Approx. 20 ms

*) With rated frequency.

 \leq 1 % of measured value or 0.5 % of V_{nom}

1) At $I_{nom} = 1$ A, all limits divided by 5.

Tolerance*)

Flexible protection functions (ANSI 27, 32, 47, 50, 55, 59, 81R) (cont'd)

Dropout times	
Current, voltage (phase	< 20 ms
quantities)	
Current, voltages (symmetrical	< 30 ms
components)	
Power	
Typical	< 50 ms
Maximum	< 350 ms
Power factor	< 300 ms
Frequency	< 100 ms
Rate-of-frequency change	< 200 ms
Voltage change	< 220 ms
Binary input	< 10 ms
Folerances	
Pickup threshold	
Current	0.5 % of setting value or 50 mA ^{1}
Current (symmetrical components)	1 % of setting value or 100 mA ¹⁾
Voltage	0.5 % of setting value or 0.1 V
Voltage (symmetrical	1 % of setting value or 0.2 V
components)	1 /0 01 betting value of 012 v
Power	1 % of setting value or 0.3 W
Power factor	2 degrees
Frequency	5 mHz (at $V = V_N$, $f = f_N$)
1 ,	$10 \text{ mHz} (\text{at } V = V_{\text{N}})$
Rate-of-frequency change	5 % of setting value or 0.05 Hz/s
Voltage change dV/dt	5 % of setting value or 1.5 V/s
Times	1 % of setting value or 10 ms

Negative-sequence current detection (ANSI 46)

Definite-time characteristic (ANSI 46-1 and 46-2)

Setting ranges

o ettiing ruingeo	
Pickup current I_2 >, I_2 >>	0.5 to 15 A or ∞
Delay times	0 to 60 s or ∞ (i
Dropout delay time $T_{\rm DO}$	0 to 60 s (in step
Functional limit	All phase currer
Times	
Pickup times	Approx. 35 ms
Dropout times	Approx. 35 ms
Dropout ratio	Approx. 0.95 fo
Tolerances	
Pickup thresholds	3 % of the settin
Delay times	1 % or 10 ms
Inverse-time characteristic (ANSI 46-	TOC)

Setting ranges Pickup current Time multiplier T (IEC characteristics) Time multiplier D

(ANSI characteristics)

Functional limit

Trip characteristics IEC

ANSI

Pickup threshold

Dropout IEC and ANSI (without disk emulation) ANSI with disk emulation

Tolerances Pickup threshold Time for $2 \le M \le 20$

0.5 to 15 A or ∞ (in steps of 0.01 A
0 to 60 s or ∞ (in steps of 0.01 s)
0 to 60 s (in steps of 0.01 s)
All phase currents $\leq 50 \text{ A}^{1)}$

or $I_2 / I_{nom} > 0.3$

ng value or 50 mA¹⁾

0.5 to 10 A¹⁾ (in steps of 0.01 A) 0.05 to 3.2 s or ∞ (in steps of 0.01 s) 0.5 to 15 s or ∞ (in steps of 0.01 s) All phase currents \leq 50 A ¹⁾ Normal inverse, very inverse, extremely inverse Inverse, moderately inverse, very inverse, extremely inverse

Approx. 1.1 $\cdot I_{2p}$ setting value

Approx. $1.05 \cdot I_{2p}$ setting value, which is approx. 0.95 · pickup threshold Approx. $0.90 \cdot I_{2p}$ setting value

3~% of the setting value or $50~mA^{1)}$ 5 % of setpoint (calculated) +2 % current tolerance, at least 30 ms

Starting	time m	onitoring	for moto	ors (ANSI 48)

3	
Setting ranges Motor starting current <i>I</i> _{STARTUP} Pickup threshold <i>I</i> _{MOTOR START} Permissible starting time <i>T</i> _{STARTUP} , cold motor Permissible starting time <i>T</i> _{STARTUP} , warm motor Temperature threshold cold motor	 2.5 to 80 A¹⁾ (in steps of 0.01) 2 to 50 A¹⁾ (in steps of 0.01) 1 to 180 s (in steps of 0.1 s) 0.5 to 180 s (in steps of 0.1 s) 0 to 80 % (in steps of 1 %)
Permissible blocked rotor time $T_{\text{LOCKED-ROTOR}}$	0.5 to 120 s or ∞ (in steps of 0.1 s)
Tripping time characteristic For $I > I_{MOTOR START}$	$t = \left(\frac{I_{\text{STARTUP}}}{I_{\text{STARTUP}}}\right)^2 \cdot T_{\text{STARTUP}}$
	 (I) I_{STARTUP} = Rated motor starting current I = Actual current flowing T_{STARTUP} = Tripping time for rated motor starting current t = Tripping time in seconds
Dropout ratio IMOTOR START	Approx. 0.95
Tolerances Pickup threshold Delay time	2 % of setting value or 50 mA ¹⁾
Load jam protection for motors (AN	SI 51M)
Setting ranges Current threshold for alarm and trip Delay times	0.25 to 60 A ¹⁾ (in steps 0.01 A) 0 to 600 s (in steps 0.01 s)
Blocking duration after CLOSE signal detection Tolerances Bickup threshold	0 to 600 s (in steps 0.01 s)
Delay time	2 % of setting value or 50 mA ¹ / 1 % of setting value or 10 ms
Restart inhibit for motors (ANSI 66)	0
Setting ranges Motor starting current relative to rated motor current MOTOP START/Integr Nom	1.1 to 10 (in steps of 0.1)
Rated motor current <i>I</i> _{Motor Nom} Max. permissible starting time	1 to 6 A ¹⁾ (in steps of 0.01 A) 1 to 320 s (in steps of 1 s)
Equilibrium time T_{Equal} Minimum inhibit time	0 min to 320 min (in steps of 0.1 min) 0.2 min to 120 min (in steps of 0.1 min
Max. permissible number of warm starts	1 to 4 (in steps of 1)
Difference between cold and warm starts	1 to 2 (in steps of 1)
Extension k-factor for cooling simulations of rotor at zero	0.2 to 100 (in steps of 0.1)
Extension factor for cooling time constant with motor running $k\tau_{RUNNING}$	0.2 to 100 (in steps of 0.1)
Restarting limit	$\Theta_{\text{restart}} = \Theta_{\text{rot max perm}} \cdot \frac{n_{\text{c}} - 1}{n_{\text{c}}}$
	$\Theta_{restart}$ = Temperature limit below which restarting is possible $\Theta_{rot max perm}$ = Maximum permissible rotor overtemperature (= 100 % in operational measured value $\Theta_{rest}(\Theta_{restartion})$
1) For $I_{\text{nom}} = 1$ A, all limits divided by 5.	$n_{\rm c}$ = Number of permissible start-ups from cold state

Technical data	
Undercurrent monitoring (ANSI 37)	
Signal from the operational measured values	Predefined with programmable logic
Temperature monitoring box (ANS	138)
Temperature detectors	
Connectable boxes Number of temperature detectors per box	1 or 2 Max. 6
Type of measuring Mounting identification	Pt 100 Ω or Ni 100 Ω or Ni 120 Ω "Oil" or "Environment" or "Stator" or "Bearing" or "Other"
Thresholds for indications For each measuring detector Stage 1	-50 °C to 250 °C (in steps of 1 °C) -58 °F to 482 °F (in steps of 1 °F) or ∞ (no indication)
Stage 2	-50 °C to 250 °C (in steps of 1 °C) -58 °F to 482 °F (in steps of 1 °F) or ∞ (no indication)
Undervoltage protection (ANSI 27)	
Operating modes/measuring quantities	
3-phase	Positive phase-sequence voltage or phase-to-phase voltages or phase-to-earth voltages
1-phase	Single-phase phase-earth or phase-phase voltage
Setting ranges Pickup thresholds V<, V<< dependent on voltage connection and chosen measuring quantity	10 to 120 V (in steps of 1 V) 10 to 210 V (in steps of 1 V)
Dropout ratio <i>r</i> Delay times <i>T</i> Current Criteria "Bkr Closed I _{MIN} "	1.01 to 3 (in steps of 0.01) 0 to 100 s or ∞ (in steps of 0.01 s) 0.2 to 5 A ¹⁾ (in steps of 0.01 A)
Times Pickup times Dropout times	Approx. 50 ms As pickup times
Tolerances Pickup thresholds Times	1 % of setting value or 1 V 1 % of setting value or 10 ms
Overvoltage protection (ANSI 59)	
Operating modes/measuring quantities	
3-phase	Positive phase-sequence voltage or negative phase-sequence voltage or phase-to-phase voltages or phase-to-earth voltages Single-phase phase-earth or
Setting ranges	phase-phase voltage
Pickup thresholds V>, V>> dependent on voltage connection and chosen measuring quantity	40 to 260 V (in steps of 1 V) 40 to 150 V (in steps of 1 V) 2 to 150 V (in steps of 1 V)
Dropout ratio <i>r</i> Delay times <i>T</i>	0.9 to 0.99 (in steps of 0.01) 0 to 100 s or ∞ (in steps of 0.01 s)
Times Pickup times V Pickup times V ₁ , V ₂ Dropout times	Approx. 50 ms Approx. 60 ms As pickup times
1) For $I_{nom} = 1$ A, all limits divided by	by 5.

olerances Pickup thresholds Times	1 % of setting value or 1 V 1 % of setting value or 10 ms
requency protection (ANSI 81)	
umber of frequency elements	4
Pickup thresholds for $f_{nom} = 50$ Hz Pickup thresholds for $f_{nom} = 60$ Hz ropout differential = pickup threshold - dropout threshold elay times	40 to 60 Hz (in steps of 0.01 Hz) 50 to 70 Hz (in steps of 0.01 Hz) 0.02 Hz to 1.00 Hz (in steps of 0.01 Hz)
Undervoltage blocking, with positive-sequence voltage V_1	0 to 100 s or ∞ (in steps of 0.01 s) 10 to 150 V (in steps of 1 V)
unes Pickup times Dropout times	Approx. 150 ms Approx. 150 ms
ropout Ratio undervoltage blocking	Approx. 1.05
olerances Pickup thresholds Frequency	5 mHz (at $V = V_N$, $f = f_N$) 10 mHz (at $V = V_N$)
Delay times	3 % of setting value or 1 V 3 % of the setting value or 10 ms
ault locator (ANSI 21FL)	ů –
utput of the fault distance	in Ω primary and secondary, in km or miles line length, in % of line length
arting signal	Trip command, dropout of a protection element, via binary input
etting ranges Reactance (secondary)	0.001 to 1.9 $\Omega/\text{km}^{1)}$ (in steps of 0.0001) 0.001 to 3 $\Omega/\text{mile}^{1)}$ (in steps of 0.0001)
olerances Measurement tolerance acc. to VDE 0435, Part 303 for sinusoi- dal measurement quantities	2.5 % fault location, or 0.025 Ω (without intermediate infeed) for 30 ° ≤ φ K ≤ 90 ° and V _K /V _{nom} ≥ 0.1 and <i>I</i> _K / <i>I</i> _{nom} ≥ 1
dditional functions	
perational measured values	
urrents 1, I_{L2} , I_{L3} cositive-sequence component I_1 egative-sequence component I_2 or $3I_0$	In A (kA) primary, in A secondary or in % <i>I</i> _{nom}
Range Tolerance ²⁾	10 to 200 % <i>I</i> _{nom} 1 % of measured value or 0.5 % <i>I</i> _{nom}
hase-to-earth voltages L1-E, V_{L2-E} , V_{L3-E} hase-to-phase voltages L1-L2, V_{L2-L3} , V_{L3-L1} , V_E or V_0 ositive-sequence component V_1 egative-sequence component V_2	In kV primary, in V secondary or in % $V_{\rm nom}$
Range Tolerance ²⁾	10 to 120 % $V_{\rm nom}$ 1 % of measured value or 0.5 % of $V_{\rm nom}$
apparent power	In kVAr (MVAr or GVAr) primary and in % of S_{nom}
Range Tolerance ²⁾	0 to 120 % S_{nom} 1 % of S_{nom} for V/V_{nom} and $I/I_{nom} = 50$ to 120 %
active power At rated frequency.	With sign, total and phase-segregated in kW (MW or GW) primary and in % S _{nom}
	5/107

0 to 120 % Snom

for *V*/*V*_{nom} and *I*/*I*_{nom} = 50 to 120 % and $|\cos \varphi| = 0.707$ to 1 with $S_{\text{nom}} = \sqrt{3} \cdot V_{\text{nom}} \cdot I_{\text{nom}}$

With sign, total and phase-segregated

for V/V_{nom} and $I/I_{\text{nom}} = 50$ to 120 % and $|\sin \varphi| = 0.707$ to 1 with $S_{\text{nom}} = \sqrt{3} \cdot V_{\text{nom}} \cdot I_{\text{nom}}$

in kVAr (MVAr or GVAr)primary and

1 % of S_{nom}

in % S_{nom} 0 to 120 % S_{nom}

1 % of Snom

Technical date

Operational measured values (cont'd) Range 0

Tolerance²⁾

Q, reactive power

Range Tolerance²⁾

 $\cos \varphi$, power factor (p.f.) Range Tolerance²⁾

Frequency f

Range Tolerance²⁾ Temperature overload protection

 Θ/Θ_{Trip}

 $\begin{array}{c} \text{Range} \\ \text{Tolerance}^{2)} \end{array}$ Temperature restart inhibit $\Theta_L / \Theta_{L\,Trip} \\ \text{Range} \\ \text{Tolerance}^{2)} \end{array}$

Restart threshold $\Theta_{Restart}/\Theta_{L Trip}$

Reclose time T_{Reclose}

Currents of sensitive ground fault detection (total, real, and reactive current) I_{EE} , I_{EE} real, I_{EE} reactive

Range Tolerance²⁾

RTD-box

Long-term averages

Time window Frequency of updates Long-term averages of currents of real power of reactive power of apparent power

Max. / Min. report

Report of measured values Reset, automatic

Reset, manual

Min./Max. values for current

Total and phase segregated - 1 to + 2 % for $|\cos \varphi| \ge 0.707$ In Hz $f_{\rm nom} \pm 5 \, \text{Hz}$ 20 mHz In % 0 to 400 % 5 % class accuracy per IEC 60255-8 In % 0 to 400 % 5 % class accuracy per IEC 60255-8 In % In min In A (kA) primary and in mA secondary 0 mA to 1600 mA 2 % of measured value or 1 mA See section "Temperature monitoring box" 5, 15, 30 or 60 minuets Adjustable IL1dmd, IL2dmd, IL3dmd, I1dmd in A (kA) Pdmd in W (kW, MW) Q_{dmd} in VAr (kVAr, MVAr) *S*_{dmd} in VAr (kVAr, MVAr) With date and time Time of day adjustable (in minutes,

Time of day adjustable (in minutes, 0 to 1439 min) Time frame and starting time adjustable (in days, 1 to 365 days, and ∞) Using binary input, using keypad, via communication $I_{L1}, I_{L2}, I_{L3},$

*I*₁ (positive-sequence component)

Min./Max. values for voltages	V _{L1-E} , V _{L2-E} , V _{L3-E} V ₁ (positive-sequence component) V _{L1-L2} , V _{L2-L3} , V _{L3-L1}
Min./Max. values for power	S, P, Q, $\cos \varphi$, frequency
Min./Max. values for overload protection	Θ/Θ _{Trip}
Min./Max. values for mean values	I _{L1dmd} , I _{L2dmd} , I _{L3dmd} I ₁ (positive-sequence component); S _{dmd} , P _{dmd} , Q _{dmd}
Local measured values monitoring	
Current asymmetry	$I_{\text{max}}/I_{\text{min}}$ > balance factor, for $I > I_{\text{balance limit}}$
Voltage asymmetry	$V_{\text{max}}/V_{\text{min}}$ > balance factor, for V > V_{lim}
Current phase sequence	Clockwise (ABC) / counter-clockwise (ACB)
Voltage phase sequence	Clockwise (ABC) / counter-clockwise (ACB)
Limit value monitoring	Predefined limit values, user-defined expansions via CFC
Fuse failure monitor	
For all network types	With the option of blocking affected protection functions
Fault recording	
Recording of indications of the last 8 power system faults	
Recording of indications of the last 3 power system ground faults	
Time stamping	
Resolution for event log (operational annunciations)	1 ms
Resolution for trip log (fault annunciations)	1 ms
Maximum time deviation (internal clock)	0.01 %
Battery	Lithium battery 3 V/1 Ah, type CR 1/2 AA, message "Battery Fault" for insufficient battery charge
Oscillographic fault recording	
Maximum 8 fault records saved, memory maintained by buffer bat- tery in case of loss of power supply	
Recording time	Total 20 s Pre-trigger and post-fault recording and memory time adjustable
Sampling rate for 50 Hz Sampling rate for 60 Hz	1 sample/1.25 ms (16 samples/cycle) 1 sample/1.04 ms (16 samples/cycle)
Energy/power	
Meter values for power Wp, Wq (real and reactive power demand)	in kWh (MWh or GWh) and kVARh (MVARh or GVARh)
Tolerance ¹⁾	≤ 2 % for $I > 0.1 I_{\text{nom}}$, $V > 0.1 V_{\text{nom}}$ and $ \cos \varphi $ (p.f.) ≥ 0.707
Statistics	
Saved number of trips	Up to 9 digits
Number of automatic reclosing commands (segregated according to 1^{st} and $\ge 2^{nd}$ cycle)	Up to 9 digits

1) At $I_{\text{nom}} = 1$ A, all limits multiplied with 5.

			_	·
lec	a1a1		a	10
100		COL		

Circuit-breaker wear		
Methods	• ΣI^x with $x = 1$	3
	 2-point method life) Σi²t 	(remaining service
Operation	Phase-selective acc sured values on TF 8 digits phase-sele	cumulation of mea- RIP command, up to
	monitoring indica	tion
Motor statistics		
Total number of motor start-ups Total operating time Total down-time Ratio operating time/down-time Active energy and reactive energy Motor start-up data: - Start-up time - Start-up current (primary) - Start-up voltage (primary)	0 to 9999 0 to 99999 h 0 to 99999 h 0 to 100 % See operational mo Of the last 5 start-to 0.30 s to 9999.99 s 0 A to 1000 kA 0 V to 100 kV	(resolution 1) (resolution 1 h) (resolution 1 h) (resolution 0.1 %) easured values ups (resolution 10 ms) (resolution 1 A) (resolution 1 V)
Operating hours counter		
Display range Criterion	Up to 7 digits Overshoot of an ac threshold (BkrClo	djustable current sed I _{MIN})
Trip circuit monitoring		
With one or two binary inputs		
Commissioning aids		
Phase rotation field check, operational measured values, circuit-breaker/switching device test, creation of a test measurement report		
Clock		
Time synchronization	DCF77/IRIG-B sig (telegram format I binary input, communication	mal RIG-B000),
Setting group switchover of the fun	ction parameters	
Number of available setting groups Switchover performed	4 (parameter grou Via keypad, DIGSI interface or binary	p A, B, C and D) I, system (SCADA) r input
Control		
Number of switching units	Depends on the bi outputs	nary inputs and
Interlocking	Programmable	
Circuit-breaker signals	Feedback, close, op position	pen, intermediate
Control commands	Single command / 1, 1 plus 1 commo	double command n or 2 trip contacts
Programmable controller	CFC logic, graphic	input tool
Local control	Control via menu, assignment of a fu	nction kev
Remote control	Via communicatio using a substatio control system (DIGSI 4 (e.g. via	on interfaces, on automation and e.g. SICAM), a modem)

CE conformity

This product is in conformity with the Directives of the European Communities on the harmonization of the laws of the Member States relating to electromagnetic compatibility (EMC Council Directive 89/336/EEC) and electrical equipment designed for use within certain voltage limits (Council Directive 73/23/EEC).

This unit conforms to the international standard IEC 60255, and the German standard DIN 57435/Part 303 (corresponding to VDE 0435/Part 303).

Further applicable standards: ANSI/IEEE C37.90.0 and C37.90.1.

The unit conforms to the international standard IEC 60255, and the German standard DIN 57435/Part 303 (corresponding to VDE 0435/Part 303).

This conformity is the result of a test that was performed by Siemens AG in accordance with Article 10 of the Council Directive complying with the generic standards EN 50081-2 and EN 50082-2 for the EMC Directive and standard EN 60255-6 for the "low-voltage Directive".

	•		
Soloct	ion and	ordoru	ha data

Description	Order No.			
7SJ62 multifunction protection relay	<i>7SJ62</i> □□			- 🗆 🗆 🗆
Housing inputs outputs				
Housing $\frac{1}{3}19^{\circ}$, 4 line text display, 3 x U, 4 x L 8 BL 8 BO, 1 live status-	contact 1			
Housing $\frac{1}{3}$ 19", 4 line text display, 3 x U, 4 x L 11 BL 6 BO, 1 live status	s-contact 2			
Housing $\frac{1}{2}$ 19" 4 line text display 4 x U 4 x U 8 BI 8 BO 1 live status-	contact 3			
Housing $\frac{1}{2}$ 19" 4 line text display, $4 \times U = 4 \times U$ 11 BI 6 BO 1 live status	s-contact 4			see
Housing $\frac{1}{10}$ graphic display, $4 \times U 4 \times U 8$ BL 8 BO 1 live status	ntact ⁷⁾ 5			nage
Housing 1/219°, graphic display, 4 x U 4 x U 11 BL 6 BO 1 live status co	$\frac{1}{2}$			Puge
$\frac{11000000}{11000000}$	ontact			
Measuring inputs $(3 \times V / 4 \times V, 4 \times I)$				
$I_{\rm ph} = 1 {\rm A}^{1}$, $I_{\rm e} = 1 {\rm A}^{1}$ (min. = 0.05 {\rm A})				
Position 15 only with A, C, E, G	1			
$I_{\rm ph} = 1 {\rm A}^{1}, I_{\rm e} = \text{sensitive (min. = 0.001 A)}$				
Position 15 only with B, D, F, H	2			
$I_{\rm ph} = 5 {\rm A}^{1)}, I_{\rm e} = 5 {\rm A}^{1)} ({\rm min.} = 0.25 {\rm A})$				
Position 15 only with A, C, E, G	5			
$I_{\rm ph} = 5 {\rm A}^{1)}, I_{\rm e} = {\rm sensitive} ({\rm min.} = 0.001 {\rm A})$				
Position 15 only with B, D, F, H	6			
$I_{\rm ph} = 5 {\rm A}^{1)}, I_{\rm e} = 1 {\rm A}^{1)} ({\rm min.} = 0.05 {\rm A})$				
Position 15 only with A, C, E, G	7			
Rated auxiliary voltage (power supply, indication voltage)				
24 to 48 V DC, threshold binary input 19 DC ³⁾		2		
60 to 125 V DC^{2} , threshold binary input 19 DC^{3}		4		
110 to 250 V $DC^{2)}$, 115 to 230 $V^{4)}$ AC, threshold binary input 88 V D^{4}	C ³⁾	5		
110 to 250 V DC ²⁾ , 115 to 230 V ⁴⁾ AC, threshold binary input 176 V I	$DC^{3)}$	6		
Unitversion				
For panel surface mounting, two-tier terminal top/bottom		В		
For panel flush mounting, plug-in terminal, (2/3 pin connector)		D		
For panel flush mounting, screw-type terminal (direct connection/rin	ng-type cable lug	s) <u>E</u>		
Region-specific default settings/function versions and language settin	igs			
Region DE, 50 Hz, IEC, language: German, selectable	11	A		
Region World, 50/60 Hz, IEC/ANSI, language: English (GB), select	able	В		
Region US, 60 Hz, ANSI, language: English (US), selectable		C		
Region FR, 50/60 Hz, IEC/ANSI, language: French, selectable		D		
Region World, 50/60 Hz, IEC/ANSI, language: Spanish, selectable		E		
Region IT, 50/60 Hz, IEC/ANSI, language: Italian (language selectabl	e)	F		
Region RU, 50/60 Hz, IEC/ANSI, language: Russian(language can be	changed)	G		
System interface (Port B): Refer to page 5/114				
No system interface		0	41	
Protocols see page 5/114				
Convice interface (Devit C)				
No interface at rear side			0	
NO INCLIACE AL LEAL SILE			1	
DIGSI 4/modelli, electrical K5252			2	
DIGST 4/IIIOdem/KTD-box', electrical KS485			2	
DIGSI 4/modem/RTD-box ^{-/-/} , optical 820 nm wave length, ST conne	ector		3	
Management of the second s				
Measuring/fault recording				1
rault recording				1
Slave pointer, mean values, min/max values, fault recording				1

- 1) Rated current can be selected by means of jumpers.
- 2) Transition between the two auxiliary voltage ranges can be selected by means of jumpers.
- 3) The binary input thresholds can be selected per binary input by means of jumpers.
- 4) 230 V AC, starting from device version .../EE.
- 5) Temperature monitoring box 7XV5662-□AD10, refer to "Accessories".
- 6) When using the temperature monitoring box at an optical interface, the additional RS485 fiber-optic converter
 7XV5650-0□A00 is required.
- 7) starting from device version .../GG and FW-Version V4.82

Selection and ordering data

Description					Order No.			
7SJ62 multi	functio	on prot	ection I	relay	7SJ62□□ - □□□□□ - □][]
Designation				ANSI No.	Description			١
Basic version					Control			
				50/51	Time-overcurrent protection <i>I</i> >, <i>I</i> >>>, <i>I</i> >>>, <i>I</i> _p			
				50N/51N	Earth-fault protection $I_{\rm E}$, $I_{\rm E}$, $I_{\rm E}$, $I_{\rm E}$			
				50N/51N	Insensitive earth-fault protection via			
				50/5033	IEE function: I_{EE} , I_{EE} , I_{EEp}			
				50/50IN	Flexible protection functions (index quantities derived			
					from current): Additional time-overcurrent protection			
				51 17	stages 12>, 1>>>>, IE>>>>			
				51 V	Voltage-dependent inverse-time overcurrent protection			
				49	Phase balance current protection			
				40	(negative-sequence protection)			
				37	Undercurrent monitoring			
				47	Phase sequence			
				59N/64	Displacement voltage			
				50BF	Breaker failure protection			
				74TC	Trip circuit supervision			
					4 setting groups, cold-load pickup			
					Inrush blocking			
				86	Lockout			
			$\overline{V, P, f}$	27/59	Under-/overvoltage	1		
			.,	81O/U	Under-/overfrequency			
				27/47/59(N)	Flexible protection (index quantities derived from			
				32/55/81R	current and voltages): Voltage, power, p.f.,			
					rate-of-frequency-change protection	-	Ε	
		IEF	V, P, f	27/59	Under-/overvoltage			
				81O/U	Under-/overfrequency			
				27/47/59(N)	Flexible protection (index quantities derived from			
				32/55/81R	current and voltages): Voltage, power, p.f.,			
					rate-of-frequency-change protection		_	
	D'			(= (=) T	Intermittent earth fault	-	E	
	Dır			67/67N	Direction determination for overcurrent, phases and earth	-	c	
	Dir		V. P. f	67/67N	Direction determination for overcurrent, phases and earth	+	-	
			• ,= ,,	27/59	Under-/overvoltage			
				810/U	Under-/overfrequency			
				27/47/59(N)	Flexible protection (index quantities derived from			
				32/55/81R	current and voltages): Voltage, power, p.f.,			
					rate-of-frequency-change protection	=	G	
	Dir	IEF		67/67N	Direction determination for overcurrent,			
					phases and earth			
					Intermittent earth fault	2	С	
Directional	Dır			67/67N	Direction determination for overcurrent,			
data ati an				67Na	Directional constitute conthe fault detection			
detection				0/INS 97NI	Lich immediate a postilisted earth fault	_		2
Directional			V D C	0/1N	Directional consisting could for the set	+		
parth fault			v, P, f	0/INS 87N	Directional sensitive earth-fault detection			
detection				27/59	Under-/overvoltage			
				810/U	Under-/overfrequency			
				27/47/59(N)	Flexible protection (index quantities derived from			
				32/55/81R	current and voltages): Voltage, power, p.f.,			
					rate-of-frequency-change protection	-	F	2
Directional	Dir	IEF		67/67N	Direction determination for overcurrent,			
earth-fault					phases and earth			
detection				67Ns	Directional sensitive earth-fault detection			
				8/N	High-impedance restricted earth fault			2
					internitent eartin launt h	1	ν	

Basic version included

V, P, f =Voltage, power,

frequency protection

Dir = Directional overcurrent protection

IEF = Intermittent earth fault

1) Only with insensitive earth-current transformer when position 7 = 1, 5, 7.

2) For isolated/compensated networks only with sensitive earth-current transformer when position 7 = 2, 6.

Continued on next page

Selection and ordering data

Description 7SJ62 multifunction protection relay

Order No.

code 75J6200 - 00000 - 0000-0000

Order

Designation	,	ANSI No.	Description					
Designation		/11/01/1/0.	Central					
Basic version	I	50/51 50N/51N 50N/51N	Control Time-overcurrent protection $I>$, $I>>$, $I>>>$, I_p Earth-fault protection $I_E>$, $I_E>>$, $I_E>>>$, I_{Ep} Insensitive earth-fault protection via IEE function: $I_{EE}>$, $I_{EE}>>$, I_{EEp}^{-1}					
		50/50N	Flexible protection functions (index quantities derived from current): Additional time- overcurrent protection					
		51 V	Voltage-dependent inverse-time overcurrent protection					
		49	Overload protection (with 2 time constants)					
		46	(negative-sequence protection)					
		37	Undercurrent monitoring					
		47	Phase sequence					
		59N/64 50BE	Displacement voltage Breaker failure protection					
		74TC	Trip circuit supervision					
			4 setting groups, cold-load pickup					
		86	Inrush blocking					
D'au ati a a l		(7)	Directional consistence of fight detection					
Directional earth-fault		67Ns 87N	High-impedance restricted earth fault					
detection		0/11	The second se		21			
				FB	3 2)			
Directional	Motor V, P, f	67Ns	Directional sensitive earth-fault detection					
earth-fault		87N	High-impedance restricted earth fault					
detection		48/14	Starting time supervision, locked rotor Restart inhibit					
-		51M	Load jam protection, motor statistics					
		27/59	Under-/overvoltage					
		81O/U	Under-/overfrequency					
		27/47/59(N) 32/55/81P	Flexible protection (index quantities derived from current and voltages): Voltage power p f	1				
		<i>52/55/</i> 61R	rate-of-frequency-change protection	H F	2)			
Directional	Motor V, P, f	67/67N	Direction determination for					
earth-fault	Dir		overcurrent, phases and earth					
detection		67Ns	Directional sensitive earth-fault detection					
		87N	High-impedance restricted earth fault					
		48/14	Restart inhibit					
		51M	Load jam protection, motor statistics					
		27/59	Under-/overvoltage					
		810/U	Under-/overfrequency					
		2//4//59(N) 32/55/81R	Flexible protection (index quantities derived from current and voltages): Voltage power p f	1				
		<i>52/55/</i> 01R	rate-of-frequency-change protection	Н	2)			
Directional	Motor IEF V, P, f	67/67N	Direction determination for					
earth-fault	Dir	0,70,11	overcurrent, phases and earth					
detection		67Ns	Directional sensitive earth-fault detection					
		87N	High-impedance restricted earth fault					
		48/14	Starting time supervision locked rotor					
		66/86	Restart inhibit					
		51M	Load jam protection, motor statistics					
		27/59 810/U	Undervoltage/overvoltage					
		27/47/59(N)	Flexible protection (index quantities derived from					
		32/55/81R	current and voltages): Voltage, power, p.f.,	-				
			rate-of-frequency-change protection	RH	l ²⁾			

Continued on next page

Dir

IEF

Basic version included V, P, f =Voltage, power,

frequency protection

= Intermittent earth fault 1) Only with insensitive earth-current transformer when position 7 = 1, 5, 7. 2) For isolated/compensated networks only with sensitive earth-current

transformer when position 7 = 2, 6.

= Directional overcurrent protection

Selection and ordering data

Descripti	on		Order No.	Order
7SJ62 m	ultifunction protecti	on relay	75J62□ □ - □□□□□ - □□	
Designat	ion	ANSI No.	Description	
Basic vers	sion	50/51 50N/51N 50N/51N 50/50N	Control Time-overcurrent protection I >, I >>, I >>>, I_p Earth-fault protection I_E >, I_E >>, I_E p Insensitive earth-fault protection via IEE function: I_{EE} >, I_{EE} >>, I_{Ep} ¹⁾ Flexible protection functions (index quantities derived from current): Additional time-	
		51 V 49	overcurrent protection stages I ₂ >, I>>>>, I _E >>>> Voltage-dependent inverse-time overcurrent protection Overload protection (with 2 time constants)	
		46 37 47 59N/64 50BF 74TC	Phase balance current protection (negative-sequence protection) Undercurrent monitoring Phase sequence Displacement voltage Breaker failure protection Trip circuit supervision 4 setting groups, cold-load pickup Inrush blocking	
•	Motor <i>V</i> , <i>P</i> , <i>f</i> Dir	86 67/67N	Lockout Direction determination for overcurrent, phases and earth	
		48/14 66/86 51M 27/59 81O/U 27/47/59(N 32/55/81R	Starting time supervision, locked rotor Restart inhibit Load jam protection, motor statistics Under-/overvoltage Under-/overfrequency)Flexible protection (index quantities derived from current and voltages): Voltage, power, p.f., rate-of-frequency-change protection	<u>5</u>
• 	Motor	48/14 66/86 51M	Starting time supervision, locked rotorRestart inhibitLoad jam protection, motor statisticsH	4
ARC, fau	lt locator, synchro-che	rck 79 21FL 79, 21FL 25 25, 79, 21FL	Without With auto-reclosure With fault locator With auto-reclosure, with fault locator With synchro-check ⁴⁾ With synchro-check ⁴⁾ , auto-reclosure, fault locator	0 1 2 3 4 5) 7 5)

Basic version included

V, *P*, *f* = Voltage, power, frequency protection

- Dir = Directional overcurrent protection
- IEF = Intermittent earth fault
- 1) Only with insensitive earth-current transformer when position 7 = 1, 5, 7.
- 2) For isolated/compensated networks only with sensitive earth-current transformer when position 7 = 2, 6.
- 3) This variant will be supplied with a previous firmware version.
- 4) Synchro-check (no asynchronous switching), one function group; available only with devices 7SJ623 and 7SJ624
- 5) Ordering option only available for devices 7SJ623 and 7SJ624

Order number for system port B	Description	Order No.		Ord cod	ler e
	7SJ62 multifunction protection relay	7SJ62□□ -	-00000	-0000-00	
	System interface (on rear of unit, Port B)		Á	A <i>I</i>	
	No system interface		0		
	IEC 60870-5-103 protocol, RS232		1		
	IEC 60870-5-103 protocol, RS485		2		
	IEC 60870-5-103 protocol, 820 nm fiber, ST connector		3		
	PROFIBUS-FMS Slave, RS485		4		
	PROFIBUS-FMS Slave, 820 nm wavelength, single ring, ST o	connector 1)	5		
	PROFIBUS-FMS Slave, 820 nm wavelength, double ring, ST	connector ¹⁾	6		
	PROFIBUS-DP Slave, RS485		9	L O	Α
	PROFIBUS-DP Slave, 820 nm wavelength, double ring, ST co	nnector 1)	9	L O	В
	MODBUS, RS485		9	L O	D
	MODBUS, 820 nm wavelength, ST connector ²⁾		9	L O	Ε
	DNP 3.0, RS485		9	L O	G
	DNP 3.0, 820 nm wavelength, ST connector ²⁾		9	L O	Н
	IEC 60870-5-103 protocol, redundant, RS485, RJ45 connect	or ²⁾	9	L O	Ρ
	IEC 61850, 100 Mbit Ethernet, electrical, double, RJ45 conn	ector (EN 100) 9	L 0	R
	IEC 61850, 100 Mbit Ethernet, optical, double, LC connecto	r (EN 100) ²⁾	9	L 0	S

1) Not with position 9 = "B"; if 9 = "B", please order 7SJ6 unit with RS485 port and separate fiber-optic converters. For single ring, please order converter 6GK1502-3CB10, not available with position 9 = "B". For double ring, please order converter 6GK1502-3CB10, not available with position 9 = "B". The converter requires a 24 V AC power supply (e.g. power supply 7XV5810-0BA00)

2) Not available with position 9 = "B"

Position Order No. + Order code 7SJ6225-5EC91 +10G6 I/O's: 11 BI/6 BO, 1 live status contact 2 5 7 Current transformer: 5 A Power supply: 110 to 250 V DC, 115 V AC to 230 V AC 8 9 Unit version: Flush-mounting housing, screw-type terminals Ε 10 Region: US, English language (US); 60 Hz, ANSI С 11 Communication: System interface: DNP 3.0, RS485 9 Communication: DIGSI 4, electric RS232 12 1 13 Measuring/fault recording: Extended measuring and fault records 3 14/15 Protection function package: Basic version plus directional TOC 16 With auto-reclosure

Description		Order No.
DIGSI 4		
Software for running und	configuration and operation of Siemens protection units er MS Windows 2000/XP Professional Edition	
Basis	Full version with license for 10 computers, on CD-ROM (authorization by serial number)	7XS5400-0AA00
Professional	DIGSI 4 Basis and additionally SIGRA (fault record analysis), CFC Editor (logic editor), Display Editor (editor for default and control displays) and DIGSI 4 Remote (remote operation)	7XS5402-0AA00
Professional	+ IEC 61850	
	Complete version: DIGSI 4 Basis and additionally SIGRA (fault record analysis), CFC Editor (logic editor), Display Editor (editor for default and control displays) and DIGSI 4 Remote (remote operation)	
	+ IEC 61850 system configurator	7XS5403-0AA00
<i>IEC 61850 Sys</i> Software for DIGSI, runn Optional pac	stem configurator configuration of stations with IEC 61850 communication under ing under MS Windows 2000 or XP Professional Edition skage for DIGSI 4 Basis or Professional	
License for 1	0 PCs Authorization by serial number On CD-ROM	7X\$5460-0AA00
format). Rur (generally co Authorizatio	ning under MS Windows 2000 or XP Professional Edition. ntained in DIGSI Professional, but can be ordered additionally) n by serial number. On CD-ROM.	7XS5410-0AA00
τ	and the state of the state	
1 emperature	e monitoring box	
90 to 240 V	C/DC	771/5662-24010
	C/DC AC/DC	7XV5662-2AD10 7XV5662-5AD10
Varistor/Volte	C/DC AC/DC	7XV5662-2AD10 7XV5662-5AD10
Voltage arres	C/DC AC/DC	7XV5662-2AD10 7XV5662-5AD10
240 Vrms: 60	C/DC AC/DC age arrester ster for high-impedance REF protection 00 A : 15/5 256	7XV5662-2AD10 7XV5662-5AD10
	C/DC AC/DC ster for high-impedance REF protection 00 A; 1S/S 256 10 A: 1S/S 1088	7XV5662-2AD10 7XV5662-5AD10 C53207-A401-D76-1 C53207-A401-D77-1
Connecting c	C/DC AC/DC age arrester ster for high-impedance REF protection 00 A; 1S/S 256 00 A; 1S/S 1088	7XV5662-2AD10 7XV5662-5AD10 C53207-A401-D76-1 C53207-A401-D77-1
Cable betwee	C/DC AC/DC age arrester ster for high-impedance REF protection 00 A; 1S/S 256 00 A; 1S/S 1088 able	7XV5662-2AD10 7XV5662-5AD10 C53207-A401-D76-1 C53207-A401-D77-1
(contained in	C/DC AC/DC age arrester ster for high-impedance REF protection 00 A; 1S/S 256 00 A; 1S/S 1088 able m PC/notebook (9-pin con.) and protection unit (9-pin connector) n DIGSI 4, but can be ordered additionally)	7XV5662-2AD10 7XV5662-5AD10 C53207-A401-D76-1 C53207-A401-D77-1 7XV5100-4
Cable betwee	C/DC AC/DC age arrester ster for high-impedance REF protection 00 A; 1S/S 256 00 A; 1S/S 1088 able en PC/notebook (9-pin con.) and protection unit (9-pin connector) n DIGSI 4, but can be ordered additionally) en temperature monitoring box and SIPROTEC 4 unit	7XV5662-2AD10 7XV5662-5AD10 C53207-A401-D76-1 C53207-A401-D77-1 7XV5100-4
Cable betwee - length 5 m	C/DC AC/DC age arrester ster for high-impedance REF protection 00 A; 1S/S 256 00 A; 1S/S 1088 able m PC/notebook (9-pin con.) and protection unit (9-pin connector) n DIGSI 4, but can be ordered additionally) en temperature monitoring box and SIPROTEC 4 unit /16.4 ft	7XV5662-2AD10 7XV5662-5AD10 C53207-A401-D76-1 C53207-A401-D77-1 7XV5100-4 7XV5100-4
Cable betwee - length 5 m - length 25 m	C/DC AC/DC age arrester ster for high-impedance REF protection 00 A; 1S/S 256 00 A; 1S/S 1088 able m PC/notebook (9-pin con.) and protection unit (9-pin connector) n DIGSI 4, but can be ordered additionally) en temperature monitoring box and SIPROTEC 4 unit /16.4 ft n /82 ft o /164 ft	7XV5662-2AD10 7XV5662-5AD10 C53207-A401-D76-1 C53207-A401-D77-1 7XV5100-4 7XV5100-4 7XV5103-7AA05 7XV5103-7AA25 7XV5103-7AA25
Cable betwee - length 5 m - length 25 m - length 50 m	C/DC AC/DC age arrester ster for high-impedance REF protection 00 A; 1S/S 256 00 A; 1S/S 1088 able n PC/notebook (9-pin con.) and protection unit (9-pin connector) a DIGSI 4, but can be ordered additionally) en temperature monitoring box and SIPROTEC 4 unit /16.4 ft a /82 ft a /164 ft	7XV5662-2AD10 7XV5662-5AD10 C53207-A401-D76-1 C53207-A401-D77-1 7XV5100-4 7XV5103-7AA05 7XV5103-7AA25 7XV5103-7AA50
Cable betwee - length 5 m - length 25 m - length 50 m Manual for 72	C/DC AC/DC age arrester ster for high-impedance REF protection 00 A; 1S/S 256 00 A; 1S/S 1088 able n PC/notebook (9-pin con.) and protection unit (9-pin connector) n DIGSI 4, but can be ordered additionally) en temperature monitoring box and SIPROTEC 4 unit /16.4 ft n /164 ft SJ62	7XV5662-2AD10 7XV5662-5AD10 C53207-A401-D76-1 C53207-A401-D77-1 7XV5100-4 7XV5103-7AA05 7XV5103-7AA25 7XV5103-7AA50

Accessories

1) x = please inquire for latest edition (exact Order No.).

5

Accessories		Description	Order No.	Size of package	Supplier
Mounting rail		Terminal safety cover Voltage/current terminal 18-pole/12-pole	C73334-A1-C31-1	1	Siemens
		Voltage/current terminal 12-pole/8-pole	C73334-A1-C32-1	1	Siemens
		Connector 2-pin	C73334-A1-C35-1	1	Siemens
		Connector 3-pin	C73334-A1-C36-1	1	Siemens
s	S S	Crimp connector CI2 0.5 to 1 mm ²	0-827039-1	4000 taped on reel	AMP ¹⁾
0-afp.ep	1-afp.ep	Crimp connector CI2 0.5 to 1 mm ²	0-827396-1	1	AMP $^{1)}$
SP206	SP206	Crimp connector: Type III+ 0.75 to 1.5 mm ²	0-163084-2	1	AMP ¹⁾
2-pin connector	3-pin connector	Crimp connector: Type III+ 0.75 to 1.5 mm ²	0-163083-7	4000 taped on reel	AMP ¹⁾
		Crimping tool for Type III+	0-539635-1	1	AMP ¹⁾
		and matching female	0-539668-2	1	AMP ¹⁾
2003 - afp. eps	92-afp.eps	Crimping tool for CI2	0-734372-1	1	AMP ¹⁾
		and matching female	1-734387-1	1	AMP ¹⁾
		Short-circuit links			
	SP20	for current terminals	C73334-A1-C33-1	1	Siemens
Short-circuit links	≌ Short-circuit links	for other terminals	C73334-A1-C34-1	1	Siemens
for current termi- nals	for other terminals	Mounting rail for 19" rack	C73165-A63-D200-1	1	Siemens

5

Fig. 5/101 7SJ621 connection diagram

*) For pinout of communication ports see part 15 of this catalog. For the allocation of the terminals of the panel surface mounting version refer to the manual (http://www.siemens.com/siprotec).

Connection diagram

*) For pinout of communication ports see part 15 of this catalog. For the allocation of the terminals of the panel surface mounting version refer to the manual (http://www.siemens.com/siprotec).

As of unit version .../EE

Connection diagram

Fig. 5/103 7SJ623, 7SJ625 connection diagram

*) For pinout of communication ports see part 15 of this catalog. For the allocation of the terminals of the panel surface mounting version refer to the manual (http://www.siemens.com/siprotec). Connection diagram

Fig. 5/104 7SJ624, 7SJ626 connection diagram

*) For pinout of communication ports see part 15 of this catalog. For the allocation of the terminals of the panel surface mounting version refer to the manual (http://www.siemens.com/siprotec).

SIPROTEC 4 7SJ63 Multifunction Protection Relay

Fig. 5/105 SIPROTEC 4 7SJ63 multifunction protection relay

Description

The SIPROTEC 4 7SJ63 can be used as a protective control and monitoring relay for distribution feeders and transmission lines of any voltage in networks that are earthed (grounded), low-resistance earthed, unearthed, or of a compensated neutral point structure. The relay is suited for networks that are radial or looped, and for lines with single or multi-terminal feeds. Regarding the time-overcurrent/directional timeovercurrent protection the characteristics can be either definite time, inverse time or user-defined.

The SIPROTEC 4 7SJ63 is equipped with motor protection applicable for asynchronous machines of all sizes. Motor protection comprises undercurrent monitoring, starting time supervision, restart inhibit, locked rotor.

The relay provides easy-to-use local control and automation functions. The number of controllable switchgear depends only on the number of available inputs and outputs. The integrated programmable logic (CFC) allows the user to implement their own functions, e.g. for the automation of switchgear (interlocking). The user is able to generate userdefined messages as well.

Function overview

Protection functions

- Time-overcurrent protection (definite-time/inverse-time/user-def.)
- Directional time-overcurrent protection (definite-time/inverse-time/user-def.)
- Sensitive dir./non-dir. earth-fault detection
- Displacement voltage
- Intermittent earth-fault protection
- High-impedance restricted earth fault
- Inrush restraint
- Motor protection
- Overload protection
- Temperature monitoring
- Under-/overvoltage protection
- Under-/overfrequency protection
- Breaker failure protection
- Negative-sequence protection
- Phase-sequence monitoring
- Auto-reclosure
- Fault locator
- Lockout

Control functions/programmable logic

- Flexible number of switching devices
- Position of switching elements is shown on the graphic display
- Local/remote switching via keyoperated switch
- Control via keyboard, binary inputs, DIGSI 4 or SCADA system
- Extended user-defined logic with CFC (e.g. interlocking)

Monitoring functions

- Operational measured values V, I, f,...
- Energy metering values W_p , W_q
- Circuit-breaker wear monitoring
- Slave pointer
- Trip circuit supervision
- Fuse failure monitor
- 8 oscillographic fault records

Communication interfaces

- System interface
- IEC 60870-5-103, IEC 61850 – PROFIBUS-FMS /-DP
- DNP 3.0 / MODBUS RTU
- Service interface for DIGSI 4 (modem)
- Front interface for DIGSI 4
- Time synchronization via IRIG-B/DCF77

Application

Fig. 5/106 Function diagram

The SIPROTEC 4 7SJ63 unit is a numerical protection relay that also performs control and monitoring functions and therefore supports the user in cost-effective power system management, and ensures reliable supply of electric power to the customers. Local operation has been designed according to ergonomic criteria. A large, easy-to-read graphic display was a major design aim.

Control

The integrated control function permits control of disconnect devices (electrically operated/motorized switches) or circuit-breakers via the integrated operator panel, binary inputs, DIGSI 4 or the control and protection system (e.g. SICAM). The present status (or position) of the primary equipment can be displayed. 7SJ63 supports substations with single and duplicate busbars. The number of elements that can be controlled (usually 1 to 5) is only restricted by the number of inputs and outputs available. A full range of command processing functions is provided.

Programmable logic

The integrated logic characteristics (CFC) allow the user to implement their own functions for automation of switchgear (interlocking) or a substation via a graphic user interface. The user can also generate userdefined messages.

Line protection

The 7SJ63 units can be used for line protection of high and medium-voltage networks with earthed (grounded), low-resistance earthed, isolated or compensated neutral point.

Motor protection

When protecting motors, the 7SJ63 relays are suitable for asynchronous machines of all sizes.

Transformer protection

The 7SJ63 units perform all functions of backup protection supplementary to transformer differential protection. The inrush suppression effectively prevents tripping by inrush currents.

The high-impedance restricted earth-fault protection detects short-circuits and insulation faults on the transformer.

Backup protection

The relays can be used universally for backup protection.

Metering values

Extensive measured values, limit values and metering values permit improved systems management.

Application

ANSI No.	IEC	Protection functions
(50, 50N)	$I>, I>> I_{E}>, I_{E}>>$	Definite-time overcurrent protection (phase/neutral)
(51,51N)	<i>I</i> p, <i>I</i> _{Ep}	Inverse-time overcurrent protection (phase/neutral)
(67,67N)	I_{dir} >, I_{dir} >>, $I_{\text{p dir}}$ I_{Edir} >, I_{Edir} >>, $I_{\text{Ep dir}}$	Directional time-overcurrent protection (definite/inverse, phase/neutral), Directional comparison protection
67Ns/50N	S I_{EE} , I_{EE} , I_{EEp}	Directional/non-directional sensitive earth-fault detection
_		Cold load pick-up (dynamic setting change)
59N/64	$V_{\rm E}/V_0>$	Displacement voltage, zero-sequence voltage
_	$I_{\rm IE}>$	Intermittent earth fault
(87N)		High-impedance restricted earth-fault protection
(50BF)		Breaker failure protection
79		Auto-reclosure
46	I ₂ >	Phase-balance current protection (negative-sequence protection)
47	V_2 >, phase seq.	Unbalance-voltage protection and/or phase-sequence monitoring
49	ϑ>	Thermal overload protection
48		Starting time supervision
14		Locked rotor protection
66/86		Restart inhibit
37	I<	Undercurrent monitoring
38		Temperature monitoring via external device (RTD-box) e.g. bearing temperature monitoring
27,59	<i>V</i> <, <i>V</i> >	Undervoltage/overvoltage protection
(810/U)	f>,f<	Overfrequency/underfrequency protection
(21FL)		Fault locator

Construction

Connection techniques and housing with many advantages

1/2 and 1/1-rack sizes

These are the available housing widths of the 7SJ63 relays, referred to a 19" module frame system. This means that previous models can always be replaced. The height is a uniform 244 mm for flush-mounting housings and 266 mm for surface-mounting housings for all housing widths. All cables can be connected with or without ring lugs. Plug-in terminals are available as an option.

It is thus possible to employ prefabricated cable harnesses. In the case of surface mounting on a panel, the connection terminals are located above and below in the form of screw-type terminals. The communication interfaces are located in a sloped case at the top and bottom of the housing. The housing can also be supplied optionally with a detached operator panel (refer to Fig. 5/109), or without operator panel, in order to allow optimum operation for all types of applications.

Fig. 5/107 Flush-mounting housing with screw-type terminals

Fig. 5/108 Rear view of flush-mounting housing with covered connection terminals and wirings

Fig. 5/109 Housing with plug-in terminals and detached operator panel

Communication interfaces in a sloped case in a surface-mounting housing

Fig. 5/110 Surface-mounting housing with screw-type terminals

5/124

Time-overcurrent protection (ANSI 50, 50N, 51, 51N)

This function is based on the phase-selective measurement of the three phase currents and the earth current (four transformers). Two definite-time overcurrent protection elements (DMT) exist both for the phases and for the earth. The current threshold and the delay time can be set within a wide range. In addition, inverse-time overcurrent protection characteristics (IDMTL) can be activated.

Fig. 5/113 Inverse-time overcurrent protection

Available inverse-time characteristics

		IEC (ADEE 2
Characteristics acc. to	ANSI/IEEE	IEC 60255-3
Inverse	•	•
Short inverse	•	
Long inverse	•	•
Moderately inverse	•	
Very inverse	•	•
Extremely inverse	•	•

Reset characteristics

For easier time coordination with electromechanical relays, reset characteristics according to ANSI C37.112 and IEC 60255-3 / BS 142 standards are applied. When using the reset characteristic (disk emulation), a reset process is initiated after the fault current has disappeared. This reset process corresponds to the reverse movement of the Ferraris disk of an electromechanical relay (thus: disk emulation).

User-definable characteristics

Instead of the predefined time characteristics according to ANSI, tripping characteristics can be defined by the user for phase and earth units separately. Up to 20 current/ time value pairs may be programmed. They are set as pairs of numbers or graphically in DIGSI 4.

Inrush restraint

The relay features second harmonic restraint. If the second harmonic is detected during transformer energization, pickup of non-directional and directional normal elements are blocked.

Cold load pickup/dynamic setting change

For directional and non-directional timeovercurrent protection functions the initiation thresholds and tripping times can be switched via binary inputs or by time control.

Directional time-overcurrent protection (ANSI 67, 67N)

Directional phase and earth protection are separate functions. They operate in parallel to the non-directional overcurrent elements. Their pickup values and delay times can be set separately. Definite-time and inverse-time characteristic is offered. The tripping characteristic can be rotated about \pm 180 degrees.

By means of voltage memory, directionality can be determined reliably even for close-in (local) faults. If the switching device closes onto a fault and the voltage is too low to determine direction, directio- nality (directional decision) is made with voltage from the voltage memory. If no voltage exists in the memory, tripping occurs according to the coordination schedule.

For earth protection, users can choose whether the direction is to be determined via zero-sequence system or negative-sequence system quantities (selectable). Using negative-sequence variables can be advantageous in cases where the zero voltage tends to be very low due to unfavorable zero-sequence impedances.

Directional comparison protection (cross-coupling)

It is used for selective protection of sections fed from two sources with instantaneous tripping, i.e. without the disadvantage of time coordination. The directional comparison protection is suitable if the distances between the protection stations are not significant and pilot wires are available for signal transmission. In addition to the directional comparison protection, the directional coordinated time-overcurrent protection is used for complete selective backup protection. If operated in a closed-circuit connection, an interruption of the transmission line is detected.

(Sensitive) directional earth-fault detection (ANSI 64, 67Ns, 67N)

For isolated-neutral and compensated networks, the direction of power flow in the zero sequence is calculated from the zero-sequence current I_0 and zero-sequence voltage V_0 . For networks with an isolated neutral, the reactive current component is evaluated; for compensated networks, the active current component or residual resistive current is evaluated. For special network conditions,

Directional determination using cosine measurements for compensated networks

e.g. high-resistance earthed networks with ohmic-capacitive earth-fault current or low-resistance earthed networks with ohmic-inductive current, the tripping characteristics can be rotated approximately \pm 45 degrees.

Two modes of earth-fault direction detection can be implemented: tripping or "signalling only mode".

It has the following functions:

Reverse

- TRIP via the displacement voltage $V_{\rm E}$.
- Two instantaneous elements or one instantaneous plus one user-defined characteristic.
- Each element can be set in forward, reverse, or non-directional.
- The function can also be operated in the insensitive mode as an additional short-circuit protection.

(Sensitive) earth-fault detection (ANSI 50Ns, 51Ns / 50N, 51N)

Forward

For high-resistance earthed networks, a sensitive input transformer is connected to a phase-balance neutral current transformer (also called core-balance CT).

The function can also be operated in the insensitive mode as an additional short-circuit protection.

Intermittent earth-fault protection

Intermittent (re-striking) faults occur due to insulation weaknesses in cables or as a result of water penetrating cable joints. Such faults either simply cease at some stage or develop into lasting short-circuits. During intermittent activity, however, star-point resistors in networks that are impedance-earthed may undergo thermal overloading. The normal earth-fault protection cannot reliably detect and interrupt the current pulses, some of which can be very brief.

The selectivity required with intermittent earth faults is achieved by summating the duration of the individual pulses and by triggering when a (settable) summed time is reached. The response threshold $I_{\rm IE}$ > evaluates the r.m.s. value, referred to one systems period.

Phase-balance current protection (ANSI 46) (Negative-sequence protection)

In line protection, the two-element phasebalance current/negative-sequence protection permits detection on the high side of high-resistance phase-to-phase faults and phase-to-earth faults that are on the low side of a transformer (e.g. with the switch group Dy 5). This provides backup protection for high-resistance faults beyond the transformer.

Breaker failure protection (ANSI 50BF)

If a faulted portion of the electrical circuit is not disconnected upon issuance of a trip command, another command can be initiated using the breaker failure protection which operates the circuit-breaker, e.g. of an upstream (higher-level) protection relay. Breaker failure is detected if, after a trip command, current is still flowing in the faulted circuit. As an option, it is possible to make use of the circuit-breaker position indication.

High-impedance restricted earth-fault protection (ANSI 87N)

The high-impedance measurement principle is an uncomplicated and sensitive method for detecting earth faults, especially on transformers. It can also be applied to motors, generators and reactors when these are operated on an earthed network. When the high-impedance measurement principle is applied, all current transformers in the protected area are connected in parallel and operated on one common resistor of relatively high R whose voltage is measured (see Fig. 5/116). In the case of 7SJ6 units, the voltage is measured by detecting the current through the (external) resistor R at the sensitive current measurement input I_{EE} . The varistor V serves to limit the voltage in the event of an internal fault. It cuts off the high momentary voltage spikes occurring at transformer saturation. At the same time, this results in smoothing of the voltage without any noteworthy reduction of the average value. If no faults have occurred and in the event of external faults, the system is at equilibrium, and the voltage through the resistor is approximately zero. In the event of internal faults, an imbalance occurs which leads to a voltage and a current flow through the resistor R.

The current transformers must be of the same type and must at least offer a separate core for the high-impedance restricted earth-fault protection. They must in particular have the same transformation ratio and an approximately identical knee-point voltage. They should also demonstrate only minimal measuring errors.

Auto-reclosure (ANSI 79)

Multiple reclosures can be defined by the user and lockout will occur if a fault is present after the last reclosure. The following functions are possible:

- 3-pole ARC for all types of faults
- Separate settings for phase and earth faults
- Multiple ARC, one rapid auto-reclosure (RAR) and up to nine delayed auto-reclosures (DAR)
- Starting of the ARC depends on the trip command selection (e.g. 46, 50, 51, 67)
- Blocking option of the ARC via binary inputs
- ARC can be initiated externally or via CFC
- The directional and non-directional elements can either be blocked or operated non-delayed depending on the autoreclosure cycle
- Dynamic setting change of the directional and non-directional elements can be activated depending on the ready AR

Thermal overload protection (ANSI 49)

For protecting cables and transformers, an overload protection with an integrated pre-warning element for temperature and current can be applied. The temperature is calculated using a thermal homogeneousbody model (according to IEC 60255-8), which takes account both of the energy entering the equipment and the energy losses. The calculated temperature is constantly adjusted accordingly. Thus, account is taken of the previous load and the load fluctuations.

For thermal protection of motors (especially the stator) a further time constant can be set so that the thermal ratios can be detected correctly while the motor is rotating and when it is stopped. The ambient temperature or the temperature of the coolant can be detected serially via an external temperature monitoring box (resistance-temperature detector box, also called RTD- box). The thermal replica of the overload function is automatically adapted to the ambient conditions. If there is no RTD-box it is assumed that the ambient temperatures are constant.

Settable dropout delay times

If the devices are used in parallel with electromechanical relays in networks with intermittent faults, the long dropout times of the electromechanical devices (several hundred milliseconds) can lead to problems in terms of time grading. Clean time grading is only possible if the dropout time is approximately the same. This is why the parameter of dropout times can be defined for certain functions such as time-overcurrent protection, earth short-circuit and phase-balance current protection.

Motor protection

Restart inhibit (ANSI 66/86)

If a motor is started up too many times in succession, the rotor can be subject to thermal overload, especially the upper edges of the bars. The rotor temperature is calculated from the stator current. The reclosing lockout only permits start-up of the motor if the rotor has sufficient thermal reserves for a complete start-up (see Fig. 5/117).

Emergency start-up

This function disables the reclosing lockout via a binary input by storing the state of the thermal replica as long as the binary input is active. It is also possible to reset the thermal replica to zero.

Temperature monitoring (ANSI 38)

Up to two temperature monitoring boxes with a total of 12 measuring sensors can be used for temperature monitoring and detection by the protection relay. The thermal status of motors, generators and transformers can be monitored with this device. Additionally, the temperature of the bearings of rotating machines are monitored for limit value violation. The temperatures are being measured with the help of temperature detectors at various locations of the device to be protected. This data is transmitted to the protection relay via one or two temperature monitoring boxes (see "Accessories", page 5/153).

Starting time supervision (ANSI 48/14)

Starting time supervision protects the motor against long unwanted start-ups that might occur in the event of excessive load torque or excessive voltage drops within the motor, or if the rotor is locked. Rotor temperature is calculated from measured stator current. The tripping time is calculated according to the following equation:

for $I > I_{MOTOR START}$

$$t = \left(\frac{I_{\rm A}}{I}\right)^2 \cdot T_{\rm A}$$

I = Actual current flowing I_{MOTOR START} = Pickup current to detect a motor start

- t = Tripping time
- $I_{\rm A}$ = Rated motor starting current

*T*_A = Tripping time at rated motor starting current

If the trip time is rated according to the above formula, even a prolonged start-up and reduced voltage (and reduced start-up current) will be evaluated correctly. The tripping time is inverse (current dependent).

A binary signal is set by a speed sensor to detect a blocked rotor. An instantaneous tripping is effected.

Phase-balance current protection (ANSI 46) (*Negative-sequence protection*)

The negative-sequence / phase-balance current protection detects a phase failure or load unbalance due to network asymmetry and protects the rotor from impermissible temperature rise.

Undercurrent monitoring (ANSI 37)

With this function, a sudden drop in current, which can occur due to a reduced motor load, is detected. This may be due to shaft breakage, no-load operation of pumps or fan failure.

Voltage protection

Overvoltage protection (ANSI 59)

The two-element overvoltage protection detects unwanted network and machine overvoltage conditions. The function can operate either with phase-to-phase voltage (default) or with the negative phase-sequence system voltage. Three-phase and single-phase connections are possible.

Undervoltage protection (ANSI 27)

The two-element undervoltage protection provides protection against dangerous voltage drops (especially for electric machines). Applications include the isolation of generators or motors from the network to avoid undesired operating states and a possible loss of stability. Proper operating conditions of electrical machines are best evaluated with the positive-sequence quantities. The protection function is active over a wide frequency range (45 to 55, 55 to 65 Hz)¹¹. Even when falling below this frequency range the function continues to work, however, with a greater tolerance band.

The function can operate either with the positive phase-sequence system voltage (default) or with the phase-to-phase voltages, and can be monitored with a current criterion. Three-phase and single-phase connections are possible.

Frequency protection (ANSI 810/U)

Frequency protection can be used for overfrequency and underfrequency protection. Electric machines and parts of the system are protected from unwanted speed deviations. Unwanted frequency changes in the network can be detected and the load can be removed at a specified frequency setting. Frequency protection can be used over a wide frequency range (45 to 55, 55 to 65 Hz)¹⁾. There are four elements (selectable as overfrequency or underfrequency) and each element can be delayed separately. Blocking of the frequency protection can be performed if using a binary input or by using an undervoltage element.
Protection functions/Functions

Fault locator (ANSI 21FL)

The fault locator specifies the distance to a fault location in kilometers or miles or the reactance of a second fault operation.

Circuit-breaker wear monitoring

Methods for determining circuit-breaker contact wear or the remaining service life of a circuit-breaker (CB) allow CB maintenance intervals to be aligned to their actual degree of wear. The benefit lies in reduced maintenance costs.

There is no mathematically exact method of calculating the wear or the remaining service life of circuit-breakers that takes into account the arc-chamber's physical conditions when the CB opens. This is why various methods of determining CB wear have evolved which reflect the different operator philosophies. To do justice to these, the devices offer several methods:

- Σ*Ι*
- ΣI^x , with x = 1...3

The devices additionally offer a new method for determining the remaining service life:

• Two-point method

The CB manufacturers double-logarithmic switching cycle diagram (see Fig. 5/118) and the breaking current at the time of contact opening serve as the basis for this method. After CB opening, the two-point method calculates the number of still possible switching cycles. To this end, the two points P1 and P2 only have to be set on the device. These are specified in the CB's technical data.

All of these methods are phase-selective and a limit value can be set in order to obtain an alarm if the actual value falls below or exceeds the limit value during determination of the remaining service life.

Customized functions (ANSI 32, 51V, 55, etc.)

Additional functions, which are not time critical, can be implemented via the CFC using measured values. Typical functions include reverse power, voltage controlled overcurrent, phase angle detection, and zerosequence voltage detection.

Commissioning

Commissioning could hardly be easier and is fully supported by DIGSI 4. The status of the binary inputs can be read individually and the state of the binary outputs can be set individually. The operation of switching elements (circuit-breakers, disconnect devices) can be checked using the switching functions of the bay controller. The analog measured values are represented as wide-ranging operational measured values. To prevent transmission of information to the control center during maintenance, the bay controller communications can be disabled to prevent unnecessary data from being transmitted. During commissioning, all indications with test marking for test purposes can be connected to a control and protection system.

Test operation

During commissioning, all indications can be passed to an automatic control system for test purposes.

Control and automatic functions

Control

In addition to the protection functions, the SIPROTEC 4 units also support all control and monitoring functions that are required for operating medium-voltage or high-voltage substations.

The main application is reliable control of switching and other processes.

The status of primary equipment or auxiliary devices can be obtained from auxiliary contacts and communicated to the 7SJ63 via binary inputs. Therefore it is possible to detect and indicate both the OPEN and CLOSED position or a fault or intermediate circuit-breaker or auxiliary contact position.

The switchgear or circuit-breaker can be controlled via:

- integrated operator panel
- binary inputs
- substation control and protection system
 DIGSI 4

Automation / user-defined logic

With integrated logic, the user can set, via a graphic interface (CFC), specific functions for the automation of switchgear or substation. Functions are activated via function keys, binary input or via communication interface.

Fig. 5/118 CB switching cycle diagram

Switching authority

Switching authority is determined according to parameters, communication or by keyoperated switch (when available). If a source is set to "LOCAL", only local switching operations are possible. The following sequence of switching authority is laid down: "LOCAL"; DIGSI PC program, "REMOTE".

Key-operated switch

7SJ63 units are fitted with key-operated switch function for local/remote changeover and changeover between interlocked switching and test operation.

Command processing

All the functionality of command processing is offered. This includes the processing of single and double commands with or without feedback, sophisticated monitoring of the control hardware and software, checking of the external process, control actions using functions such as runtime monitoring and automatic command termination after output. Here are some typical applications:

- Single and double commands using 1, 1 plus 1 common or 2 trip contacts
- User-definable bay interlocks
- Operating sequences combining several switching operations such as control of circuit-breakers, disconnectors and earthing switches
- Triggering of switching operations, indications or alarm by combination with existing information

Function

Motor control

The SIPROTEC 4 7SJ63 with high performance relays is well-suited for direct activation of the circuit-breaker, disconnector and earthing switch operating mechanisms in automated substations.

Interlocking of the individual switching devices takes place with the aid of programmable logic. Additional auxiliary relays can be eliminated. This results in less wiring and engineering effort.

Assignment of feedback to command

The positions of the circuit-breaker or switching devices and transformer taps are acquired by feedback. These indication inputs are logically assigned to the corresponding command outputs. The unit can therefore distinguish whether the indication change is a consequence of switching operation or whether it is a spontaneous change of state.

Chatter disable

Chatter disable feature evaluates whether, in a configured period of time, the number of status changes of indication input exceeds a specified figure. If exceeded, the indication input is blocked for a certain period, so that the event list will not record excessive operations.

Indication filtering and delay

Binary indications can be filtered or delayed.

Filtering serves to suppress brief changes in potential at the indication input. The indication is passed on only if the indication voltage is still present after a set period of time. In the event of indication delay, there is a wait for a preset time. The information is passed on only if the indication voltage is still present after this time.

Indication derivation

A further indication (or a command) can be derived from an existing indication. Group indications can also be formed. The volume of information to the system interface can thus be reduced and restricted to the most important signals.

Typical wiring for 7SJ632 motor direct control (simplified representation without fuses) Binary output BO4 and BO5 are interlocked so that only one set of contacts are closed at a time.

Fig. 5/120 Example: Single busbar with circuit-breaker and motor-controlled three-position switch

Function

Measured values

The r.m.s. values are calculated from the acquired current and voltage along with the power factor, frequency, active and reactive power. The following functions are available for measured value processing:

- Currents I_{L1} , I_{L2} , I_{L3} , I_E , I_{EE} (67Ns)
- Voltages *V*_{L1}, *V*_{L2}, *V*_{L3}, *V*_{L1L2}, *V*_{L2L3}, *V*_{L3L1}
- Symmetrical components *I*₁, *I*₂, 3*I*₀; *V*₁, *V*₂, *V*₀
- Power Watts, Vars, VA/P, Q, S (P, Q: total and phase-selective)
- Power factor (cos φ) (total and phase-selective)
- Frequency
- Energy ± kWh, ± kVarh, forward and reverse power flow
- Mean as well as minimum and maximum current and voltage values
- · Operating hours counter
- Mean operating temperature of overload function
- Limit value monitoring Limit values are monitored using programmable logic in the CFC. Commands can be derived from this limit value indication.
- Zero suppression In a certain range of very low measured values, the value is set to zero to suppress interference.

Metered values

For internal metering, the unit can calculate an energy metered value from the measured current and voltage values. If an external meter with a metering pulse output is available, the SIPROTEC 4 unit can obtain and process metering pulses via an indication input.

The metered values can be displayed and passed on to a control center as an accumulation with reset. A distinction is made between forward, reverse, active and reactive energy.

Measuring transducers

- Characteristic with knee For measuring transducers it sometimes makes sense to extend a small range of the input value, e.g. for the frequency that is only relevant in the range 45 to 55, 55 to 65 Hz. This can be achieved by using a knee characteristic.
- Live-zero monitoring 4 - 20 mA circuits are monitored for open-circuit detection.

Switchgear cubicles for high/medium voltage

All units are designed specifically to meet the requirements of high/medium-voltage applications.

In general, no separate measuring instruments (e.g. for current, voltage, frequency measuring transducer ...) or additional control components are necessary.

Fig. 5/122 NX PLUS panel (gas-insulated)

Communicatior

In terms of communication, the units offer substantial flexibility in the context of connection to industrial and power automation standards. Communication can be extended or added on thanks to modules for retrofitting on which the common protocols run. Therefore, also in the future it will be possible to optimally integrate units into the changing communication infrastructure, for example in Ethernet networks (which will also be used increasingly in the power supply sector in the years to come).

Serial front interface

There is a serial RS232 interface on the front of all the units. All of the unit's functions can be set on a PC by means of the DIGSI 4 protection operation program. Commissioning tools and fault analysis are also built into the program and are available through this interface.

Rear-mounted interfaces¹⁾

A number of communication modules suitable for various applications can be fitted in the rear of the flush-mounting housing. In the flush-mounting housing, the modules can be easily replaced by the user. The interface modules support the following applications:

• Time synchronization interface All units feature a permanently integrated electrical time synchronization interface. It can be used to feed timing telegrams in IRIG-B or DCF77 format into the units via time synchronization receivers.

• System interface Communication with a central control system takes place through this interface. Radial or ring type station bus topologies can be configured depending on the chosen interface. Furthermore, the units can exchange data through this interface via Ethernet and IEC 61850 protocol and can also be operated by DIGSI.

• Service interface

The service interface was conceived for remote access to a number of protection units via DIGSI. On all units, it can be an electrical RS232/RS485 or an optical interface. For special applications, a maximum of two temperature monitoring boxes (RTD-box) can be connected to this interface as an alternative.

System interface protocols (retrofittable)

IEC 61850 protocol

The Ethernet-based IEC 61850 protocol is the worldwide standard for protection and control systems used by power supply corporations. Siemens was the first manufacturer to support this standard. By means of this protocol, information can also be exchanged directly between bay units so as to set up simple masterless systems for bay and system interlocking. Access to the units via the Ethernet bus is also possible with DIGSI.

IEC 60870-5-103 protocol

The IEC 60870-5-103 protocol is an international standard for the transmission of protective data and fault recordings. All messages from the unit and also control commands can be transferred by means of published, Siemens-specific extensions to the protocol.

PROFIBUS-DP protocol

PROFIBUS-DP is the most widespread protocol in industrial automation. Via PROFIBUS-DP, SIPROTEC units make their information available to a SIMATIC controller or, in the control direction, receive commands from a central SIMATIC. Measured values can also be transferred.

MODBUS RTU protocol

This uncomplicated, serial protocol is mainly used in industry and by power supply corporations, and is supported by a number of unit manufacturers. SIPROTEC units function as MODBUS slaves, making their information available to a master or receiving information from it. A time-stamped event list is available.

Fig. 5/123

IEC 60870-5-103: Radial fiber-optic connection

Fig. 5/124

Bus structure for station bus with Ethernet and IEC 61850, fiber-optic ring

¹⁾ For units in panel surface-mounting housings please refer to note on page 5/130.

Communication

DNP 3.0 protocol

Power supply corporations use the serial DNP 3.0 (Distributed Network Protocol) for the station and network control levels. SIPROTEC units function as DNP slaves, supplying their information to a master system or receiving information from it.

System solutions for protection and station control

Together with the SICAM power automation system, SIPROTEC 4 can be used with PROFIBUS-FMS. Over the low-cost electrical RS485 bus, or interference-free via the optical double ring, the units exchange information with the control system.

Units featuring IEC 60870-5-103 interfaces can be connected to SICAM in parallel via the RS485 bus or radially by fiber-optic link. Through this interface, the system is open for the connection of units of other manufacturers (see Fig. 5/123).

Because of the standardized interfaces, SIPROTEC units can also be integrated into systems of other manufacturers or in SIMATIC. Electrical RS485 or optical interfaces are available. The optimum physical data transfer medium can be chosen thanks to opto-electrical converters. Thus, the RS485 bus allows low-cost wiring in the cubicles and an interference-free optical connection to the master can be established.

For IEC 61850, an interoperable system solution is offered with SICAM PAS. Via the 100 Mbits/s Ethernet bus, the units are linked with PAS electrically or optically to the station PC. The interface is standardized, thus also enabling direct connection of units of other manufacturers to the Ethernet bus. With IEC 61850, however, the units can also be used in other manufacturers' systems (see Fig. 5/124).

Fig. 5/125

System solution/communication

Fig. 5/126 Optical Ethernet communication module for IEC 61850 with integrated Ethernet-switch

Typical connections

Connection of current and voltage transformers

Standard connection

For earthed networks, the earth current is obtained from the phase currents by the residual current circuit.

Fig. 5/129 Residual current circuit with directional element

Typical connections

Connection for compensated networks

The figure shows the connection of two phase-to-earth voltages and the *V*_E voltage of the open delta winding and a phase-balance neutral current transformer for the earth current. This connection maintains maximum precision for directional earthfault detection and must be used in compensated networks.

Figure 5/130 shows sensitive directional earth-fault detection.

If directional earth-fault protection is not used, the connection can be made with only two phase current transformers. Directional phase short-circuit protection can be achieved by using only two primary transformers.

Typical applications

Overview of connection types

Type of network	Function	Current connection	Voltage connection
(Low-resistance) earthed network	Time-overcurrent protection phase/earth non-directional	Residual circuit, with 3 phase-current transformers required, phase-balance neutral current transformer possible	-
(Low-resistance) earthed networks	Sensitive earth-fault protection	Phase-balance neutral current transformers required	-
Isolated or compensated networks	Time-overcurrent protection phases non-directional	Residual circuit, with 3 or 2 phase current transformers possible	-
(Low-resistance) earthed networks	Time-overcurrent protection phases directional	Residual circuit, with 3 phase-current transformers possible	Phase-to-earth connection or phase-to-phase connection
Isolated or compensated networks	Time-overcurrent protection phases directional	Residual circuit, with 3 or 2 phase- current transformers possible	Phase-to-earth connection or phase-to-phase connection
(Low-resistance) earthed networks	Time-overcurrent protection earth directional	Residual circuit, with 3 phase-current transformers required, phase-balance neutral current transformers possible	Phase-to-earth connection required
Isolated networks	Sensitive earth-fault protection	Residual circuit, if earth current $> 0.05 I_N$ on secondary side, otherwise phase-balance neutral current transformers required	3 times phase-to-earth connection or phase-to-earth connection with open delta winding
Compensated networks	Sensitive earth-fault protection $\cos \varphi$ measurement	Phase-balance neutral current transformers required	Phase-to-earth connection with open delta winding required

Connection of circuit-breaker

Undervoltage releases

Undervoltage releases are used for automatic tripping of high-voltage motors.

Example:

DC supply voltage of control system fails and manual electric tripping is no longer possible.

Automatic tripping takes place when voltage across the coil drops below the trip limit. In Fig. 5/133, tripping occurs due to failure of DC supply voltage, by automatic opening of the live status contact upon failure of the protection unit or by short-circuiting the trip coil in event of a network fault.

Typical applications

In Fig. 5/134 tripping is by failure of auxiliary voltage and by interruption of tripping circuit in the event of network failure. Upon failure of the protection unit, the tripping circuit is also interrupted, since contact held by internal logic drops back into open position.

Trip circuit supervision (ANSI 74TC)

One or two binary inputs can be used for monitoring the circuit-breaker trip coil including its incoming cables. An alarm signal occurs whenever the circuit is interrupted.

Lockout (ANSI 86)

All binary outputs can be stored like LEDs and reset using the LED reset key. The lockout state is also stored in the event of supply voltage failure. Reclosure can only occur after the lockout state is reset.

Fig. 5/134 Undervoltage release with locking contact (trip signal 50 is inverted)

Fig. 5/136 Trip circuit supervision with 1 binary input

General unit data					Binary inputs/indic	ation inp	uts				
Measuring circuits					Туре		7SJ631	7SJ632	7SJ633	7SJ635	7SJ636
System frequency		50 / 60 Hz ((settable)		Number (marshalla	ible)	11	24	20	37	33
Current transformer					Voltage range		24 - 250	V DC			
Rated current <i>I</i> _{nom}	CT	1 or 5 A (se	ttable)		Pickup threshold m by plug-in jumpers	odifiable					
Derver consumption	CI	$T_{\rm EE} < 1.0$ A			Pickup threshold D	С	19 V DC	2	88 V DC	2	
Power consumption at $I_{\text{nom}} = 1 \text{ A}$ at $I_{\text{nom}} = 5 \text{ A}$		Approx. 0.0 Approx. 0.3)5 VA per ph 3 VA per pha	ase se	For rated control vo	oltage DC	24/48/60 125 V D)/110/ C	110/125	/220/250	V DC
for sensitive earth-fault CI Overload capability Thermal (effective)	I at I A	Approx. 0.0 100 x <i>I</i> _{nom} f	or 1 s		Power consumption energized	n	0.9 mA (for BI 1. 1.8 mA f	(independ 6 / 81 for BI 7 / 2	lent of op 9 / 253 2024 / 3	erating vo 66; 37	oltage)
		$30 \ge I_{nom}$ for	r 10 s		Binary outputs/con	nmand ou	itputs				
Dynamic (impulse current	t)	$4 \ge I_{nom} \operatorname{con}$	ntinuous half.cvcle)		Туре		7SJ631	7SJ632	7SJ633	7SJ635	7SJ636
Overload capability if equipr	ed with	250 x Inom (nan cycic)		Command/indication	on relav	8	11	11	14	14
sensitive earth-fault CT Thermal (effective)	bed with	300 A for 1	s		Contacts per comm indication relay	and/	1 NO / f	orm A			
		100 A for 10	0 s		Live status contact		1 NO / N	JC (jump	er) / form	n A / B	
Dynamic (impulse current	t)	15 A contin 750 A (half	cvcle)		Switching capacity	Make	1000 W	/VA			
Voltage transformer	()	750 II (Hall	cycic)		o miening expansion	Break	30 W / V 25 W at	/ A / 40 W L/R < 50	resistive	/	
Rated voltage V _{nom}		100 V to 22	5 V		Switching voltage		< 250 V	DC	1115		
Power consumption at V_{nom}	= 100 V	< 0.3 VA pe	er phase		Dermissible surrent		= 250 v	inuous			
Overload capability in voltag (phase-neutral voltage) Thermal (effective)	ge path	230 V conti	nuous		rennissiole current		30 A for 2000 swi	0.5 s mak itching cy	ing curre cles	nt,	
Measurina transducer input	ts				Power relay (for mo	otor contro	ol)				
Type		751633	7SI6	536	Туре		7SJ631	7SJ632	7SJ635		
Number		2	2					7SJ633			
Input current		$\frac{2}{DC} = 20 \text{ m}$	- • 4		Maria		0	73,030	4 (0)		
Input resistance		10 0	117 1		Number	(1	0	2(4)	4(8)		
Dever consumption		10 52	24 4		Number of contacts	s/relay	1000 117	2 NO / F	orm A	11/5001	
Auxilianu valtage (via integr	atad conva	J.O III V at A	24 IIIA		Switching capacity	Make	1000 W	/ VA at 48	V 250	V / 500 V	V at 24 V
Auxiliary voltage (via integra			(0/125 M	110/250 14		Break	1000 W	/ VA at 48	V 250	V / 500 V	V at 24 V
Rated auxiliary voltage V_{aux}	DC	24/48 V	60/125 V	110/250 V	Switching voltage		≤ 250 V	DC			
Permissible tolerance	DC	19 - 58 V	48 - 150 V	88 - 300 V	Permissible current		5 A cont	inuous,			
peak-to-peak		$\leq 12\%$ of 1	rated auxilia	ry voltage			50 A 101	0.5 \$			
Power consumption		7SJ631	7SJ632 7SJ633	7SJ635 7SJ636							
Quiescent Energized	Approx. Approx.	4 W 10 W	5.5 W 16 W	7 W 20 W							
Backup time during loss/short-circuit of auxiliary direct voltage		\geq 50 ms at \geq 20 ms at	V > 110 V D V > 24 V DO	DC C							
Rated auxiliary voltage Vaux	AC	115 V	230 V								
Permissible tolerance	AC	92 - 132 V	184 - 265 V	,							
Power consumption		7SJ631	7SJ632 7SJ633	7SJ635 7SJ636							
Quiescent Energized	Approx. Approx.	3 W 12 W	5 W 18 W	7 W 23 W							
Backup time during loss/short-circuit of auxiliary alternating voltage		≥ 200 ms									

4 to 5 kV; 10/150 ns; 50 surges per s

amplitude and pulse-modulated

100 kHz, 1 MHz, 10 and 50 MHz,

EN 50081-* (generic specification)

35 V/m; 25 to 1000 MHz;

2.5 kV (peak value, polarity

alternating)

 $R_{\rm i} = 200 \ \Omega$

150 kHz to 30 MHz

30 to 1000 MHz

Limit class B

both polarities; duration 2 s, $R_i = 80 \Omega$

Technical data

Electrical tests

Specification

Standards

IEC 60255 ANSI C37.90, C37.90.1, C37.90.2, UL508

IEC 60255-5; ANSI/IEEE C37.90.0

2.5 kV (r.m.s. value), 50/60 Hz

5 kV (peak value); 1.2/50 µs; 0.5 J

3 positive and 3 negative impulses

3.5 kV DC

500 V AC

at intervals of 5 s

Insulation tests

Standards

Voltage test (100 % test) all circuits except for auxiliary voltage and RS485/RS232 and time synchronization

Auxiliary voltage

Communication ports and time synchronization

Impulse voltage test (type test) all circuits, except communication ports and time synchronization, class III

EMC tests for interference immunity; type tests

Standards

High-frequency test IEC 60255-22-1, class III and VDE 0435 Part 303, class III

Electrostatic discharge IEC 60255-22-2 class IV and EN 61000-4-2, class IV

Irradiation with radio-frequency field, non-modulated IEC 60255-22-3 (Report) class III

Irradiation with radio-frequency field, amplitude-modulated IEC 61000-4-3; class III

Irradiation with radio-frequency field, pulse-modulated IEC 61000-4-3/ENV 50204; class III

Fast transient interference/burst IEC 60255-22-4 and IEC 61000-4-4, burst length = 15 ms; class IV

High-energy surge voltages (Surge) IEC 61000-4-5; class III Auxiliary voltage

Binary inputs/outputs

Line-conducted HF, amplitude-modulated IEC 61000-4-6, class III

Power frequency magnetic field IEC 61000-4-8, class IV IEC 60255-6

Oscillatory surge withstand capability ANSI/IEEE C37.90.1

IEC 60255-6; IEC 60255-22 (product standard) EN 50082-2 (generic specification) DIN 57435 Part 303

2.5 kV (peak value); 1 MHz; τ =15 ms; 400 surges per s; test duration 2 s

8 kV contact discharge; 15 kV air gap discharge; both polarities; 150 pF; $R_i = 330 \Omega$ 10 V/m; 27 to 500 MHz

10 V/m, 80 to 1000 MHz; AM 80 %; 1 kHz

10 V/m, 900 MHz; repetition rate 200 Hz, on duration 50 %

4 kV; 5/50 ns; 5 kHz; repetition rate 300 ms; both polarities; $R_i = 50 \Omega$; test duration 1 min

From circuit to circuit: 2 kV; 12 Ω; 9 μF across contacts: 1 kV; 2 Ω;18 µF

From circuit to circuit: 2 kV; 42Ω ; 0.5μ F across contacts: 1 kV; 42 Ω; 0.5 µF 10 V; 150 kHz to 80 MHz; AM 80 %; 1 kHz

30 A/m; 50 Hz, continuous 300 A/m; 50 Hz, 3 s 0.5 mT, 50 Hz 2.5 to 3 kV (peak value), 1 to 1.5 MHz damped wave; 50 surges per s; duration 2 s, $R_i = 150$ to 200 Ω

Fast transient surge withstand capability ANSI/IEEE C37.90.1 Radiated electromagnetic

interference ANSI/IEEE C37.90.2

Damped wave IEC 60694 / IEC 61000-4-12

EMC tests for interference emission; type tests

Standard Conducted interferences only auxiliary voltage IEC/CISPR 22 Limit class B Radio interference field strength IEC/CISPR 11 Units with a detached operator panel

must be installed in a metal cubicle to maintain limit class B

Mechanical stress tests

Vibration, shock stress and seismic vibration

During operation Standards

Vibration IEC 60255-21-1, class 2 IEC 60068-2-6

Shock IEC 60255-21-2, class 1 IEC 60068-2-27

Seismic vibration IEC 60255-21-3, class 1 IEC 60068-3-3

During transportation Standards

Vibration IEC 60255-21-1, class 2 IEC 60068-2-6

Shock IEC 60255-21-2, Class 1 IEC 60068-2-27

Continuous shock IEC 60255-21-2, class 1 IEC 60068-2-29

IEC 60255-21 and IEC 60068-2 Sinusoidal 10 to 60 Hz; +/- 0.075 mm amplitude; 60 to 150 Hz; 1 g acceleration frequency sweep 1 octave/min

20 cycles in 3 perpendicular axes Semi-sinusoidal Acceleration 5 g, duration 11 ms; 3 shocks in both directions of 3 axes

Sinusoidal 1 to 8 Hz: ± 3.5 mm amplitude (horizontal axis) 1 to 8 Hz: \pm 1.5 mm amplitude (vertical axis) 8 to 35 Hz: 1 g acceleration (horizontal axis) 8 to 35 Hz: 0.5 g acceleration (vertical axis) Frequency sweep 1 octave/min 1 cycle in 3 perpendicular axes

IEC 60255-21 and IEC 60068-2

Sinusoidal 5 to 8 Hz: \pm 7.5 mm amplitude; 8 to 150 Hz; 2 g acceleration, frequency sweep 1 octave/min 20 cycles in 3 perpendicular axes

Semi-sinusoidal Acceleration 15 g, duration 11 ms 3 shocks in both directions of 3 axes

Semi-sinusoidal Acceleration 10 g, duration 16 ms 1000 shocks in both directions of 3 axes

Technical date

Climatic stress tests

Temperatures	
Type-tested acc. to IEC 60068-2-1 and -2, test Bd, for 16 h	-25 °C to +85 °C /-13 °F to +185 °F
Temporarily permissible operating temperature, tested for 96 h	-20 °C to +70 °C /-4 °F to +158 °F
Recommended permanent operat- ing temperature acc. to IEC 60255-6	-5 °C to +55 °C /+25 °F to +131 °F
(Logibility of display may be inc	

(Legibility of display may be impaired above +55 °C /+131 °F) – Limiting temperature during

- permanent storage – Limiting temperature during
- transport

Humidity

Permissible humidity It is recommended to arrange the units in such a way that they are not exposed to direct sunlight or pronounced temperature changes that could cause condensation.

Unit design

Housing	7XP20	
Dimensions	See dimension draw this catalog	vings, part 15 of
Weight in kg Surface-mounting housing Flush-mounting housing Housing for detached operator panel	Housing width 1/2 7.5 6.5 8.0	Housing width 1/1 15 13 15
Detached operator panel	2.5	2.5
Degree of protection acc. to EN 60529 Surface-mounting housing Flush-mounting housing Operator safety	IP 51 Front: IP 51, rear: II IP 2x with cover	P 20;

-25 °C to +55 °C /-13 °F to +131 °F

-25 °C to +70 °C /-13 °F to +158 °F

Annual average 75 % relative humid-

ity; on 56 days a year up to 95 % rela-

tive humidity; condensation not

permissible!

Serial interfaces

Operating interface (front of unit)	
Connection	Non-isolated, RS232; front panel, 9-pin subminiature connector
Transmission rate	min. 4800 baud, max. 115200 baud
Service/modem interface (rear of un	it)
Isolated interface for data transfer	Port C: DIGSI 4/modem/RTD-box
Transmission rate	Factory setting 38400 baud min. 4800 baud, max. 115200 baud
RS232/RS485	
Connection For flush-mounting housing/ surface-mounting housing with detached operator panel For surface-mounting housing with two-tier terminal at the top/bottom part	9-pin subminiature connector, mounting location "C" At the bottom part of the housing: shielded data cable
Distance RS232	15 m /49.2 ft
Distance RS485	Max. 1 km/3300 ft
Test voltage	500 V AC against earth

System interface (rear of unit)	
IEC 60870-5-103 protocol	
Isolated interface for data transfer to a control center	Port B
Transmission rate	Factory setting: 9600 baud, min. 9600 baud, max. 19200 baud
RS232/RS485	
Connection For flush-mounting housing/ surface-mounting housing with detached operator panel For surface mounting housing	Mounting location "B"
with two-tier terminal on the top/bottom part	shielded data cable
Distance RS232	Max. 15 m/49 ft
Distance RS485	Max. 1 km/3300 ft
Test voltage	500 V AC against earth
Fiber optic	
Connection fiber-optic cable	Integrated ST connector for
	fiber-optic connection
For flush-mounting housing/ surface-mounting housing with detached operator panel	Mounting location "B"
For surface-mounting housing with two-tier terminal on the top/bottom part	At the bottom part of the housing
Optical wavelength	820 nm
Permissible path attenuation	Max. 8 dB, for glass fiber 62.5/125 µm
Distance	Max. 1.5 km/0.9 miles
IEC 61850 protocol	
Isolated interface for data transfer: - to a control center - with DIGSI - between SIPROTEC 4 relays	Port B, 100 Base T acc. to IEEE802.3
Transmission rate	100 Mbit
Ethernet, electrical	
Connection For flush-mounting housing/	Two RJ45 connectors Mounting location "B"
surface-mounting housing with detached operator panel	
Distance	Max. 20 m / 65.6 ft
Test voltage	500 V AC against earth
Ethernet, optical	
Connection	Intergr. LC connector for FO connection
For flush-mounting housing/ surface-mounting housing with detached operator panel	Mounting location "B"
Optical wavelength Distance	1300 nmm 1.5 km/0.9 miles
	1.5 KIII/0.7 IIIIC5
r nor 1003-FIVIS/DP	Port B
to a control center	
Transmission rate	Up to 1.5 Mbaud

5

Technical data

RS485

Connection

For flush-mounting housing/ surface-mounting housing with detached operator panel For surface-mounting housing with two-tier terminal on the top/bottom part Distance

Test voltage

Fiber optic

Connection fiber-optic cable For flush-mounting housing/ surface-mounting housing with detached operator panel For surface-mounting housing with two-tier terminal on the top/bottom part

Optical wavelength

Permissible path attenuation Distance

MODBUS RTU, ASCII, DNP 3.0

Isolated interface for data transfer to a control center

Transmission rate

RS485

Connection

For flush-mounting housing/ surface-mounting housing with detached operator panel For surface-mounting housing with two-tier terminal at the top/bottom part

Distance

Test voltage

Fiber-optic

Connection fiber-optic cable

For flush-mounting housing/ surface-mounting housing with detached operator panel For surface-mounting housing with two-tier terminal at the top/bottom part Optical wavelength Permissible path attenuation

Distance

_.

Connection

9-pin subminiature connector, mounting location "B"

At the bottom part of the housing: shielded data cable

Function

1000 m/3300 ft ≤ 93.75 kbaud; 500 m/1500 ft ≤ 187.5 kbaud; 200 m/600 ft ≤ 1.5 Mbaud; 100 m/300 ft ≤ 12 Mbaud 500 V AC against earth

Integr. ST connector for FO connection, mounting location "B"

At the bottom part of the housing <u>Important:</u> Please refer to footnotes ¹⁾ and ²⁾ on page 5/174 820 nm Max. 8 dB, for glass fiber 62.5/125 µm

500 kB/s 1.6 km/0.99 miles 1500 kB/s 530 m/0.33 miles

Up to 19200 baud

Port B

9-pin subminiature connector, mounting location "B"

At bottom part of the housing: shielded data cable

Max. 1 km/3300 ft max. 32 units recommended 500 V AC against earth

Integrated ST connector for fiber-optic connection Mounting location "B"

At the bottom part of the housing <u>Important:</u> Please refer to footnotes ¹⁾ and ²⁾ on page 5/174 820 nm Max 8 dB. for glass fiber 62.5/125 μm Max. 1.5 km/0.9 miles

≤ 0.9

Time synchronization DCF77/IRIG-B signal (Format IRIG-B000)

9-pin subminiature connector (SUB-D) (terminal with surface-mounting housing) 5 V, 12 V or 24 V (optional)

i unctions	
Definite-time overcurrent protection (ANSI 50, 50N, 67, 67N)	n, directional/non-directional
Operating mode non-directional phase protection (ANSI 50)	3-phase (standard) or 2-phase (L1 and L3)
Setting ranges	
Pickup phase elements $I>$, $I>>$ Pickup earth elements $I_E>$, $I_E>>$	0.5 to 175 A or ∞^{11} (in steps of 0.01 A) 0.25 to 175 A or ∞^{11} (in steps of 0.01 A)
Delay times <i>T</i> Dropout delay time <i>T</i> _{DO}	0 to 60 s or ∞ (in steps of 0.01 s) 0 to 60 s (in steps of 0.01 s)
Times Pickup times (without inrush restraint, with inrush restraint + 10 ms)	
With twice the setting value With five times the setting value	Non-directionalDirectionalApprox. 30 ms45 msApprox. 20 ms40 ms
Dropout times	Approx. 40 ms
Dropout ratio	Approx. 0.95 for $I/I_{\text{nom}} \ge 0.3$
Tolerances Pickup Delay times T , T_{DO}	2 % of setting value or 50 mA ¹⁾ 1 % or 10 ms
Inverse-time overcurrent protection	n, directional/non-directional
(ANSI 51, 51N, 67, 67N)	
Operating mode non-directional phase protection (ANSI 51)	3-phase (standard) or 2-phase (L1 and L3)
Setting ranges Pickup phase element I_P Pickup earth element I_{EP} Time multiplier T (IEC characteristics) Time multiplier D (ANSI characteristics)	0.5 to 20 A or ∞^{11} (in steps of 0.01 A) 0.25 to 20 A or ∞^{11} (in steps of 0.01 A) 0.05 to 3.2 s or ∞ (in steps of 0.01 s) 0.05 to 15 s or ∞ (in steps of 0.01 s)
Trip characteristics	
IEC ANSI	Normal inverse, very inverse, extremely inverse, long inverse Inverse, short inverse, long inverse moderately inverse, very inverse, extremely inverse, definite inverse
User-defined characteristic	Defined by a maximum of 20 value pairs of current and time delay
Dropout setting Without disk emulation	Approx. 1.05 · setting value I_p for $I_p I_{nom} \ge 0.3$, corresponds to approx. 0.95 · pickup threshold
With disk emulation	Approx. $0.90 \cdot$ setting value $I_{\rm p}$
Tolerances Pickup/dropout thresholds I_p , I_{Ep} Pickup time for $2 \le I/I_p \le 20$	2 % of setting value or 50 mA ¹⁾ 5 % of reference (calculated) value + 2 % current tolerance, respectively 30 ms
Dropout ratio for $0.05 \le I/L_{\rm p}$	5 % of reference (calculated) value

5 % of reference (calculated) value + 2 % current tolerance, respectively 30 ms

Voltage levels

1) At $I_{nom} = 1$ A, all limits divided by 5.

Technical date

Direction detection	
For phase faults	
Polarization	With cross-polarized voltages; With voltage memory for measure- ment voltages that are too low
Forward range Rotation of reference voltage $V_{\rm ref,rot}$	V _{ref,rot} ±86° - 180° to 180° (in steps of 1°)
Direction sensitivity	For one and two-phase faults unlimited; For three-phase faults dynamically unlimited; Steady-state approx. 7 V phase-to-phase
For earth faults	
Polarization	With zero-sequence quantities $3V_0$, $3I_0$ or with negative-sequence quantities $3V_2$, $3I_2$
Forward range Rotation of reference voltage $V_{\text{ref,rot}}$	V _{ref,rot} ± 86° - 180° to 180° (in steps of 1°)
Direction sensitivity Zero-sequence quantities $3V_0$, $3I_0$	$V_{\rm E} \approx 2.5$ V displacement voltage, measured; $3V_0 \approx 5$ V displacement voltage, calculated
Negative -sequence quantities 3 <i>V</i> ₂ , 3 <i>I</i> ₂	$3V_2 \approx 5$ V negative-sequence voltage; $3I_2 \approx 225$ mA negative-sequence current ¹
Tolerances (phase angle error un- der reference conditions) For phase and earth faults	± 3 ° electrical
Inrush blocking	
Influenced functions	Time-overcurrent elements, $I >, I_E >, I_p$, I_{Ep} (directional, non-directional)
Lower function limit	1.25 A '
Upper function limit (setting range)	1.5 to 125 A ²⁷ (in steps of 0.01 A)
Setting range I_{2f}/I	10 to 45 % (in steps of 1 %)
Crossblock (I_{L1}, I_{L2}, I_{L3})	ON/OFF
Dynamic setting change	
Controllable function	Directional and non-directional pickup, tripping time
Start criteria	Current criteria, CB position via aux. contacts, binary input, auto-reclosure ready
Time control	3 timers
Current criteria	Current threshold (reset on dropping below threshold; monitoring with timer)

(Sensitive) earth-fault detection (ANSI 64, 50 Ns, 51Ns, 67Ns)

Displacement voltage starting for a	ll types of earth fault (ANSI 64)
$ \begin{array}{l} \mbox{Setting ranges} \\ \mbox{Pickup threshold } V_{\rm E} \mbox{>} (measured) \\ \mbox{Pickup threshold } 3V_0 \mbox{>} (calculated) \\ \mbox{Delay time } T_{\rm Delay pickup} \\ \mbox{Additional trip delay } T_{\rm VDELAY} \end{array} $	 1.8 to 170 V (in steps of 0.1 V) 10 to 225 V (in steps of 0.1 V) 0.04 to 320 s or ∞ (in steps of 0.01 s) 0.1 to 40000 s or ∞ (in steps of 0.01 s)
Times Pickup time	Approx. 60 ms
Dropout ratio	0.95 or (pickup value -0.6 V)
Tolerances Pickup threshold $V_{\rm E}$ (measured) Pickup threshold $3V_0$ (calculated) Delay times Phase detection for earth fault in an u	3 % of setting value or 0.3 V 3 % of setting value or 3 V 1 % of setting value or 10 ms nearthed system
Measuring principle	Voltage measurement (phase-to-earth)
Setting ranges $V_{\rm phmin}$ (earth-fault phase)	10 to 100 V (in steps of 1 V)
V _{ph max} (unfaulted phases)	10 to 100 V (in steps of 1 V)
Measuring tolerance acc. to DIN 57435 part 303	3 % of setting value, or 1 V
Earth-fault pickup for all types of ear	th faults
Definite-time characteristic (ANSI 50	DNs)
Setting ranges Pickup threshold <i>I</i> _{EE} >, <i>I</i> _{EE} >> For sensitive input For normal input Delay times <i>T</i> for <i>I</i> _{EE} >, <i>I</i> _{EE} >> Dropout delay time <i>T</i> _{DO}	0.001 to 1.5 A (in steps of 0.001 A) 0.25 to 175 A ¹⁾ (in steps of 0.01 A) 0 to 320 s or ∞ (in steps of 0.01 s) 0 to 60 s (in steps of 0.01 s)
Times Pickup times	Approx. 60 ms (non-directional) Approx. 80 ms (directional
Dropout ratio	Approx. 0.95
Tolerances Pickup threshold <i>I</i> _{EE} >, <i>I</i> _{EE} >> Delay times	2 % of setting value or 1 mA 1 % of setting value or 20 ms
Earth-fault pickup for all types of ear	th faults
Inverse-time characteristic (ANSI 51	Ns)
User-defined characteristic	Defined by a maximum of 20 pairs of

Logarithmic inverse

Setting ranges Pickup threshold I_{EEp} For sensitive input For normal input User defined Time multiplier TLogarithmic inverse Time multiplier $T_{IEEp \text{ mul}}$ Delay time T_{IEEp} Min time delay $T_{IEEpman}$ Max. time delay $T_{IEEpman}$

```
Defined by a maximum of 20 pairs of current and delay time values
```

$$= T_{\rm IEEpmax} - T_{\rm IEEp} \cdot \ln \frac{I}{I_{\rm EEp}}$$

0.001 A to 1.4 A (in steps of 0.001 A) 0.25 to 20 $A^{1)}$ (in steps of 0.01 A)

0.1 to 4 s or ∞ (in steps of 0.01 s)

 $\begin{array}{l} 0.05 \mbox{ to } 15 \mbox{ s or } \infty \mbox{ (in steps of } 0.01 \mbox{ s)} \\ 0.1 \mbox{ to } 4 \mbox{ s or } \infty \mbox{ (in steps of } 0.01 \mbox{ s)} \\ 0 \mbox{ to } 32 \mbox{ s (in steps of } 0.01 \mbox{ s)} \\ 0 \mbox{ to } 32 \mbox{ s (in steps of } 0.01 \mbox{ s)} \end{array}$

Note: Due to the high sensitivity the linear range of the measuring input IN with integrated sensitive input transformer is from 0.001 A to 1.6 A. For currents greater than 1.6 A, correct directionality can no longer be guaranteed. 1) For $I_{nom} = 1$ A, all limits divided by 5.

t

	Technical data					
	Times Pickup times	Approx. 60 ms (non-directional) Approx 80 ms (directional)	Times Pickup times Current = 1.25 · pickup value	Approx. 30 ms		
	Pickup threshold	Approx. 1.1 $\cdot I_{\text{EEp}}$	Current $\geq 2 \cdot \text{pickup value}$	Approx. 22 ms		
	Dropout ratio	Approx. 1.05 $\cdot I_{\text{EEp}}$	Dropout time	Approx. 22 ms		
	Tolerances		Tolerances	3 % of setting value or 50 m $^{(1)}$		
	Pickup threshold <i>I</i> _{EEp}	2 % of setting value or 1 mA 7 % of reference value for $2 \le U/L_{-}$	Times T_{L} T T	1 % of setting value or 10 ms		
	Delay times in linear range	$\leq 20 + 2$ % current tolerance, or 70 ms	Thermal overload protection (AN)	\$(<i>A</i> 9)		
	Direction detection for all types	of earth-faults (ANSI 67Ns)	Setting ranges			
	Direction measurement	$I_{\rm E}$ and $V_{\rm E}$ measured or	Factor k	0.1 to 4 (in steps of 0.01)		
		$3I_0$ and $3V_0$ calculated	Time constant	1 to 999.9 min (in steps of 0.1 min)		
	Measuring principle	Active/reactive power measurement	Warning overtemperature	50 to 100 % with reference		
	Setting ranges Measuring enable I _{Release direct.}	0.001 to 1.2 Å (in store of 0.001 Å)	$\Theta_{alarm} / \Theta_{trip}$	to the tripping overtemperature (in steps of 1 %)		
	For normal input	0.001 to 1.2 A (in steps of 0.001 A) $0.25 \text{ to } 150 \text{ A}^{1)} (\text{in steps of } 0.01 \text{ A})$	Current warning stage I_{alarm}	0.5 to 20 A (in steps of 0.01 A)		
	Measuring method Direction phasor $\varphi_{\text{Correction}}$	$\cos \varphi$ and $\sin \varphi$ - 45 ° to + 45 ° (in steps of 0.1 °) 1 to 60 s (in steps of 1 s)	Extension factor when stopped $k_{\rm r}$ factor	1 to 10 with reference to the time constant with the machine running (in stars of 0.1)		
	Angle correction for cable CT	1 10 00 3 (11 34253 01 1 3)	Rated overtemperature (for $I_{\rm c}$)	(in steps of 0.1) $40 \text{ to } 200 ^{\circ}\text{C}$ (in steps of $1 ^{\circ}\text{C}$)		
	Angle correction F1, F2	0 ° to 5 ° (in steps of 0.1 °)	Tripping characteristic	$(1/1 + 1)^2 (1/1 + 1)^2$		
	For sensitive input	0.001 to 1.5 A (in steps of 0.001 A)	For $(I/k \cdot I_{nom}) \le 8$	$t = \tau_{\rm th} \cdot \ln \frac{(I/K \cdot I_{\rm nom}) - (I_{\rm pre}/K \cdot I_{\rm nom})}{(I_{\rm pre}/K \cdot I_{\rm nom})^2}$		
	For normal input	0.25 to 175 A ¹⁾ (in steps of 0.01 A)		$(I/k \cdot I_{nom})^2 - 1$		
	Tolerances Pickup measuring enable Angle tolerance	2 % of the setting value or 1 mA 3 $^{\circ}$		t = Tripping time		
High-impedance restricted earth-fault protection (ANSI 87N) / single-phase overcurrent protection				$\tau_{\rm th}$ = Temperature rise time constant I = Load current		
	Setting ranges Pickup thresholds <i>I</i> >, <i>I</i> >> For sensitive input For normal input Delay times <i>T</i> _I >, <i>T</i> _I >>	0.003 to 1.5 A or ∞ (in steps of 0.001 A) 0.25 to 175 A ¹⁾ or ∞ (in steps of 0.01 A) 0 to 60 s or ∞ (in steps of 0.01 s)		$ \begin{array}{l} I_{\text{pre}} = & \text{Preload current} \\ k & = & \text{Setting factor acc. to VDE 0435} \\ & \text{Part 3011 and IEC 60255-8} \\ I_{\text{nom}} = & \text{Rated (nominal) current of the} \\ & \text{protection relay} \end{array} $		
	Times Pickup times Minimum Tumical	Approx. 20 ms	Dropout ratios $\Theta/\Theta_{\text{Trip}}$ $\Theta/\Theta_{\text{Alarm}}$ I/I_{Alarm}	Drops out with Θ_{Alarm} Approx. 0.99 Approx. 0.97		
	Dropout times	Approx. 30 ms	Tolerances			
	Dropout ratio	Approx. 0.95 for $I/I_{nom} \ge 0.5$	With reference to $k \cdot I_{nom}$ With reference to tripping time	Class 5 acc. to IEC 60255-8 5 % +/- 2 s acc. to IEC 60255-8		
	Tolerances Dislown thread aldo	2.0/ of astting value on	Auto-reclosure (ANSI 79)			
	Fickup unesholds	1 % rated current at $I_{nom} = 1$ or 5 A; 5 % of setting value or	Number of reclosures	0 to 9 Shot 1 to 4 individually adjustable		
	Delectioner	3 % rated current at $I_{\text{nom}} = 0.1 \text{ A}$	Program for phase fault			
	Intermittent earth fault protect	1 % of setting value of 10 ms	Start-up by	(dir., non-dir.), negative sequence,		
	Setting ranges	1011		binary input		
	Pickup threshold		Program for earth fault			
	For $I_{\rm E}$ $I_{\rm IE}$	0.25 to 175 $A_{11}^{(1)}$ (in steps of 0.01 A)	Start-up by	lime-overcurrent elements (dir., non-dir.), sensitive earth-fault		
	For $3I_0$ $I_{\rm IE}$ >	$0.25 \text{ to } 175 \text{ A}^{(1)} \text{ (in steps of } 0.01 \text{ A)}$		protection, binary input		
	Pickup prolon- Ty	0.003 to 1.5 A (in steps of 0.001 A)	Blocking of ARC	Pickup of protection functions,		
	gation time	,		three-phase fault detected by a protec- tive element, binary input.		
	Earth-fault accumulation time T_{sum}	0 to 100 s (in steps of 0.01 s)		last TRIP command after the reclosing cycle is complete (unsuccessful		
	Reset time for $T_{\rm res}$ accumulation	1 to 600 s (in steps of 1 s)		reclosing), TRIP command by the breaker failure		
	Number of pickups for intermittent earth fault	2 to 10 (in steps of 1)		opening the CB without ARC initiation, external CLOSE command		

1) At $I_{nom} = 1$ A, all limits divided by 5.

Technical date

Auto-reclosure (ANSI 79) (cont'd)

S	etting ranges Dead time (separate for phase and earth and individual for shots 1 to 4)	0.01 to 320 s (in steps of 0.01 s)
	Blocking duration for manual- CLOSE detection	0.5 s to 320 s or 0 (in steps of 0.01 s)
	Blocking duration after reclosure	0.5 s to 320 s (in steps of 0.01 s)
	Blocking duration after dynamic blocking	0.01 to 320 s (in steps of 0.01 s)
	Start-signal monitoring time	0.01 to 320 s or ∞ (in steps of 0.01 s)
	Circuit-breaker supervision time	0.1 to 320 s (in steps of 0.01 s)
	Max. delay of dead-time start	0 to 1800 s or ∞ (in steps of 0.1 s)
	Maximum dead time extension	0.5 to 320 s or ∞ (in steps of 0.01 s)
	Action time	0.01 to 320 s or ∞ (in steps of 0.01 s)

The delay times of the following protection function can be altered individually by the ARC for shots 1 to 4 (setting value T = T, non-delayed T = 0, blocking $T = \infty$):

$$\begin{split} I &>, I >, I_p, I_{dir} >>, I_{dir} >, I_{pdir} \\ I_E &>, I_E >, I_{Ep}, I_{Edir} >>, I_{Edir} >, I_{Edir} >, I_{Edir} \end{split}$$

Additional functions Lockout (final trip), delay of dead-time start via binary input (monitored), dead-time extension via binary input (monitored), co-ordination with other protection relays, circuit-breaker monitoring, evaluation of the CB contacts

Breaker failure protection (ANSI 50 BF)

Setting ranges Pickup threshold CB <i>I</i> >	0.2 to 5 A ¹⁾ (in steps of 0.01 A)
Delay time	0.06 to 60 s or ∞ (in steps of 0.01 s)
Times Pickup times with internal start start via control with external start Dropout times	is contained in the delay time is contained in the delay time is contained in the delay time Approx. 25 ms
Tolerances Pickup value Delay time	2 % of setting value (50 mA) ¹⁾ 1 % or 20 ms

Negative-sequence current detection (ANSI 46)

Definite-time characteristic (ANSI 46-1 and 46-2)

Setting ranges	
Pickup current I_2 >, I_2 >>	0.5 to 15 A or ∞ (in steps of 0.01 A)
Delay times	0 to 60 s or ∞ (in steps of 0.01 s)
Dropout delay time $T_{\rm DO}$	0 to 60 s (in steps of 0.01 s)
Functional limit	All phase currents $\leq 20 \text{ A}^{1)}$
Times	
Pickup times	Approx. 35 ms
Dropout times	Approx. 35 ms
Dropout ratio	Approx. 0.95 for $I_2 / I_{nom} > 0.3$
Tolerances	
Pickup thresholds	3 % of the setting value or 50 mA ¹⁾
Delay times	1 % or 10 ms

Inverse-time characteristic (ANSI 46-TOC)

Setting ranges Pickup current	0.5 to 10 A ¹⁾ (in steps of 0.01 A)
Time multiplier T (IEC characteristics)	0.05 to 3.2 s or ∞ (in steps of 0.01 s)
Time multiplier D (ANSI characteristics)	0.5 to 15 s or ∞ (in steps of 0.01 s)
Functional limit	All phase currents $\leq 20 \text{ A}^{1)}$
Trip characteristics	
IEC	Normal inverse, very inverse, extremely inverse
ANSI	Inverse, moderately inverse, very inverse, extremely inverse
Pickup threshold	Approx. 1.1 $\cdot I_{2p}$ setting value
Dropout	
IEC and ANSI	Approx. 1.05 $\cdot I_{2p}$ setting value,
(without disk emulation)	which is approx. 0.95 · pickup threshold
ANSI with disk emulation	Approx. $0.90 \cdot I_{2p}$ setting value
Tolerances	
Pickup threshold	3 % of the setting value or 50 mA ¹⁾
Time for $2 \le M \le 20$	5 % of setpoint (calculated)
	+2 % current tolerance, at least 30 ms

Starting time monitoring for motors (ANSI 48)

Setting ranges	
Motor starting current ISTARTUP	2.5 to 80 A ¹⁾ (in steps of 0.01)
Pickup threshold IMOTOR START	2 to 50 A^{1} (in steps of 0.01)
Permissible starting	1 to 180 s (in steps of 0.1 s)
time T _{STARTUP}	
Permissible blocked rotor	0.5 to 120 s or ∞ (in steps of 0.1 s
time TLOCKED-ROTOR	
Tripping time characteristic	$(\mathbf{r})^2$

For $I > I_{MOTOR START}$

 $t = \left(\frac{I_{\text{STARTUP}}}{I}\right)^2 \cdot T_{\text{STARTUP}}$ $I_{\text{STARTUP}} = \text{Rated motor starting current}$

I = Actual current flowing T_{STARTUP} = Tripping time for rated motor starting current t = Tripping time in seconds

Dropout ratio I_{MOTOR START}

Tolerances Pickup threshold Delay time

2 % of setting value or 50 mA¹⁾ 5 % or 30 ms

Approx. 0.95

Restart inhibit for motors (ANSI 66)

Setti

Setting ranges	
Motor starting current relative to rated motor current	1.1 to 10 (in steps of 0.1)
$I_{MOTOR START}/I_{Motor Nom}$ Rated motor current $I_{Motor Nom}$ Max. permissible starting time	1 to 6 A ¹⁾ (in steps of 0.01 A) 3 to 320 s (in steps of 1 s)
T Start Max Equilibrium time T _{Equal} Minimum inhibit time	0 min to 320 min (in steps of 0.1 min) 0.2 min to 120 min (in steps of 0.1 min)
Max. permissible number of	1 to 4 (in steps of 1)
Difference between cold and	1 to 2 (in steps of 1)
Extension k-factor for cooling simulations of rotor at zero speed	0.2 to 100 (in steps of 0.1)
k _{τ at STOP} Extension factor for cooling time constant with motor running k _{τ RUNNING}	0.2 to 100 (in steps of 0.1)
Restarting limit	
	$\Theta_{\text{restart}} = \Theta_{\text{rot max perm}} \cdot \frac{n_{\text{c}} - 1}{n_{\text{c}}}$
	Θ_{restart} = Temperature limit below which restarting is possi-
	$\Theta_{\text{rot max perm}} = Maximum permissiblerotor overtemperature(= 100 % in operationalmeasured value\Theta_{\text{rot}}/\Theta_{\text{rot trip}})n_{c} = Number of permissible$
	start-ups from cold state
Undercurrent monitoring (ANSI 37)	
Signal from the operational measured values	Predefined with programmable logic
Temperature monitoring box (ANSI	38)
Temperature detectors	
Connectable boxes	1 or 2
Number of temperature detectors per box	Max. 6
Type of measuring Mounting identification	Pt 100 Ω or Ni 100 Ω or Ni 120 Ω "Oil" or "Environment" or "Stator" or

Thresholds for indications For each measuring detector Stage 1

Stage 2

Pt 100 Ω or Ni 100 Ω or Ni 120 Ω "Oil" or "Environment" or "Stator" or "Bearing" or "Other"

-50 °C to 250 °C (in steps of 1 °C) -58 °F to 482 °F (in steps of 1 °F) or ∞ (no indication) -50 °C to 250 °C (in steps of 1 °C) -58 °F to 482 °F (in steps of 1 °F) or ∞ (no indication)

Undervoltage protection (ANSI 27)	
Operating modes/measuring quantities	
3-phase 1-phase	Positive-sequence component or small- est of the phase-to-phase voltages Single-phase phase-earth or
Setting ranges Pickup thresholds V<, V<< 3-phase, phase-earth connection 3-phase, phase-phase connection 1-phase connection Dropout ratio r Delay times T Current Criteria "Bkr Closed IMIN" Dropout threshold r ·V<(<) Times Pickup times V	10 to 210 V (in steps of 1 V) 10 to 120 V (in steps of 1 V) 10 to 120 V (in steps of 1 V) 10 to 120 V (in steps of 0.01) 0 to 100 s or ∞ (in steps of 0.01 s) 0.2 to 5 A ¹⁾ (in steps of 0.01 A) Max. 130 V for phase-phase voltages Max. 225 V phase-earth voltages Approx 50 ms
Pickup times $V <$, $V < <$, $V_1 <$, $V_1 <$	Approx. 50 ms As pickup times
Tolerances Pickup thresholds Times	3 % of setting value or 1 V 1 % of setting value or 10 ms
Overvoltage protection (ANSI 59)	
Operating modes/measuring quantities	
3-phase 1-phase	Negative-sequence component or largest of the phase-to-phase voltages Single-phase phase-earth or phase-phase voltage
Setting ranges Pickup thresholds V>, V>> 3-phase, phase-earth connec- tion, largest phase-phase voltage 3-phase, phase-phase connec- tion, largest phase-phase voltage 3-phase, negative-sequence voltage	40 to 260 V (in steps of 1 V) 40 to 150 V (in steps of 1 V) 2 to 150 V (in steps of 1 V)
1-phase connection	40 to 150 V (in steps of 1 V)
Delay times T	0.9 to 0.99 (in steps of 0.01) 0 to 100 s or ∞ (in steps of 0.01 s)
Times Pickup times V>, V>> Pickup times V ₂ >, V ₂ >> Dropout times	Approx. 50 ms Approx. 60 ms As pickup times
Tolerances Pickup thresholds Times	3 % of setting value or 1 V 1 % of setting value or 10 ms

Technical date

Frequency protection (ANSI 81)	
Number of frequency elements	4
Setting ranges Pickup thresholds for $f_{nom} = 50$ Hz Pickup thresholds for $f_{nom} = 60$ Hz Delay times Undervoltage blocking, with positive-sequence voltage V_1	45.5 to 54.5 Hz (in steps of 0.01 Hz) 55.5 to 64.5 Hz (in steps of 0.01 Hz) 0 to 100 s or ∞ (in steps of 0.01 s) 10 to 150 V (in steps of 1 V)
Times Pickup times Dropout times	Approx. 150 ms Approx. 150 ms
Dropout Δf = pickup value - dropout value Ratio undervoltage blocking	Approx. 20 mHz Approx. 1.05
Tolerances Pickup thresholds Frequency Undervoltage blocking Delay times	10 mHz 3 % of setting value or 1 V 3 % of the setting value or 10 ms
Fault locator (ANSI 21FL)	
Output of the fault distance	In Ω secondary, in km / mile of line length
Starting signal	Trip command, dropout of a protec- tion element, via binary input
Setting ranges Reactance (secondary)	$\begin{array}{l} 0.001 \mbox{ to } 1.9 \ \Omega/km^{1)} \ (\mbox{in steps of } 0.0001) \\ 0.001 \mbox{ to } 3 \ \Omega/mile^{1)} \ (\mbox{in steps of } 0.0001) \end{array}$
Tolerances Measurement tolerance acc. to VDE 0435, Part 303 for sinusoi- dal measurement quantities	2.5 % fault location, or 0.025 Ω (without intermediate infeed) for 30 ° ≤ φ K ≤ 90 ° and V _K /V _{nom} ≥ 0.1 and <i>I</i> _K / <i>I</i> _{nom} ≥ 1
Additional functions	
Operational measured values	
Currents I_{L1}, I_{L2}, I_{L3} Positive-sequence component I_1 Negative-sequence component I_2 I_E or $3I_0$	In A (kA) primary, in A secondary or in % I _{nom}
Range Tolerance ²⁾	10 to 200 % I
	1 % of measured value or 0.5 % $I_{\rm nom}$
Phase-to-earth voltages V_{L1-E} , V_{L2-E} , V_{L3-E} Phase-to-phase voltages V_{L1-L2} , V_{L2-L3} , V_{L3-L1} , V_E or V_0 Positive-sequence component V_1 Negative-sequence component V_2	1 % of measured value or 0.5 % <i>I</i> _{nom} In kV primary, in V secondary or in % <i>V</i> _{nom}
Phase-to-earth voltages V_{L1-E} , V_{L2-E} , V_{L3-E} Phase-to-phase voltages V_{L1-L2} , V_{L2-L3} , V_{L3-L1} , V_E or V_0 Positive-sequence component V_1 Negative-sequence component V_2 Range Tolerance ²⁾	 1 % of measured value or 0.5 % <i>I</i>_{nom} 1 h kV primary, in V secondary or in % <i>V</i>_{nom} 10 to 120 % <i>V</i>_{nom} 1 % of measured value or 0.5 % of <i>V</i>_{nom}
Phase-to-earth voltages V_{L1-E} , V_{L2-E} , V_{L3-E} Phase-to-phase voltages V_{L1-L2} , V_{L2-L3} , V_{L3-L1} , V_E or V_0 Positive-sequence component V_1 Negative-sequence component V_2 Range Tolerance ²⁾ S, apparent power	10 to 200 % I_{nom} 1 % of measured value or 0.5 % I_{nom} In kV primary, in V secondary or in % V_{nom} 10 to 120 % V_{nom} 1 % of measured value or 0.5 % of V_{nom} In kVAr (MVAr or GVAr) primary and in % of S_{nom}
Phase-to-earth voltages V_{L1-E} , V_{L2-E} , V_{L3-E} Phase-to-phase voltages V_{L1-L2} , V_{L2-L3} , V_{L3-L1} , V_E or V_0 Positive-sequence component V_1 Negative-sequence component V_2 Range Tolerance ²⁾ S, apparent power Range Tolerance ²⁾	10 to 120 % V_{nom} 1 % of measured value or 0.5 % I_{nom} In kV primary, in V secondary or in % V_{nom} 10 to 120 % V_{nom} 1 % of measured value or 0.5 % of V_{nom} In kVAr (MVAr or GVAr) primary and in % of S_{nom} 0 to 120 % S_{nom} 1 % of S_{nom} for V/V_{nom} and $I/I_{\text{nom}} = 50$ to 120 %
Phase-to-earth voltages V_{L1-E} , V_{L2-E} , V_{L3-E} Phase-to-phase voltages V_{L1-L2} , V_{L2-L3} , V_{L3-L1} , V_E or V_0 Positive-sequence component V_1 Negative-sequence component V_2 Range Tolerance ²⁾ S, apparent power Range Tolerance ²⁾ P, active power	10 to 120 % V_{nom} 1 % of measured value or 0.5 % I_{nom} In kV primary, in V secondary or in % V_{nom} 1 % of measured value or 0.5 % of V_{nom} In kVAr (MVAr or GVAr) primary and in % of S_{nom} 0 to 120 % S_{nom} 1 % of S_{nom} 1 % of S_{nom} for V/V_{nom} and $I/I_{nom} = 50$ to 120 % With sign, total and phase-segregated in kW (MW or GW) primary and in % S_{nom}

<i>Q</i> , reactive power	With sign, total and phase-segregated in kVAr (MVAr or GVAr) primary and in % S_{nom}
Range Tolerance ²⁾	0 to 120 % S_{nom} 2 % of S_{nom} for V/V_{nom} and $I/I_{\text{nom}} = 50$ to 120 % and $ \sin \varphi = 0.707$ to 1 with $S_{\text{nom}} = \sqrt{3} \cdot V_{\text{nom}} \cdot I_{\text{nom}}$
$\cos \varphi$, power factor (p.f.)	Total and phase segregated
Range Tolerance ²⁾	-1 to + 1 3 % for $ \cos \alpha \ge 0.707$
Frequency f	In Hz
Range Tolerance ²⁾	$f_{\rm nom} \pm 5 \text{Hz}$ 20 mHz
Temperature overload protection Θ/Θ_{Trip}	In %
Range Tolerance ²⁾	0 to 400 % 5 % class accuracy per IEC 60255-8
Temperature restart inhibit $\Theta_L / \Theta_{L Trip}$	In %
Range Tolerance ²⁾	0 to 400 % 5 % class accuracy per IEC 60255-8
Restart threshold $\Theta_{Restart}/\Theta_{LTrip}$	In %
Reclose time T_{Reclose}	In min
Currents of sensitive ground fault detection (total, real, and reactive current) I_{EE} , $I_{\text{EE} \text{ real}}$, $I_{\text{EE} \text{ reactive}}$	In A (kA) primary and in mA secondary
Range Tolerance ²⁾	0 mA to 1600 mA 2 % of measured value or 1 mA
Measuring transducer Operating range Accuracy range Tolerance ²⁾	0 to 24 mA 1 to 20 mA 1.5 %, relative to rated value of 20 mA
For standard usage of the measur	ement transducer for pressure and
Operating measured value Operating range (presetting) Operating measured value tem- perature	Pressure in hPa 0 hPa to 1200 hPa Temp in °C / °F
Operating range (presetting)	0 °C to 240 °C or 32 °F to 464 °F
RTD-box	See section "Temperature monitoring box"
Long-term averages	
Time window	5, 15, 30 or 60 minuets
Frequency of updates	Adjustable
Long-term averages of currents of real power of reactive power of apparent power	I _{L1dmd} , I _{L2dmd} , I _{L3dmd} , I _{1dmd} in A (kA) P _{dmd} in W (kW, MW) Q _{dmd} in VAr (kVAr, MVAr) S _{dmd} in VAr (kVAr, MVAr)

1) At $I_{\text{nom}} = 1$ A, all limits multiplied with 5. 1) At rated frequency.

5

Max. / Min. report	
Report of measured values	With date and time
Reset, automatic	Time of day adjustable (in minutes, 0 to 1439 min) Time frame and starting time adjust- able (in days, 1 to 365 days, and ∞)
Reset, manual	Using binary input, using keypad, via communication
Min./Max. values for current	<i>I</i> _{L1} , <i>I</i> _{L2} , <i>I</i> _{L3} , <i>I</i> ₁ (positive-sequence component)
Min./Max. values for voltages	V_{L1-E} , V_{L2-E} , V_{L3-E} V_1 (positive-sequence component) V_{L1-L2} , V_{L2-L3} , V_{L3-L1}
Min./Max. values for power	S, P, Q, $\cos \varphi$, frequency
Min./Max. values for overload protection	$\Theta/\Theta_{\mathrm{Trip}}$
Min./Max. values for mean values	I _{L1dmd} , I _{L2dmd} , I _{L3dmd} I ₁ (positive-sequence component); S _{dmd} , P _{dmd} , Q _{dmd}
Local measured values monitoring	,
Current asymmetry	$I_{\text{max}}/I_{\text{min}}$ > balance factor, for $I > I_{\text{balance limit}}$
Voltage asymmetry	$V_{\text{max}}/V_{\text{min}}$ > balance factor, for V > V_{lim}
Current sum	$ i_{L1} + i_{L2} + i_{L3} + k_{iE} \cdot i_E > limit value,$ with
	$k_{\rm iE} = \frac{I_{\rm earth} \rm CT \rm PRIM / I_{\rm earth} \rm CT \rm SEC}{\rm CT \rm PRIM / \rm CT \rm SEC}$
Current phase sequence	Clockwise (ABC) / counter-clockwise (ACB)
Voltage phase sequence	Clockwise (ABC) / counter-clockwise (ACB)
Limit value monitoring	Predefined limit values, user-defined expansions via CFC
Fault recording	
Recording of indications of the last 8 power system faults	
Recording of indications of the last 3 power system ground faults	
Time stamping	
Resolution for event log (operational annunciations)	1 ms
Resolution for trip log (fault annunciations)	1 ms
Maximum time deviation (internal clock)	0.01 %
Battery	Lithium battery 3 V/1 Ah, type CR 1/2 AA, message "Battery Fault" for insufficient battery charge
Oscillographic fault recording	
Maximum 8 fault records saved, memory maintained by buffer bat- tery in case of loss of power supply	
Recording time	Pre-trigger and post-fault recording and memory time adjustable

, ,	for I>Ibalance limit
Voltage asymmetry	$V_{\text{max}}/V_{\text{min}}$ > balance factor, for V > V_{lim}
Current sum	$ i_{L1} + i_{L2} + i_{L3} + k_{iE} \cdot i_E > limit value, with$
	$k_{\rm iE} = \frac{I_{\rm earth} { m CT} { m PRIM} / I_{\rm earth} { m CT} { m SEC}}{{ m CT} { m PRIM} / { m CT} { m SEC}}$
Current phase sequence	Clockwise (ABC) / counter-clockwise (ACB)
Voltage phase sequence	Clockwise (ABC) / counter-clockwise (ACB)
Limit value monitoring	Predefined limit values, user-defined expansions via CFC

Sampling rate for 50 Hz Sampling rate for 60 Hz

Energy/power

Linergy/power	
Meter values for power Wp, Wq (real and reactive power demand)	in kWh (MWh or GWh) and kVARh (MVARh or GVARh)
Tolerance ¹⁾	\leq 5 % for <i>I</i> > 0.5 <i>I</i> _{nom} , <i>V</i> > 0.5 <i>V</i> _{nom} and $ \cos \varphi $ (p.f.) \geq 0.707
Statistics	
Saved number of trips	Up to 9 digits
Number of automatic reclosing commands (segregated according to 1^{st} and $\ge 2^{nd}$ cycle)	Up to 9 digits
Circuit-breaker wear	
Methods	 Σ<i>I</i>^x with x = 1 3 2-point method (remaining service life)
Operation	Phase-selective accumulation of mea- sured values on TRIP command, up to 8 digits, phase-selective limit values, monitoring indication
Operating hours counter	
Display range	Up to 7 digits
Criterion	Overshoot of an adjustable current threshold (BkrClosed <i>I</i> _{MIN})
Trip circuit monitoring	
With one or two binary inputs	
Commissioning aids	
Phase rotation field check, operational measured values, circuit-breaker / switching device test, creation of a test measurement report	
Clock	
Time synchronization	DCF77/IRIG-B signal (telegram format IRIG-B000), binary input, communication
Control	
Number of switching units	Depends on the binary inputs and outputs
Interlocking	Programmable
Circuit-breaker signals	Feedback, close, open, intermediate position
Control commands	Single command / double command 1, 1 plus 1 common or 2 trip contacts
Programmable controller	CFC logic, graphic input tool
Local control	Control via menu, control with control keys
Remote control	Via communication interfaces, using a substation automation and control system (e.g. SICAM), DIGSI 4 (e.g. via modem)

1) At rated frequency.

1 sample/1.25 ms (16 samples/cycle) 1 sample/1.04 ms (16 samples/cycle)

Setting group switchover of the function parameters

Switchover performed

Number of available setting groups 4 (parameter group A, B, C and D) Via keypad, DIGSI, system (SCADA) interface or binary input

CE conformity

This product is in conformity with the Directives of the European Communities on the harmonization of the laws of the Member States relating to electromagnetic compatibility (EMC Council Directive 89/336/EEC) and electrical equipment designed for use within certain voltage limits (Council Directive 73/23/EEC).

This unit conforms to the international standard IEC 60255, and the German standard DIN 57435/Part 303 (corresponding to VDE 0435/Part 303).

Further applicable standards: ANSI/IEEE C37.90.0 and C37.90.1.

The unit conforms to the international standard IEC 60255, and the German standard DIN 57435/Part 303 (corresponding to VDE 0435/Part 303).

This conformity is the result of a test that was performed by Siemens AG in accordance with Article 10 of the Council Directive complying with the generic standards EN 50081-2 and EN 50082-2 for the EMC Directive and standard EN 60255-6 for the "low-voltage Directive".

Selection and ordering data	Description	Order No.
 Selection and ordering data Selection and ordering data 	7SJ63 multifunction protection relay	75J6300 - 00000 - 0001
	Housing, binary inputs (BI) and outputs (BO), measuring transducer Housing ¹ / ₂ 19", 11 BI, 8 BO, 1 live status contact	
	Housing ¹ / ₂ 19", 24 BI, 11 BO, 4 (2) power relays, 1 live status contact	2
	Housing ¹ / ₂ 19", 20 BI, 11 BO, 2 measuring transducer inputs,	see
	4 power relays, 1 live status contact	next
	Housing 1/1 19, 37 BI, 14 BO, 8 (4) power relays, 1 live status contact	page
	8 (4) nower relays 1 live status contact	6
	o (+) power relays, 1 nee status contact	
	Measuring inputs $(3 \times V, 4 \times I)$	
	$I_{\rm ph} = 1 {\rm A}^{1}, I_{\rm e} = 1 {\rm A}^{1} ({\rm min.} = 0.05 {\rm A})$	
	Position 15 only with A, C, E, G	7
	$I_{\rm ph} = 1 {\rm A}^{-1}$, $I_{\rm e} = {\rm sensitive} ({\rm min.} = 0.001 {\rm A})$	2
Selection and ordering data	Position 15 only with B, D, F, H $L = 5 A^{(1)} L = 5 A^{(1)} (min = 0.25 A)$	2
	$I_{ph} = 5 \text{ A}^{\circ}$, $I_e = 5 \text{ A}^{\circ}$ (IIIII. = 0.25 A) Position 15 only with A C E G	5
	$\frac{1050001150000}{L_{\rm h}} = 5 {\rm A}^{11} L_{\rm h} = {\rm sensitive (min = 0.001 \text{A})}$	
	Position 15 only with <i>B</i> , <i>D</i> , <i>F</i> , <i>H</i>	6
	$I_{\rm ph} = 5 {\rm A}^{10}, I_e = 1 {\rm A}^{10} ({\rm min.} = 0.05 {\rm A})$	
	Position 15 only with A, C, E, G	7
	Rated auxilian weltage (neurosupply, indication veltage)	
	$\frac{24 \text{ to } 48 \text{ V DC}}{24 \text{ to } 48 \text{ V DC}} \text{ threshold binary input } 19 \text{ V DC}^{3}$	2
	$\frac{24 \text{ to } 48 \text{ v DC}, \text{ inteshold binary input 19 \text{ v DC}}{60 \text{ to } 125 \text{ V DC}^{2)} \text{ threshold binary input 19 \text{ V DC}^{3)}}$	
	$\frac{6000125 \text{ VDC}^2}{110 \text{ to } 250 \text{ VDC}^2}$ 115 to 230 V ⁴ AC threshold binary input 88 VDC ³	5
	Unit version	
	For panel surface mounting, plug-in terminals, detached operator panel	<u> </u>
	For panel surface mounting, 2-tier terminals top/bottom	B
	For panel surface mounting, screw-type terminals, detached operator panel	
	For panel flush mounting, plug-in terminals (2/3 pin connector)	
	For panel flush mounting, screw-type terminals	E
	(direct connection/fing-type cable tugs)	type cable lugs)
	without operator panel, panel mounting in low-voltage housing	F
	Surface-mounting housing, plug-in terminals,	
	without operator panel, panel mounting in low-voltage housing	G
	Region-specific default settings/function versions and language settings	
	Region DE, 50 Hz, IEC, language: German, selectable	A
	Region World, 50/60 Hz, IEC/ANSI, language: English (GB), selectable	В
	Region US, 60 Hz, ANSI, language: English (US), selectable	С
	Region FR, IEC/ANSI language: French, selectable	D
	Region World, IEC/ANSI language: Spanish, selectable	E
	System interface (Port B): Pafer to page 5/157	
	No system interface	0
	Protocols see page 5/152	
	Service interface (Port C)	
1) Rated current can be selected by means	No interface at rear side	0
of jumpers.	DIGSI 4/modem, electrical RS232	
2) Transition between the two auxiliary	DIGSI 4/modem/RTD-box ⁵⁾ , electrical RS485	2
voltage ranges can be selected by	DIGSI 4/modem/RTD-box ⁵⁾⁶⁾ , optical 820 nm wavelength, ST connecto	r 3
means of jumpers.		
3) The binary input thresholds can be	Measuring/fault recording	
selected per binary input by means of	Slave pointer, mean values, min/max values, fault recording	3
jumpers.		

6) When using the temperature monitoring box at an optical interface, the additional RS485 fiber-optic converter 7XV5650-0□A00 is required.

to "Accessories".

4) 230 V AC, starting from unit version .../EE

5) Temperature monitoring box 7XV5662-□AD10, refer

Selection and ordering data

Description					Order No.			
7SJ63 mult	ifunctio	n pro	tectio	n relay	75J63🗆 — 🗆 🗆 🗆 — 🗆		10	
Designation				ANSI No.	Description			
Basic version	1			50/51	Control Time-overcurrent protection <i>I</i> >, <i>I</i> >>, <i>I</i> _p , reverse interlocking			
				SON/SIN	I_E , I_E , I_E , I_E			
				50IN/51IN	The function: I_{EE} , I_{EE} , I_{EE} , I_{EE}			
				49 46	Phase balance current protection (negative-sequence protection)			
				37 47	Undercurrent monitoring Phase sequence			
				59N/64	Displacement voltage			
				50BF	Breaker failure protection			
				/41C	4 setting groups, cold-load pickup			
					Inrush blocking			
				86	Lockout	F	A	
			V f	27/59	Under-/overvoltage			
			.,,	810/U	Under-/overfrequency	F	Ε	
		IEF	V f	27/59	Under-/overvoltage			
		11.1	v,j	810/U	Under-/overfrequency			
					Intermittent earth fault	Ρ	Ε	
•	Dir			67/67N 47	Direction determination for overcurrent, phases and earth Phase sequence	F	С	
•	Dir		V, f	67/67N	Direction determination for overcurrent, phases and earth			
				27/59	Under-/overvoltage	_	_	
				810/0	Under-/overfrequency	F	G	
-	Dir	IEF		67/67N	Direction determination for overcurrent, phases and earth Intermittent earth fault	Р	С	
Directional	Dir			67/67N	Direction determination for overcurrent, phases and earth			
earth-fault				67Ns 87N	Directional sensitive earth-fault detection			
				0/IN	righ-impedance restricted earth fault	F	D	2)
Directional	Dir	IFF		67/67N	Direction determination for overcurrent, phases and earth			
earth-fault	DI	1121		67Ns	Directional sensitive earth-fault detection			
detection				87N	High-impedance restricted earth fault			21
					Intermittent earth fault	P	D	2)
Directional				67Ns	Directional sensitive earth-fault detection			
earth-fault				87N	High-impedance restricted earth fault			
detection						F	B	2)
	M		W.C	(7)	Directional consistence with first states of	•	-	
Directional	Motor		v,f	6/INS 87N	Directional sensitive earth-fault detection			
detection				48/14	Starting time supervision, locked rotor			
				66/86	Restart inhibit			
				27/59	Under-/overvoltage		_	21
				810/U	Under-/overfrequency	Н	٢	

Basic version included

V, f = Voltage, frequency protection

Dir = Directional overcurrent protection

IEF = Intermittent earth fault

- 1) Only with insensitive earth-current transformer when position 7 = 1, 5, 7.
- 2) For isolated/compensated networks only with sensitive earth-current transformer when position 7 = 2, 6.

continued on next page

Order

Order No.

Selection and ordering data

Description

7SJ63 multifunction protection relay								С	code			
				n relay	7SJ6300 - 00000 - 000][
Designation				ANSI No.	Description						•	
Basic versior	ı				Control							
Duble (erbior				50/51	Time-overcurrent protection							
				00,01	$I > I > I_{\rm p}$, reverse interlocking							
				50N/51N	Earth-fault protection							
					$I_{\rm E}$, $I_{\rm E}$, $I_{\rm E}$							
				50N/51N	Earth-fault protection via insensitive							
					IEE function: $I_{\rm EE}$, $I_{\rm EE}$, $I_{\rm EEp}^{(1)}$							
				49	Overload protection (with 2 time constants)							
				46	Phase balance current protection							
					(negative-sequence protection)							
				37	Undercurrent monitoring							
				47	Phase sequence							
				59N/64	Displacement voltage							
				50BF	Breaker failure protection							
				74TC	Trip circuit supervision							
					4 setting groups, cold-load pickup							
				0.4	Inrush blocking							
				86	Lockout							
Directional	Motor		V, f	67/67N	Direction determination for							
earth-fault	Dir		.,,		overcurrent, phases and earth							
detection				67Ns	Directional sensitive earth-fault detection							
				87N	High-impedance restricted earth fault							
				48/14	Starting time supervision, locked rotor							
				66/86	Restart inhibit							
				27/59	Under-/overvoltage							
				810/U	Under-/overfrequency	HH	2)					
Directional	Motor	IEF	V, f	67/67N	Direction determination for							
earth-fault	Dir				overcurrent, phases and earth							
detection				67Ns	Directional sensitive earth-fault detection							
				87N	High-impedance restricted earth fault							
					Intermittent earth fault							
				48/14	Starting time supervision, locked rotor							
				66/86	Restart inhibit							
				27/59	Under-/overvoltage		2)					
				810/0	Under-/overfrequency	<u> </u>	~/					
	Motor		V, f	67/67N	Direction determination for							
	Dir				overcurrent, phases and earth							
				48/14	Starting time supervision, locked rotor							
				66/86	Restart inhibit							
				27/59	Under-/overvoltage							
				810/0	Under-/overfrequency	HG						
•	Motor			48/14	Starting time supervision, locked rotor							
				66/86	Restart inhibit	HA						
ARC, fault lo	ocator				Without		0					
				79	With auto-reclosure		1					
				21FL	With fault locator		2					
				79, 21FL	With auto-reclosure, with fault locator		3					
ATEX100 Ce	ertificatio	n										
For protection	on of expl	osion-	-protec	cted motors	s (increased-safety type of protection "e")			Ζ	X	9	9 ³	

Basic version included

V, f = Voltage, frequency protection Dir = Directional overcurrent protection

- IEF = Intermittent earth fault
- 1) Only with insensitive earth-current transformer when position 7 = 1, 5, 7.
- 2) For isolated/compensated networks only with sensitive earth-current transformer when position 7 = 2, 6.
- 3) This variant might be supplied with a previous firmware version.

Order number for system port B	Description	Order No.	Order code
	7SJ63 multifunction protection relay	7SJ6300 - 00000 - 00	
	System interface (on rear of unit, Port B)		
	No system interface	0	
	IEC 60870-5-103 protocol, RS232	1	
	IEC 60870-5-103 protocol, RS485	2	
	IEC 60870-5-103 protocol, 820 nm fiber, ST co	nnector 3	
	PROFIBUS-FMS Slave, RS485	4	
	PROFIBUS-FMS Slave, 820 nm wavelength, sir	ngle ring, ST connector 1) 5	
	PROFIBUS-FMS Slave, 820 nm wavelength, do	puble ring, ST connector 1) 6	
	PROFIBUS-DP Slave, RS485	9	L 0 A
	PROFIBUS-DP Slave, 820 nm wavelength, doub	ble ring, ST connector ¹) 9	L 0 B
	MODBUS, RS485	9	L 0 D
	MODBUS, 820 nm wavelength, ST connector ²	2) 9	L 0 E
	DNP 3.0, RS485	9	L 0 G
	DNP 3.0, 820 nm wavelength, ST connector ²)	9	L 0 H
	IEC 61850, 100 Mbit Ethernet, electrical, doubl	le, RJ45 connector (EN 100) 9	LOR
	IEC 61850, 100 Mbit Ethernet, optical, double,	LC connector $(EN 100)^{2}$ 9	<i>L</i> 0 S

1) Not with position 9 = "B"; if 9 = "B", please order 7SJ6 unit with RS485 port and separate fiber-optic converters. For single ring, please order converter 6GK1502-2CB10, not available with position 9 = "B". For double ring, please order converter 6GK1502-3CB10, not available with position 9 = "B". The converter requires a 24 V AC power supply (e.g. power supply 7XV5810-0BA00).

2) Not available with position 9 = "B".

	Sam	ple	ord	er
--	-----	-----	-----	----

Positio	n	Order No. + Order code
		7SJ6325-5EC91-3FC1+L0G
6	I/O's: 24 BI/11 BO, 1 live status contact	2
7	Current transformer: 5 A	5
8	Power supply: 110 to 250 V DC, 115 V AC to 230 V AC	5
9	Unit version: Flush-mounting housing, screw-type terminals	E
10	Region: US, English language (US); 60 Hz, ANSI	С
11	Communication: System interface: DNP 3.0, RS485	9 L0G
12	Communication: DIGSI 4, electrical RS232	1
13	Measuring/fault recording: Extended measuring and fault record	rds 3
14/15	Protection function package: Basic version plus directional TO	C FC
16	With auto-reclosure	1

ories	Description	Order No.		
	DIGSI 4			
	Software for configuration and operation of Siemens protection units			
	running under MS Windows 2000/XP Professional Edition			
	Basis Full version with license for 10 computers, on CD-ROM			
	(authorization by serial number)	7XS5400-0AA00		
	Professional DIGSI 4 Basis and additionally SIGRA (fault record analysis),			
	CFC Editor (logic editor), Display Editor (editor for default			
	and control displays) and DIGSI 4 Remote (remote operation)	7XS5402-0AA00		
	Professional + IEC 61850			
	Complete version:			
	DIGSI 4 Basis and additionally SIGRA (fault record analysis),			
	CFC Editor (logic editor), Display Editor (editor for default			
	and control displays) and DIGSI 4 Remote (remote operation)	7755403-04400		
	T IEC 01050 System configurator	7755405-0AAUU		
	IEC 61850 System configurator			
	Software for configuration of stations with IEC 61850 communication under			
	DIGSI, running under MS Windows 2000 or XP Professional Edition			
	Optional package for DIGSI 4 Basis or Professional			
	License for 10 PCs. Authorization by serial number. On CD-ROM	7XS5460-0AA00		
	SIGRA 4			
	Software for graphic visualization, analysis and evaluation of fault records.			
	Can also be used for fault records of devices of other manufacturers (Comtrade			
	format). Running under MS Windows 2000 or XP Professional Edition.			
	(generally contained in DIGSI Protessional, but can be ordered additionally)	785410-04400		
	Autorization by serial number. On CD-KOW.	7735410 07400		
	Temperature monitoring box			
	24 to 60 V AC/DC	7XV5662-2AD10		
	90 to 240 V AC/DC	7XV5662-5AD10		
	Varistor/Voltage Arrester			
	Voltage arrester for high-impedance REF protection			
	125 Vrms; 600 A; 1S/S 256	C53207-A401-D76-1		
	240 Vrms; 600 A; 1S/S 1088	C53207-A401-D77-1		
	Connectina cable			
	Cable between PC/notebook (9-pin con.) and protection unit (9-pin connector)			
	(contained in DIGSI 4, but can be ordered additionally)	7XV5100-4		
	Cable between temperature monitoring box and SIPROTEC 4 unit			
	- length 5 m /16.4 ft	7XV5103-7AA05		
	- length 25 m /82 ft	7XV5103-7AA25		
	- length 50 m /164 ft	7XV5103-7AA50		
	Manual for 7SJ63			
	English	C53000-G1140-C147-x ¹⁾		

Accessories

1) x = please inquire for latest edition (exact Order No.).

Accessories		Description	Order No.	Size of package	Supplier	
	+af p. eps	Terminal safety cover Voltage/current terminal 18-pole/12-pole	C73334-A1-C31-1	1	Siemens	
	528	Voltage/current terminal 12-pole/8-pole	C73334-A1-C32-1	1	Siemens	
Mounting mil	LS	Connector 2-pin	C73334-A1-C35-1	1	Siemens	
Mounting rail		Connector 3-pin	C73334-A1-C36-1	1	Siemens	
S S	ss st	Crimp connector CI2 0.5 to 1 mm ²	0-827039-1	4000 taped on reel	AMP ¹⁾	
SP2090-afp. ep	1-af p. ep	Crimp connector CI2 0.5 to 1 mm ²	0-827396-1	1	AMP $^{1)}$	
	SP206	Crimp connector: Type III+ 0.75 to 1.5 mm ²	0-163084-2	1	AMP ¹⁾	
2-pin connector	3-pin connector	Crimp connector: Type III+ 0.75 to 1.5 mm ²	0-163083-7	4000 taped on reel	AMP ¹⁾	
		Crimping tool for Type III+	0-539635-1	1	AMP ¹⁾	
		and matching female	0-539668-2	1	AMP ¹⁾	
afp.eps	92-afp.eps	Crimping tool for CI2	0-734372-1	1	AMP ¹⁾	
		and matching female	1-734387-1	1	AMP ¹⁾	
5033		Short-circuit links				
	SP20	for current terminals	C73334-A1-C33-1	1	Siemens	
Short-circuit links	Short-circuit links	for other terminals	C73334-A1-C34-1	1	Siemens	
for current termi- nals		Mounting rail for 19" rack	C73165-A63-D200-1	1	Siemens	

5

Fig. 5/137 7SJ631 connection diagram

*) For pinout of communication ports see part 15 of this catalog.

For the allocation of the terminals of the panel surface-mounting version refer to the manual (http://www.siemens.com/siprotec).

Connection diagram

Fig. 5/138 7SJ632 connection diagram

- *) For pinout of communication ports see part 15 of this catalog.
 - For the allocation of the terminals of the panel surface-mounting version refer to the manual (http://www.siemens.com/siprotec).
- Power relays are intended to directly control motorized switches. The power relays are interlocked so only one relay of each pair can close at a time, in order to avoid shorting out the power supply. The power relay pairs are BO4/BO5, BO6/BO7. If used for protection purposes only one binary output of a pair can be used.

Connection diagram

Fig. 5/139 7SJ633 connection diagram

*) For pinout of communication ports see part 15 of this catalog.

For the allocation of the terminals of the panel surface-mounting version refer to the manual (http://www.siemens.com/siprotec).

 Power relays are intended to directly control motorized switches. The power relays are interlocked so only one relay of each pair can close at a time, in order to avoid shorting out the power supply. The power relay pairs are BO4/BO5, BO6/BO7. If used for protection purposes only one binary output of a pair can be used.

Fig. 5/140

can be used.

this catalog.

Connection diagram

5

*) For pinout of communication ports see part 15 of this catalog.

For the allocation of the terminals of the panel surface-mounting version refer to the manual (http://www.siemens. com/siprotec).

 Power relays are intended to directly control motorized switches. The power relays are interlocked so only one relay of each pair can close at a time, in order to avoid shorting out the power supply. The power relay pairs are BO4/BO5, BO6/BO7, BO16/BO17 and BO18/BO19. If used for protection purposes only one binary output of a pair can be used.

Fig. 5/141 7SJ636 connection diagram

5 Overcurrent Protection / 7SJ63

SIPROTEC 4 7SJ64 Multifunction Protection Relay with Synchronization

Description

The SIPROTEC 4 7SJ64 can be used as a protective control and monitoring relay for distribution feeders and transmission lines of any voltage in networks that are earthed (grounded), low-resistance earthed, unearthed, or of a compensated neutral point structure. The relay is suited for networks that are radial or looped, and for lines with single or multi-terminal feeds. The SIPROTEC 47SJ64 is equipped with a synchronization function which provides the operation modes 'synchronization check' (classical) and 'synchronous/asynchronous switching' (which takes the CB mechanical delay into consideration). Motor protection comprises undercurrent monitoring, starting time supervision, restart inhibit, locked rotor, load jam protection as well as motor statistics.

The 7SJ64 is featuring the "flexible protection functions". Up to 20 protection functions can be added according to individual requirements. Thus, for example, rate-of-frequency-change protection or reverse power protection can be implemented. The relay provides easy-to-use local control and automation functions. The number of controllable switchgear depends only on the number of available inputs and outputs. The integrated programmable logic (CFC) allows the user to implement their own functions, e.g. for the automation of switchgear (interlocking). CFC capacity is much larger compared to 7SJ63 due to extended CPU power. The user is able to generate user-defined messages as well.

The flexible communication interfaces are open for modern communication architectures with control systems.

Function overview

Protection functions

- Time-overcurrent protection
- Directional time-overcurrent protection
- Sensitive dir./non-dir. earth-fault detection
- Displacement voltage
- Intermittent earth-fault protection
- High-impedance restricted earth fault
- Inrush restraint
- Motor protection
- Overload protection
- Temperature monitoring
- Under-/overvoltage protection
- Under-/overfrequency protection
- Rate-of-frequency-change protection
- Power protection (e.g. reverse, factor)
- Breaker failure protection
- Negative-sequence protection
- Phase-sequence monitoring
- Synchronization
- Auto-reclosure
- Fault locator
- Lockout

Control functions/programmable logic

- Flexible number of switching devices
- Position of switching elements is shown on the graphic display
- Local/remote switching via keyoperated switch
- Control via keyboard, binary inputs, DIGSI 4 or SCADA system
- Extended user-defined logic with CFC (e.g. interlocking)

Monitoring functions

- Operational measured values *V*, *I*, *f*,...
- Energy metering values $W_{\rm p}$, $W_{\rm q}$
- · Circuit-breaker wear monitoring
- Slave pointer
- Trip circuit supervision
- Fuse failure monitor
- 8 oscillographic fault records
- Motor statistics

Communication interfaces

- System interface
 - IEC 60870-5-103, IEC 61850 – PROFIBUS-FMS / DP
 - DNP 3.0 / MODBUS RTU
- Service interface for DIGSI 4 (modem)
- Additional interface for temperature detection (RTD-box)
- Front interface for DIGSI 4
- Time synchronization via IRIG B/DCF77

Application

The SIPROTEC 4 7SJ64 unit is a numerical protection relay that also performs control and monitoring functions and therefore supports the user in cost-effective power system management, and ensures reliable supply of electric power to the customers. Local operation has been designed according to ergonomic criteria. A large, easy-to-read graphic display was a major design aim.

Control

The integrated control function permits control of disconnect devices (electrically operated/motorized switches) or circuit-breakers via the integrated operator panel, binary inputs, DIGSI 4 or the control and protection system (e.g. SICAM). The present status (or position) of the primary equipment can be displayed. 7SJ64 supports substations with single and duplicate busbars. The number of elements that can be controlled (usually 1 to 5) is only restricted by the number of inputs and outputs available. A full range of command processing functions is provided.

Programmable logic

The integrated logic characteristics (CFC) allow users to implement their own functions for automation of switchgear (interlocking) or a substation via a graphic user interface. Due to extended CPU power, the programmable logic capacity is much larger compared to 7SJ63. The user can also generate user-defined messages.

Line protection

The 7SJ64 units can be used for line protection of high and medium-voltage networks with earthed, low-resistance earthed, isolated or compensated neutral point.

Synchronization

In order to connect two components of a power system, the relay provides a synchronization function which verifies that switching ON does not endanger the stability of the power system.

The synchronization function provides the operation modes 'synchro-check' (classical) and 'synchronous/asynchronous switching' (which takes the c.-b. mechanical delay into consideration).

Motor protection

When protecting motors, the relays are suitable for asynchronous machines of all sizes.

Transformer protection

The 7SJ64 units perform all functions of backup protection supplementary to transformer differential protection. The inrush suppression effectively prevents tripping by inrush currents.

The high-impedance restricted earth-fault protection detects short-circuits and insulation faults of the transformer.

Backup protection

The relays can be used universally for backup protection.

Flexible protection functions

By configuring a connection between a standard protection logic and any measured or derived quantity, the functional scope of the relays can be easily expanded by up to 20 protection stages or protection functions.

Metering values

Extensive measured values, limit values and metered values permit improved system management.

Application

ANSI No.	IEC	Protection functions
(50, 50N)	I>, I>>, I>>> $I_{\rm E}>, I_{\rm E}>>, I_{\rm E}>>>$	Definite-time overcurrent protection (phase/neutral)
(50, 50N)	$I >>>>, I_2 >$ $I_E >>>>$	Additional definite-time overcurrent protection stages (phase/neutral) via flexible protection functions
51,51V,51N	I _p , I _{Ep}	Inverse-time overcurrent protection (phase/neutral), phase function with voltage-dependent option
(67, 67N)	I_{dir} >, I_{dir} >>, $I_{\text{p dir}}$ I_{Edir} >, I_{Edir} >>, $I_{\text{Ep dir}}$	Directional time-overcurrent protection (definite/inverse, phase/neutral) Directional comparison protection
67Ns/50Ns	$I_{\rm EE}$ >, $I_{\rm EE}$ >>, $I_{\rm EEp}$	Directional/non-directional sensitive earth-fault detection
_		Cold load pick-up (dynamic setting change)
(59N/64)	V _E , V ₀ >	Displacement voltage, zero-sequence voltage
_	I _{IE} >	Intermittent earth fault
(87N)		High-impedance restricted earth-fault protection
50BF		Breaker failure protection
(79M)		Auto-reclosure
25)		Synchronization
(46)	<i>I</i> ₂ >	Phase-balance current protection (negative-sequence protection)
(47)	<i>V</i> ₂ >, phase seq.	Unbalance-voltage protection and/or phase-sequence monitoring
(49)	$\vartheta >$	Thermal overload protection
(48)		Starting time supervision
(51M)		Load jam protection
14)		Locked rotor protection
66/86		Restart inhibit
37)	I<	Undercurrent monitoring
38		Temperature monitoring via external device, e.g. bearing temperature monitoring
27,59	<i>V<, V></i>	Undervoltage/overvoltage protection
59R	dV/dt	Rate-of-voltage-change protection
32	P<>, Q<>	Reverse-power, forward-power protection
55	$\cos \varphi$	Power factor protection
(810/U)	f>,f<	Overfrequency/underfrequency protection
81R)	df/dt	Rate-of-frequency-change protection
21FL		Fault locator

Construction

Connection techniques and housing with many advantages

1/3, 1/2 and 1/1-rack sizes

These are the available housing widths of the 7SJ64 relays, referred to a 19" module frame system. This means that previous models can always be replaced. The height is a uniform 244 mm for flush-mounting housings and 266 mm for surfacemounting housings for all housing widths. All cables can be connected with or without ring lugs. Plug-in terminals are available as an option.

It is thus possible to employ prefabricated cable harnesses. In the case of surface mounting on a panel, the connection terminals are located above and below in the form of screw-type terminals. The communication interfaces are located in a sloped case at the top and bottom of the housing. The housing can also be supplied optionally with a detached operator panel (refer to Fig. 5/146), or without operator panel, in order to allow optimum operation for all types of applications.

Fig. 5/144 Flush-mounting housing with screw-type terminals

Fig. 5/145 Front view of 7SJ64 with 1/3x19" housing

Fig. 5/146 Housing with plug-in terminals and detached operator panel

Fig. 5/148 Communication interfaces in a sloped case in a surface-mounting housing

Fig. 5/147 Surface-mounting housing with screw-type terminals

5/164
Time-overcurrent protection (ANSI 50, 50N, 51,51V, 51N)

This function is based on the phase-selective measurement of the three phase currents and the earth current (four transformers). Three definite-time overcurrent protection elements (DMT) exist both for the phases and for the earth. The current threshold and the delay time can be set in a wide range. In addition, inverse-time overcurrent protection characteristics (IDMTL) can be activated. The inverse-time function provides – as an option – voltage-restraint or voltage-controlled operating modes. With the "flexible protection functions", further definite-time overcurrent stages can be implemented in the 7SJ64 unit.

Fig. 5/149

Definite-time overcurrent protection

Fig. 5/150 Inverse-time overcurrent protection

Available inverse-time characteristics

Characteristics acc. to	ANSI/IEEE	IEC 60255-3	
Inverse	•	•	
Short inverse	•		
Long inverse	•	•	
Moderately inverse	•		
Very inverse	•	•	
Extremely inverse	•	•	
Definite inverse	•		

Reset characteristics

For easier time coordination with electromechanical relays, reset characteristics according to ANSI C37.112 and IEC 60255-3 / BS 142 standards are applied. When using the reset characteristic (disk emulation), a reset process is initiated after the fault current has disappeared. This reset process corresponds to the reverse movement of the Ferraris disk of an electromechanical relay (thus: disk emulation).

User-definable characteristics

Instead of the predefined time characteristics according to ANSI, tripping characteristics can be defined by the user for phase and earth units separately. Up to 20 current/ time value pairs may be programmed. They are set as pairs of numbers or graphically in DIGSI 4.

Inrush restraint

The relay features second harmonic restraint. If the second harmonic is detected during transformer energization, pickup of non-directional and directional normal elements are blocked.

Cold load pickup/dynamic setting change

For directional and nondirectional timeovercurrent protection functions the initiation thresholds and tripping times can be switched via binary inputs or by time control.

Directional time-overcurrent protection (ANSI 67, 67N)

Directional phase and earth protection are separate functions. They operate in parallel to the non-directional overcurrent elements. Their pickup values and delay times can be set separately. Definite-time and inverse-time characteristic is offered. The tripping characteristic can be rotated about \pm 180 degrees.

By means of voltage memory, directionality can be determined reliably even for close-in (local) faults. If the switching device closes onto a fault and the voltage is too low to determine direction, directio- nality (directional decision) is made with voltage from the voltage memory. If no voltage exists in the memory, tripping occurs according to the coordination schedule.

For earth protection, users can choose whether the direction is to be determined via zero-sequence system or negative-sequence system quantities (selectable). Using negative-sequence variables can be advantageous in cases where the zero voltage tends to be very low due to unfavorable zero-sequence impedances.

Directional comparison protection (cross-coupling)

It is used for selective protection of sections fed from two sources with instantaneous tripping, i.e. without the disadvantage of time coordination. The directional comparison protection is suitable if the distances between the protection stations are not significant and pilot wires are available for signal transmission. In addition to the directional comparison protection, the directional coordinated time-overcurrent protection is used for complete selective backup protection. If operated in a closed-circuit connection, an interruption of the transmission line is detected.

(Sensitive) directional earth-fault detection (ANSI 64, 67Ns/67N)

For isolated-neutral and compensated networks, the direction of power flow in the zero sequence is calculated from the zero-sequence current I_0 and zero-sequence voltage V_0 . For networks with an isolated neutral, the reactive current component is evaluated; for compensated networks, the active current component or residual resistive current is evaluated.

Fig. 5/151 Directional characteristic of the directional timeovercurrent protection

For special network conditions, e.g. high-resistance earthed networks with ohmic-capacitive earth-fault current or low-resistance earthed networks with ohmic-inductive current, the tripping characteristics can be rotated approximately \pm 45 degrees.

Two modes of earth-fault direction detection can be implemented: tripping or "signalling only mode".

It has the following functions:

- TRIP via the displacement voltage $V_{\rm E}$.
- Two instantaneous elements or one instantaneous plus one user-defined characteristic.
- Each element can be set in forward, reverse, or non-directional.

- Fig. 5/152 Directional determination using cosine measurements for compensated networks
- The function can also be operated in the insensitive mode, as an additional short-circuit protection.

(Sensitive) earth-fault detection (ANSI 50Ns, 51Ns/50N, 51N)

For high-resistance earthed networks, a sensitive input transformer is connected to a phase-balance neutral current transformer (also called core-balance CT).

The function can also be operated in the insensitive mode, as an additional short-circuit protection.

Intermittent earth-fault protection

Intermittent (re-striking) faults occur due to insulation weaknesses in cables or as a result of water penetrating cable joints. Such faults either simply cease at some stage or develop into lasting short-circuits. During intermittent activity, however, star-point resistors in networks that are impedance-earthed may undergo thermal overloading. The normal earth-fault protection cannot reliably detect and interrupt the current pulses, some of which can be very brief.

The selectivity required with intermittent earth faults is achieved by summating the duration of the individual pulses and by triggering when a (settable) summed time is reached. The response threshold I_{IE} > evaluates the r.m.s. value, referred to one systems period.

Phase-balance current protection (ANSI 46) (Negative-sequence protection)

In line protection, the two-element phasebalance current/negative-sequence protection permits detection on the high side of high-resistance phase-to-phase faults and phase-to-earth faults that are on the low side of a transformer (e.g. with the switch group Dy 5). This provides backup protection for high-resistance faults beyond the transformer.

Breaker failure protection (ANSI 50BF)

If a faulted portion of the electrical circuit is not disconnected upon issuance of a trip command, another command can be initiated using the breaker failure protection which operates the circuit-breaker, e.g. of an upstream (higher-level) protection relay. Breaker failure is detected if, after a trip command, current is still flowing in the faulted circuit. As an option, it is possible to make use of the circuit-breaker position indication.

Auto-reclosures (ANSI 79)

Multiple reclosures can be defined by the user and lockout will occur if a fault is present after the last reclosure. The following functions are possible:

- 3-pole ARC for all types of faults
- Separate settings for phase and earth faults
- Multiple ARC, one rapid auto-reclosure (RAR) and up to nine delayed auto-reclosures (DAR)
- Starting of the ARC depends on the trip command selection (e.g. 46, 50, 51, 67)

Fig. 5/153 Flexible protection functions

- Blocking option of the ARC via binary inputs
- ARC can be initiated externally or via CFC
- The directional and non-directional elements can either be blocked or operated non-delayed depending on the autoreclosure cycle
- Dynamic setting change of the directional and non-directional elements can be activated depending on the ready AR
- The AR CLOSE command can be given synchronous by use of the synchronization function.

Flexible protection functions

The 7SJ64 units enable the user to easily add on up to 20 protective functions. To this end, parameter definitions are used to link a standard protection logic with any chosen characteristic quantity (measured or derived quantity) (Fig. 5/153). The standard logic consists of the usual protection elements such as the pickup message, the parameterdefinable delay time, the TRIP command, a blocking possibility, etc. The mode of operation for current, voltage, power and power factor quantities can be three-phase or single-phase. Almost all quantities can be operated as greater than or less than stages. All stages operate with protection priority. Protection stages/functions attainable on the basis of the available characteristic quantities:

Function	ANSI No.
I>, I _E >	50, 50N
$V<, V>, V_{\rm E}>, {\rm d}V/{\rm d}t$	27, 59, 59R, 64
$\overline{3I_0>, I_1>, I_2>, I_2/I_1} \\ 3V_0>, V_1><, V_2><$	50N, 46 59N, 47
P><, Q><	32
$\cos \varphi$ (p.f.)><	55
	81O, 81U
df/dt><	81R

For example, the following can be implemented:

- Reverse power protection (ANSI 32R)
- Rate-of-frequency-change protection (ANSI 81R)

Synchronization (ANSI 25)

• In case of switching ON the circuit-breaker, the units can check whether the two subnetworks are synchronized (classic synchro-check). Furthermore, the synchronizing function may operate in the "Synchronous/asynchronous switching" mode. The unit then distinguishes between synchronous and asynchronous networks:

In synchronous networks, frequency differences between the two subnetworks are almost non-existant. In this case, the circuitbreaker operating time does not need to be considered. Under asynchronous condition, however, this difference is markedly larger and the time window for switching is shorter. In this case, it is recommended to consider the operating time of the circuitbreaker.

The command is automatically pre-dated by the duration of the operating time of the circuit-breaker, thus ensuring that the contacts of the CB close at exactly the right time.

Up to 4 sets of parameters for the synchronizing function can be stored in the unit. This is an important feature when several circuit-breakers with different operating times are to be operated by one single relay.

Thermal overload protection (ANSI 49)

For protecting cables and transformers, an overload protection with an integrated pre-warning element for temperature and current can be applied. The temperature is calculated using a thermal homogeneousbody model (according to IEC 60255-8), which takes account both of the energy entering the equipment and the energy losses. The calculated temperature is constantly adjusted accordingly. Thus, account is taken of the previous load and the load fluctuations.

For thermal protection of motors (especially the stator), a further time constant can be set so that the thermal ratios can be detected correctly while the motor is rotating and when it is stopped. The ambient temperature or the temperature of the coolant can be detected serially via an external temperature monitoring box (resistance-temperature detector box, also called RTD- box). The thermal replica of the overload function is automatically adapted to the ambient conditions. If there is no RTD-box it is assumed that the ambient temperatures are constant.

High-impedance restricted earth-fault protection (ANSI 87N)

The high-impedance measurement principle is an uncomplicated and sensitive method for detecting earth faults, especially on transformers. It can also be applied to motors, generators and reactors when these are operated on an earthed network.

When the high-impedance measurement principle is applied, all current transformers in the protected area are connected in parallel and operated on one common resistor of relatively high *R* whose voltage is measured (see Fig. 5/154). In the case of 7SJ6 units, the voltage is measured by detecting the current through the (external) resistor *R* at the sensitive current measurement input I_{EE} .

Fig. 5/154 High-impedance restricted earth- fault protection

The varistor *V* serves to limit the voltage in the event of an internal fault. It cuts off the high momentary voltage spikes occurring at transformer saturation. At the same time, this results in smoothing of the voltage without any noteworthy reduction of the average value. If no faults have occurred and in the event of external faults, the system is at equilibrium, and the voltage through the resistor is approximately zero. In the event of internal faults, an imbalance occurs which leads to a voltage and a current flow through the resistor *R*.

The current transformers must be of the same type and must at least offer a separate core for the high-impedance restricted earth-fault protection. They must in particular have the same transformation ratio and an approximately identical knee-point voltage. They should also demonstrate only minimal measuring errors.

Settable dropout delay times

If the devices are used in parallel with electromechanical relays in networks with intermittent faults, the long dropout times of the electromechanical devices (several hundred milliseconds) can lead to problems in terms of time grading. Clean time grading is only possible if the dropout time is approximately the same. This is why the parameter of dropout times can be defined for certain functions such as time-overcurrent protection, earth short-circuit and phasebalance current protection.

Motor protection

Restart inhibit (ANSI 66/86)

If a motor is started up too many times in succession, the rotor can be subject to thermal overload, especially the upper edges of the bars. The rotor temperature is calculated from the stator current. The reclosing lockout only permits start-up of the motor if the rotor has sufficient thermal reserves for a complete start-up (see Fig. 5/155).

Emergency start-up

This function disables the reclosing lockout via a binary input by storing the state of the thermal replica as long as the binary input is active. It is also possible to reset the thermal replica to zero.

Temperature monitoring (ANSI 38)

Up to two temperature monitoring boxes with a total of 12 measuring sensors can be used for temperature monitoring and detection by the protection relay. The thermal status of motors, generators and transformers can be monitored with this device. Additionally, the temperature of the bearings of rotating machines are monitored for limit value violation. The temperatures are being measured with the help of temperature detectors at various locations of the device to be protected. This data is transmitted to the protection relay via one or two temperature monitoring boxes (see "Accessories", page 5/175).

Starting time supervision (ANSI 48/14)

Starting time supervision protects the motor against long unwanted start-ups that might occur in the event of excessive load torque or excessive voltage drops within the motor, or if the rotor is locked. Rotor temperature is calculated from measured stator current. The tripping time is calculated according to the following equation:

for
$$I > I_{MOTOR STAR}$$

$$t = \left(\frac{I_{\rm A}}{I}\right)^2 \cdot T_{\rm A}$$

I = Actual current flowing I_{MOTOR START} = Pickup current to detect a motor start

t	= Tripping time
$I_{\rm A}$	= Rated motor starting current
T	- Tuinning times at usted meeter

*T*_A = Tripping time at rated motor starting current (2 times, for warm and cold motor)

The characteristic (equation) can be adapted optimally to the state of the motor by applying different tripping times T_A in dependence of either cold or warm motor state. For differentiation of the motor state the thermal model of the rotor is applied.

If the trip time is rated according to the above formula, even a prolonged start-up and reduced voltage (and reduced start-up current) will be evaluated correctly. The tripping time is inverse (current dependent).

A binary signal is set by a speed sensor to detect a blocked rotor. An instantaneous tripping is effected.

Load jam protection (ANSI 51M)

Sudden high loads can cause slowing down and blocking of the motor and mechanical damages. The rise of current due to a load jam is being monitored by this function (alarm and tripping).

The overload protection function is too slow and therefore not suitable under these circumstances.

Fig. 5/155

Phase-balance current protection (ANSI 46) (*Negative-sequence protection*)

The negative-sequence / phase-balance current protection detects a phase failure or load unbalance due to network asymmetry and protects the rotor from impermissible temperature rise.

Undercurrent monitoring (ANSI 37)

With this function, a sudden drop in current, which can occur due to a reduced motor load, is detected. This may be due to shaft breakage, no-load operation of pumps or fan failure.

Motor statistics

Essential information on start-up of the motor (duration, current, voltage) and general information on number of starts, total operating time, total down time, etc. are saved as statistics in the device.

Voltage protection

Overvoltage protection (ANSI 59)

The two-element overvoltage protection detects unwanted network and machine overvoltage conditions. The function can operate either with phase-to-phase, phaseto-earth, positive phase-sequence or negative phase-sequence voltage. Three-phase and single-phase connections are possible.

Undervoltage protection (ANSI 27)

The two-element undervoltage protection provides protection against dangerous voltage drops (especially for electric machines). Applications include the isolation of generators or motors from the network to avoid undesired operating states and a possible loss of stability. Proper operating conditions of electrical machines are best evaluated with the positive-sequence quantities. The protection function is active over a wide frequency range (45 to 55, 55 to 65 Hz)¹⁾. Even when falling below this frequency range the function continues to work, however, with a greater tolerance band.

The function can operate either with phase-to-phase, phase-to-earth or positive phase-sequence voltage, and can be monitored with a current criterion. Three-phase and single-phase connections are possible.

Frequency protection (ANSI 810/U)

Frequency protection can be used for overfrequency and underfrequency protection. Electric machines and parts of the system are

1) The 45 to 55, 55 to 65 Hz range is available for $f_N = 50/60$ Hz.

Protection functions/Functions

protected from unwanted speed deviations. Unwanted frequency changes in the network can be detected and the load can be removed at a specified frequency setting. Frequency protection can be used over a wide frequency range $(40 \text{ to } 60, 50 \text{ to } 70 \text{ Hz})^{1}$. There are four elements (selectable as overfrequency or underfrequency) and each element can be delayed separately. Blocking of the frequency protection can be performed if using a binary input or by using an undervoltage element.

Fault locator (ANSI 21FL)

The integrated fault locator calculates the fault impedance and the distance-to-fault. The results are displayed in Ω , kilometers (miles) and in percent of the line length.

Circuit-breaker wear monitoring

Methods for determining circuit-breaker contact wear or the remaining service life of a circuit-breaker (CB) allow CB maintenance intervals to be aligned to their actual degree of wear. The benefit lies in reduced maintenance costs.

There is no mathematically exact method of calculating the wear or the remaining service life of circuit-breakers that takes into account the arc-chamber's physical conditions when the CB opens. This is why various methods of determining CB wear have evolved which reflect the different operator philosophies. To do justice to these, the devices offer several methods:

- ΣI
- ΣI^x , with x = 1...3
- $\sum i^2 t$

The devices additionally offer a new method for determining the remaining service life:

• Two-point method

The CB manufacturers double-logarithmic switching cycle diagram (see Fig. 5/181) and the breaking current at the time of contact opening serve as the basis for this method. After CB opening, the two-point method calculates the number of still possible switching cycles. To this end, the two points P1 and P2 only have to be set on the device. These are specified in the CB's technical data.

All of these methods are phase-selective and a limit value can be set in order to obtain an alarm if the actual value falls below or exceeds the limit value during determination of the remaining service life.

Commissioning

Commissioning could hardly be easier and is fully supported by DIGSI 4. The status of the binary inputs can be read individually and the state of the binary outputs can be set individually. The operation of switching elements (circuit-breakers, disconnect devices) can be checked using the switching functions of the bay controller. The analog measured values are represented as wide-ranging operational measured values. To prevent transmission of information to the control center during maintenance, the bay controller communications can be disabled to prevent unnecessary data from being transmitted. During commissioning, all indications with test marking for test purposes can be connected to a control and protection system.

Test operation

During commissioning, all indications can be passed to an automatic control system for test purposes.

Control and automatic functions

Control

In addition to the protection functions, the SIPROTEC 4 units also support all control and monitoring functions that are required for operating medium-voltage or high-voltage substations.

The main application is reliable control of switching and other processes.

The status of primary equipment or auxiliary devices can be obtained from auxiliary contacts and communicated to the 7SJ64 via binary inputs. Therefore it is possible to detect and indicate both the OPEN and CLOSED position or a fault or intermediate circuit-breaker or auxiliary contact position.

The switchgear or circuit-breaker can be controlled via:

- integrated operator panel
- binary inputs
- substation control and protection system
- DIGSI 4

Automation / user-defined logic

With integrated logic, the user can set, via a graphic interface (CFC), specific functions for the automation of switchgear or substation. Functions are activated via function keys, binary input or via communication interface.

Switching authority

100000

Switching authority is determined according to parameters, communication or by keyoperated switch (when available). If a source is set to "LOCAL", only local switching operations are possible. The following sequence of switching authority is laid down: "LOCAL"; DIGSI PC program, "REMOTE".

Key-operated switch

7SJ64 units are fitted with key-operated switch function for local/remote changeover and changeover between interlocked switching and test operation.

Command processing

All the functionality of command processing is offered. This includes the processing of single and double commands with or without feedback, sophisticated monitoring of the control hardware and software, checking of the external process, control actions using functions such as runtime monitoring and automatic command termination after output. Here are some typical applications:

- Single and double commands using 1, 1 plus 1 common or 2 trip contacts
- User-definable bay interlocks
- Operating sequences combining several switching operations such as control of circuit-breakers, disconnectors and earthing switches
- Triggering of switching operations, indications or alarm by combination with existing information

¹⁾ The 40 to 60, 50 to 70 Hz range is available for $f_{\rm N} = 50/60$ Hz.

Function

Motor control

The SIPROTEC 4 7SJ64 with high performance relays is well-suited for direct activation of the circuit-breaker, disconnector and earthing switch operating mechanisms in automated substations.

Interlocking of the individual switching devices takes place with the aid of programmable logic. Additional auxiliary relays can be eliminated. This results in less wiring and engineering effort.

Assignment of feedback to command

The positions of the circuit-breaker or switching devices and transformer taps are acquired by feedback. These indication inputs are logically assigned to the corresponding command outputs. The unit can therefore distinguish whether the indication change is a consequence of switching operation or whether it is a spontaneous change of state.

Chatter disable

Chatter disable feature evaluates whether, in a configured period of time, the number of status changes of indication input exceeds a specified figure. If exceeded, the indication input is blocked for a certain period, so that the event list will not record excessive operations.

Indication filtering and delay

Binary indications can be filtered or delayed.

Filtering serves to suppress brief changes in potential at the indication input. The indication is passed on only if the indication voltage is still present after a set period of time.

In the event of indication delay, there is a wait for a preset time. The information is passed on only if the indication voltage is still present after this time.

Indication derivation

A further indication (or a command) can be derived from an existing indication. Group indications can also be formed. The volume of information to the system interface can thus be reduced and restricted to the most important signals.

Typical wiring for 7SJ642 motor direct control (simplified representation without fuses) Binary output BO6 and BO7 are interlocked so that only one set of contacts are closed at a time.

Fig. 5/158 Example: Single busbar with circuit-breaker and motor-controlled three-position switch

Function

Measured values

The r.m.s. values are calculated from the acquired current and voltage along with the power factor, frequency, active and reactive power. The following functions are available for measured value processing:

- Currents I_{L1} , I_{L2} , I_{L3} , I_E , I_{EE} (67Ns)
- Voltages V_{L1}, V_{L2}, V_{L3}, V_{L1L2}, V_{L2L3}, V_{L3L1}, V_{syn}
- Symmetrical components *I*₁, *I*₂, 3*I*₀; *V*₁, *V*₂, *V*₀
- Power Watts, Vars, VA/P, Q, S (P, Q: total and phase-selective)
- Power factor (cos φ) (total and phase-selective)
- Frequency
- Energy ± kWh, ± kVArh, forward and reverse power flow
- Mean as well as minimum and maximum current and voltage values
- Operating hours counter
- Mean operating temperature of overload function
- Limit value monitoring
- Limit values are monitored using programmable logic in the CFC. Commands can be derived from this limit value indication.
- Zero suppression In a certain range of very low measured values, the value is set to zero to suppress interference.

Metered values

For internal metering, the unit can calculate an energy metered value from the measured current and voltage values. If an external meter with a metering pulse output is available, the SIPROTEC 4 unit can obtain and process metering pulses via an indication input.

The metered values can be displayed and passed on to a control center as an accumulation with reset. A distinction is made between forward, reverse, active and reactive energy.

Switchgear cubicles for high/medium voltage

All units are designed specifically to meet the requirements of high/medium-voltage applications.

In general, no separate measuring instruments (e.g. for current, voltage, frequency measuring transducer ...) or additional control components are necessary.

Fig. 5/160 NX PLUS panel (gas-insulated)

Communication

In terms of communication, the units offer substantial flexibility in the context of connection to industrial and power automation standards. Communication can be extended or added on thanks to modules for retrofitting on which the common protocols run. Therefore, also in the future it will be possible to optimally integrate units into the changing communication infrastructure, for example in Ethernet networks (which will also be used increasingly in the power supply sector in the years to come).

Serial front interface

There is a serial RS232 interface on the front of all the units. All of the unit's functions can be set on a PC by means of the DIGSI 4 protection operation program. Commissioning tools and fault analysis are also built into the program and are available through this interface.

Rear-mounted interfaces¹⁾

A number of communication modules suitable for various applications can be fitted in the rear of the flush-mounting housing. In the flush-mounting housing, the modules can be easily replaced by the user. The interface modules support the following applications:

• Time synchronization interface All units feature a permanently integrated electrical time synchronization interface. It can be used to feed timing telegrams in IRIG-B or DCF77 format into the units via time synchronization receivers.

• System interface Communication with a central control system takes place through this interface. Radial or ring type station bus topologies can be configured depending on the chosen interface. Furthermore, the units can exchange data through this interface via Ethernet and IEC 61850 protocol and can also be operated by DIGSI.

• Service interface

The service interface was conceived for remote access to a number of protection units via DIGSI. It can be an electrical RS232/RS485 interface. For special applications, a maximum of two temperature monitoring boxes (RTD-box) can be connected to this interface as an alternative.

• Additional interface Up to 2 RTD-boxes can be connected via this interface. System interface protocols (retrofittable)

IEC 61850 protocol

The Ethernet-based IEC 61850 protocol is the worldwide standard for protection and control systems used by power supply corporations. Siemens was the first manufacturer to support this standard. By means of this protocol, information can also be exchanged directly between bay units so as to set up simple masterless systems for bay and system interlocking. Access to the units via the Ethernet bus is also possible with DIGSI. It is also possible to retrieve operating and fault messages and fault recordings via a browser. This Web monitor also provides a few items of unit-specific information in browser windows.

IEC 60870-5-103 protocol

The IEC 60870-5-103 protocol is an international standard for the transmission of protective data and fault recordings. All messages from the unit and also control commands can be transferred by means of published, Siemens-specific extensions to the protocol.

Redundant solutions are also possible. Optionally it is possible to read out and alter individual parameters (only possible with the redundant module).

PROFIBUS-DP protocol

PROFIBUS-DP is the most widespread protocol in industrial automation. Via PROFIBUS-DP, SIPROTEC units make their information available to a SIMATIC controller or, in the control direction, receive commands from a central SIMATIC. Measured values can also be transferred.

MODBUS RTU protocol

This uncomplicated, serial protocol is mainly used in industry and by power supply corporations, and is supported by a number of unit manufacturers. SIPROTEC units function as MODBUS slaves, making their information available to a master or receiving information from it. A time-stamped event list is available.

Fig. 5/161 IEC 60870-5-103: Radial fiber-optic connection

Fig. 5/162

Bus structure for station bus with Ethernet and IEC 61850, fiber-optic ring

Communication

DNP 3.0 protocol

Power supply corporations use the serial DNP 3.0 (Distributed Network Protocol) for the station and network control levels. SIPROTEC units function as DNP slaves, supplying their information to a master system or receiving information from it.

System solutions for protection and station control

Together with the SICAM power automation system, SIPROTEC 4 can be used with PROFIBUS-FMS. Over the low-cost electrical RS485 bus, or interference-free via the optical double ring, the units exchange information with the control system.

Units featuring IEC 60870-5-103 interfaces can be connected to SICAM in parallel via the RS485 bus or radially by fiber-optic link. Through this interface, the system is open for the connection of units of other manufacturers (see Fig. 5/161).

Because of the standardized interfaces, SIPROTEC units can also be integrated into systems of other manufacturers or in SIMATIC. Electrical RS485 or optical interfaces are available. The optimum physical data transfer medium can be chosen thanks to opto-electrical converters. Thus, the RS485 bus allows low-cost wiring in the cubicles and an interference-free optical connection to the master can be established.

For IEC 61850, an interoperable system solution is offered with SICAM PAS. Via the 100 Mbits/s Ethernet bus, the units are linked with PAS electrically or optically to the station PC. The interface is standardized, thus also enabling direct connection of units of other manufacturers to the Ethernet bus. With IEC 61850, however, the units can also be used in other manufacturers' systems (see Fig. 5/162).

Fig. 5/163

System solution/communication

Fig. 5/164 Optical Ethernet communication module for IEC 61850 with integrated Ethernet-switch

Typical connections

Connection of current and voltage transformers

Standard connection

For earthed networks, the earth current is obtained from the phase currents by the residual current circuit.

Typical connections

Connection for compensated networks

The figure shows the connection of two phase-to-earth voltages and the *V*_E voltage of the open delta winding and a phase-earth neutral current transformer for the earth current. This connection maintains maximum precision for directional earth-fault detection and must be used in compensated networks.

Fig. 5/168 shows sensitive directional earth-fault detection.

Fig. 5/168 Sensitive directional earth-fault detection with directional element for phases

Connection for isolated-neutral or compensated networks only

If directional earth-fault protection is not used, the connection can be made with only two phase current transformers. Directional phase short-circuit protection can be achieved by using only two primary transformers.

Fig. 5/169 Isolated-neutral or compensated networks

Connection for the synchronization function

The 3-phase system is connected as reference voltage, i. e. the outgoing voltages as well as a single-phase voltage, in this case a busbar voltage, that has to be synchronized.

Fig. 5/170 Measuring of the busbar voltage and the outgoing feeder voltage for synchronization

Typical applications

Overview of connection types

Type of network	Function	Current connection	Voltage connection
(Low-resistance) earthed network	Time-overcurrent protection phase/earth non-directional	Residual circuit, with 3 phase-current transformers required, phase-balance neutral current transformer possible	-
(Low-resistance) earthed networks	Sensitive earth-fault protection	Phase-balance neutral current transformers required	-
Isolated or compensated networks	Time-overcurrent protection phases non-directional	Residual circuit, with 3 or 2 phase- current transformers possible	-
(Low-resistance) earthed networks	Time-overcurrent protection phases directional	Residual circuit, with 3 phase-current transformers possible	Phase-to-earth connection or phase-to-phase connection
Isolated or compensated networks	Time-overcurrent protection phases directional	Residual circuit, with 3 or 2 phase- current transformers possible	Phase-to-earth connection or phase-to-phase connection
(Low-resistance) earthed networks	Time-overcurrent protection earth directional	Residual circuit, with 3 phase-current transformers required, phase-balance neutral current transformers possible	Phase-to-earth connection required
Isolated networks	Sensitive earth-fault protection	Residual circuit, if earth current $> 0.05 I_N$ on secondary side, otherwise phase-balance neutral current transformers required	3 times phase-to-earth connection or phase-to-earth connection with open delta winding
Compensated networks	Sensitive earth-fault protection $\cos \varphi$ measurement	Phase-balance neutral current transformers required	Phase-to-earth connection with open delta winding required

Application examples

Synchronization function

When two subnetworks must be interconnected, the synchronization function monitors whether the subnetworks are synchronous and can be connected without risk of losing stability.

As shown in Fig. 5/171, load is being fed from a generator to a busbar via a transformer. It is assumed that the frequency difference of the 2 subnetworks is such that the device determines asynchronous system conditions.

The voltages of the busbar and the feeder should be the same when the contacts are made; to ensure this condition the synchronism function must run in the "synchronous/asynchronous switching" mode. In this mode, the operating time of the CB can be set within the relay. Differences between angle and frequency can then be calculated by the relay while taking into account the operating time of the CB. From these differences, the unit derives the exact time for issuing the CLOSE command under asynchronous conditions. When the contacts close, the voltages will be in phase. The vector group of the transformer can be considered by setting parameters. Thus no external circuits for vector group adaptation are required.

This synchronism function can be applied in conjunction with the auto-reclosure function as well as with the control function CLOSE commands (local/remote).

1) Synchronization function

2) Auto-reclosure function

Typical applications

Connection of circuit-breaker

Undervoltage releases

Undervoltage releases are used for automatic tripping of high-voltage motors.

Example:

DC supply voltage of control system fails and manual electric tripping is no longer possible.

Automatic tripping takes place when voltage across the coil drops below the trip limit. In Figure 5/172, tripping occurs due to failure of DC supply voltage, by automatic opening of the live status contact upon failure of the protection unit or by short-circuiting the trip coil in event of a network fault.

Fig. 5/172 Undervoltage release with make contact 50, 51

In Fig. 5/173 tripping is by failure of auxiliary voltage and by interruption of tripping circuit in the event of network failure. Upon failure of the protection unit, the tripping circuit is also interrupted, since contact held by internal logic drops back into open position.

Fig. 5/173 Undervoltage release with locking contact (trip signal 50 is inverted)

Typical applications

Trip circuit supervision (ANSI 74TC)

One or two binary inputs can be used for monitoring the circuit-breaker trip coil including its incoming cables. An alarm signal occurs whenever the circuit is interrupted.

Lockout (ANSI 86)

All binary outputs can be stored like LEDs and reset using the LED reset key. The lockout state is also stored in the event of supply voltage failure. Reclosure can only occur after the lockout state is reset.

Reverse-power protection for dual supply (ANSI 32R)

If power is fed to a busbar through two parallel infeeds, then in the event of any fault on one of the infeeds it should be selectively interrupted. This ensures a continued supply to the busbar through the remaining infeed. For this purpose, directional devices are needed which detect a short-circuit current or a power flow from the busbar in the direction of the infeed. The directional timeovercurrent protection is usually set via the load current. It cannot be used to deactivate low-current faults. Reverse-power protection can be set far below the rated power. This ensures that it also detects power feedback into the line in the event of low-current faults with levels far below the load current. Reverse-power protection is performed via the "flexible protection functions" of the 7SJ64.

	Protection indications
	511* General trip
2	6852* Trip circuit supervi-
	sion: Trip relay 6853* Trip circuit supervi- sion: CB aux
	52a open, when CB is open 52b open, when CB is closed
	BI Binary input

Fig. 5/174 Trip circuit supervision with 2 binary inputs

Fig. 5/175 Reverse-power protection for dual supply

General unit data					
Measuring circuits					
System frequency		50 / 60 Hz (settable)			
Current transformer					
Rated current Inom		1 or 5 A	(settable	e)	
Option: sensitive earth-fault	CT	$I_{\rm EE} < 1.6$	5 A		
Power consumption at $I_{nom} = 1 A$ at $I_{nom} = 5 A$ for sensitive earth-fault CT at 1 A		Approx. 0.05 VA per phase Approx. 0.3 VA per phase Approx. 0.05 VA			
Overload capability Thermal (effective)		100 x I_{nom} for 1 s 30 x I_{nom} for 10 s 4 x I_{nom} continuous			
Dynamic (impulse curren	t)	250 X In	om (nair c	cycle)	
Overload capability if equipped with sensitive earth-fault CT Thermal (effective)		300 A for 1 s 100 A for 10 s 15 A continuous 750 A (balf cycla)			
Voltage transformer					
Rated voltage V_{nom}		100 V to 225 V			
Measuring range		0 V to 200 V			
Power consumption at $V_{\text{nom}} = 100 \text{ V}$		< 0.3 V	A per ph	ase	
Overload capability in voltage path (phase-neutral voltage)		230 V continuous			
Auxiliary voltage (via integ	rated con	/erter)			
Rated auxiliary voltage V _{aux}	DC	24/48 V	60/1	25 V 110	/250 V
Permissible tolerance	DC	19 - 58 V 48 - 150 V 88 - 300 V			
Ripple voltage, peak-to-peak		\leq 12 % of rated auxiliary voltage			
Power consumption		7SJ640	7SJ641 7SJ642	7SJ645	7SJ647
Quiescent Energized	Approx. Approx.	5 W 9 W	5.5 W 12.5 W	6.5 W 15 W	7.5 W 21 W
Backup time during loss/short-circuit of auxiliary direct voltage		≥ 50 ms at V > 110 V DC ≥ 20 ms at V > 24 V DC			
Rated auxiliary voltage V_{aux}	d auxiliary voltage V _{aux} AC 115 / 230 V				
Permissible tolerance	AC	92 - 132 V / 184 - 265 V			
Power consumption	consumption 7SJ640 7S 7S			7SJ645	7SJ647
Quiescent Energized	Approx. Approx.	7 W 12 W	9 W 19 W	12 W 23 W	16 W 33 W
Backup time during loss/short-circuit		≥ 200 ms			

Binary inputs/indication inputs						
Туре	7SJ640	7SJ641	7SJ642	7SJ645	7SJ647	
Number (marshallable)	7	15	20	33	48	
Voltage range	24 - 250	V DC				
Pickup threshold modifiable by plug-in jumpers						
Pickup threshold DC	19 V DC		88 V DC	88 V DC		
For rated control voltage DC	24/48/60 125 V DO	/110/ C	110/125/	/220/250 `	V DC	
Power consumption energized	0.9 mA (for BI 8 1.8 mA fe	independ 19 / 21 or BI 1?	ent of ope .32; 7 / 20/33.	erating vo	ltage)	
Binary outputs/command o	outputs					
Туре	7SJ640	7SJ641	7SJ642	7SJ645	7SJ647	
Command/indication relay	5	13	8	11	21	
Contacts per command/ indication relay	1 NO / fc	orm A				
Live status contact	1 NO / N	IC (jumpe	er)/form A	A/B		
Switching capacity Make	1000 W /	'VA				
Break	30 W / VA / 40 W resistive/ 25 W at L/R \leq 50 ms					
Switching voltage	$\leq 250~{\rm V}$	DC				
Permissible current	5 A continuous, 30 A for 0.5 s making current, 2000 switching cycles					
Power relay (for motor cont	rol)					
Туре	7SJ640 7SJ641	7SJ642	7SJ645	7SJ647		
Number	0	2 (4)	4 (8)	4 (8)		
Number of contacts/relay	2 NO / form A					
Switching capacity Make	1000 W / VA at 48 V 250 V / 500 W at 24 V					
Break	1000 W / VA at 48 V 250 V / 500 W at 24 V					
Switching voltage	≤ 250 V DC					
Permissible current	5 A conti 30 A for	nuous, 0.5 s				

5/180

35 V/m; 25 to 1000 MHz;

00	Cal	da	10
	 CUI	uu	u

Electrical tests

Specification

Standards

IEC 60255 ANSI C37.90, C37.90.1, C37.90.2, UL508

IEC 60255-5; ANSI/IEEE C37.90.0

2.5 kV (r.m.s. value), 50/60 Hz

5 kV (peak value); 1.2/50 µs; 0.5 J

3 positive and 3 negative impulses

3.5 kV DC

500 V AC

at intervals of 5 s

Insulation tests

Standards

Voltage test (100 % test) all circuits except for auxiliary voltage and RS485/RS232 and time synchronization

Auxiliary voltage

Communication ports and time synchronization

Impulse voltage test (type test) all circuits, except communication ports and time synchronization, class III

EMC tests for interference immunity; type tests

Standards

High-frequency test IEC 60255-22-1, class III and VDE 0435 Part 303, class III

Electrostatic discharge IEC 60255-22-2 class IV and EN 61000-4-2, class IV

Irradiation with radio-frequency field, non-modulated IEC 60255-22-3 (Report) class III

Irradiation with radio-frequency field, amplitude-modulated IEC 61000-4-3; class III

Irradiation with radio-frequency field, pulse-modulated IEC 61000-4-3/ENV 50204; class III

Fast transient interference/burst IEC 60255-22-4 and IEC 61000-4-4, class IV

High-energy surge voltages (Surge) IEC 61000-4-5; class III Auxiliary voltage

Binary inputs/outputs

Line-conducted HF, amplitude-modulated IEC 61000-4-6, class III

Power frequency magnetic field IEC 61000-4-8, class IV IEC 60255-6

Oscillatory surge withstand capability ANSI/IEEE C37.90.1

Fast transient surge withstand capability ANSI/IEEE C37.90.1 IEC 60255-6; IEC 60255-22 (product standard) EN 50082-2 (generic specification) DIN 57435 Part 303 2.5 kV (peak value); 1 MHz; τ =15 ms;

400 surges per s; test duration 2 s

8 kV contact discharge; 15 kV air gap discharge; both polarities; 150 pF; $R_i = 330 \Omega$ 10 V/m; 27 to 500 MHz

10 V/m, 80 to 1000 MHz: AM 80 %; 1 kHz

10 V/m, 900 MHz; repetition rate 200 Hz, on duration 50 %

4 kV; 5/50 ns; 5 kHz; burst length = 15 ms; repetition rate 300 ms; both polarities; $R_i = 50 \Omega$; test duration 1 min

From circuit to circuit: 2 kV; 12 Ω; 9 μF across contacts: 1 kV; 2 Ω;18 µF

From circuit to circuit: 2 kV; 42 Ω; 0.5 μF across contacts: 1 kV; 42 Ω; 0.5 µF 10 V; 150 kHz to 80 MHz;

AM 80 %; 1 kHz

30 A/m; 50 Hz, continuous 300 A/m; 50 Hz, 3 s 0.5 mT, 50 Hz 2.5 to 3 kV (peak value), 1 to 1.5 MHz damped wave; 50 surges per s;

duration 2 s, $R_i = 150$ to 200 Ω 4 to 5 kV; 10/150 ns; 50 surges per s both polarities; duration 2 s, $R_i = 80 \Omega$ Radiated electromagnetic interference ANSI/IEEE C37.90.2 Damped wave

IEC 60694 / IEC 61000-4-12

2.5 kV (peak value, polarity

alternating) 100 kHz, 1 MHz, 10 and 50 MHz, $R_{i} = 200 \Omega_{i}$

amplitude and pulse-modulated

EMC tests for interference emission; type tests

Standard Conducted interferences only auxiliary voltage IEC/CISPR 22 Radio interference field strength IEC/CISPR 11 Units with a detached operator panel must be installed in a metal cubicle to

EN 50081-* (generic specification) 150 kHz to 30 MHz Limit class B 30 to 1000 MHz

Limit class B

maintain limit class B

Mechanical stress tests

Vibration, shock stress and seismic vibration

During operation Standards Vibration IEC 60255-21-1, class 2 IEC 60068-2-6

Shock IEC 60255-21-2, class 1 IEC 60068-2-27

Seismic vibration IEC 60255-21-3, class 1 IEC 60068-3-3

During transportation

Standards

Vibration IEC 60255-21-1, class 2 IEC 60068-2-6

Shock IEC 60255-21-2, Class 1 IEC 60068-2-27

Continuous shock IEC 60255-21-2, class 1 IEC 60068-2-29

Sinusoidal 10 to 60 Hz; +/- 0.075 mm amplitude: 60 to 150 Hz; 1 g acceleration frequency sweep 1 octave/min 20 cycles in 3 perpendicular axes Semi-sinusoidal Acceleration 5 g, duration 11 ms; 3 shocks in both directions of 3 axes Sinusoidal 1 to 8 Hz: ± 3.5 mm amplitude (horizontal axis) 1 to 8 Hz: ± 1.5 mm amplitude (vertical axis) 8 to 35 Hz: 1 g acceleration (horizontal axis) 8 to 35 Hz: 0.5 g acceleration (vertical axis)

IEC 60255-21 and IEC 60068-2

Frequency sweep 1 octave/min 1 cycle in 3 perpendicular axes

IEC 60255-21 and IEC 60068-2 Sinusoidal

5 to 8 Hz: \pm 7.5 mm amplitude; 8 to 150 Hz; 2 g acceleration, frequency sweep 1 octave/min 20 cycles in 3 perpendicular axes

Semi-sinusoidal Acceleration 15 g, duration 11 ms 3 shocks in both directions of 3 axes

Semi-sinusoidal Acceleration 10 g, duration 16 ms 1000 shocks in both directions of 3 axes

Climatic stress tests

Temperatures

Type-tested acc. to	IEC 60068-2-1
and -2, test Bd, for	16 h

Temporarily permissible operating temperature, tested for 96 h

Recommended permanent operating temperature acc. to IEC 60255-6 (Legibility of display may be impaired above +55 °C /+131 °F)

- Limiting temperature during permanent storage
- Limiting temperature during transport

Humidity

Permissible humidity It is recommended to arrange the units in such a way that they are not exposed to direct sunlight or pronounced temperature changes that could cause condensation.

Unit design

Туре	7SJ640 7SJ642	7SJ641	7SJ645 7SJ647	
Housing	7XP20			
Dimensions	See dimension drawings, part 15 of this catalog			
Weight in kg	Housing width 1/3	Housing width 1/2	Housing width 1/1	
Surface-mounting housing	8	11	15	
Flush-mounting housing Housing for detached	5	6	10	
operator panel	-	8	12	
Detached operator panel	-	2.5	2.5	
Degree of protection acc. to EN 60529				
Surface-mounting housing	IP 51			
Flush-mounting housing	Front: IP 51	, rear: IP 20	;	
Operator safety	IP 2x with c	over		

-20 °C to +70 °C /-4 °F to -158 °F
-5 °C to +55 °C /+25 °F to +131 °F
-25 °C to +55 °C /-13 °F to +131 °F
-25 °C to +70 °C /-13 °F to +158 °F

-25 °C to +85 °C /-13 °E to +185 °E

Annual average 75 % relative humidity; on 56 days a year up to 95 % relative humidity; condensation not permissible!

Serial interfaces **Operating interface** (front of unit) Connection Non-isolated, RS232; front panel, 9-pin subminiature connector Transmission rate Factory setting 115200 baud, min. 4800 baud, max. 115200 baud Service/modem interface (rear of unit) Isolated interface for data transfer Port C: DIGSI 4/modem/RTD-box Factory setting 38400 baud, Transmission rate min. 4800 baud, max. 115200 baud RS232/RS485 Connection For flush-mounting housing/ 9-pin subminiature connector, surface-mounting housing with mounting location "C" detached operator panel For surface-mounting housing At the bottom part of the housing: with two-tier terminal at the shielded data cable top/bottom part Distance RS232 15 m /49.2 ft Distance RS485 Max. 1 km/3300 ft Test voltage 500 V AC against earth Additional interface (rear of unit) Isolated interface for data transfer Port D: RTD-box Transmission rate Factory setting 38400 baud, min. 4800 baud, max. 115200 baud RS485 Connection For flush-mounting housing/ 9-pin subminiature connector, mounting location "D" surface-mounting housing with detached operator panel For surface-mounting housing At the bottom part of the housing: with two-tier terminal at the shielded data cable top/bottom part Distance Max. 1 km/3300 ft Test voltage 500 V AC against earth Fiber optic Integrated ST connector for fiber-Connection fiber-optic cable optic connection For flush-mounting housing/ Mounting location "D" surface-mounting housing with detached operator panel For surface-mounting housing At the bottom part of the housing with two-tier terminal at the top/bottom part Optical wavelength 820 nm Permissible path attenuation Max. 8 dB, for glass fiber 62.5/125 µm Distance Max. 1.5 km/0.9 miles

System interface (rear of unit)

IEC 60870-5-103 protocol Isolated interface for data transfer to a control center

Transmission rate

RS232/RS485

Connection For flush-mounting housing/ surface-mounting housing with detached operator panel For surface-mounting housing with two-tier terminal on the top/bottom part

Distance RS232

Distance RS485

Test voltage

Fiber optic

Connection fiber-optic cable

For flush-mounting housing/ surface-mounting housing with detached operator panel

For surface-mounting housing with two-tier terminal on the top/bottom part

Optical wavelength

Permissible path attenuation Distance

IEC 60870-5-103 protocol, redundant

RS485

Connection For flush-mounting housing/ surface-mounting housing with detached operator panel For surface-mounting housing with two-tier terminal on the top/bottom part

Distance RS485

Test voltage

IEC 61850 protocol

Isolated interface for data transfer: - to a control center

- with DIGSI

- between SIPROTEC 4 relays

Transmission rate

Ethernet, electrical

Connection For flush-mounting housing/ surface-mounting housing with detached operator panel

Distance

Test voltage

Ethernet, optical

Connection For flush-mounting housing/ surface-mounting housing with detached operator panel Optical wavelength Distance

Port B

Factory setting 9600 baud, min. 1200 baud, max. 115200 baud

Mounting location "B"

At the bottom part of the housing: shielded data cable

Max. 15 m/49 ft Max. 1 km/3300 ft 500 V AC against earth

Integrated ST connector for fiberoptic connection Mounting location "B"

At the bottom part of the housing

820 nm Max. 8 dB, for glass fiber 62.5/125 µ Max. 1.5 km/0.9 miles

Mounting location "B"

(not available)

Max. 1 km/3300 ft 500 V AC against earth

Port B, 100 Base T acc. to IEEE802.

100 Mbit

Two RJ45 connectors Mounting location "B"

Max. 20 m / 65.6 ft 500 V AC against earth

Intergr. LC connector for FO connection Mounting location "B"

1300 nmm 1.5 km/0.9 miles

	PROFIBUS-FMS/DP	
	Isolated interface for data transfer to a control center	Port B
	Transmission rate	Up to 1.5 Mbaud
	<u>RS485</u>	
	Connection For flush-mounting housing/	9-pin subminiature connector,
	surface-mounting housing with detached operator panel	mounting location "B"
	For surface-mounting housing with two-tier terminal on the top/bottom part	At the bottom part of the house shielded data cable
	Distance	1000 m/3300 ft ≤ 93.75 kbaud; 500 m/1500 ft ≤ 187.5 kbaud; 200 m/600 ft ≤ 1.5 Mbaud; 100 m/300 ft ≤ 12 Mbaud
	Test voltage	500 V AC against earth
	Fiber optic	
	Connection fiber-optic cable For flush-mounting housing/ surface-mounting housing with detached operator panel	Integr. ST connector for FO connection, mounting location
	For surface-mounting housing with two-tier terminal on the top/bottom part	At the bottom part of the housi <u>Important</u> : Please refer to footn ¹⁾ and ²⁾ on page $5/215$
	Optical wavelength	820 nm
	Permissible path attenuation	Max. 8 dB, for glass fiber 62.5/12
m	Distance	500 kB/s 1.6 km/0.99 miles 1500 kB/s 530 m/0.33 miles
	MODBUS RTU, ASCII, DNP 3.0	
	Isolated interface for data transfer to a control center	Port B
	Transmission rate	Up to 19200 baud
	<u>RS485</u>	
	Connection	
	For flush-mounting housing/ surface-mounting housing with detached operator panel	9-pin subminiature connector, mounting location "B"
	For surface-mounting housing with two-tier terminal at the top/bottom part	At bottom part of the housing: shielded data cable
3	Distance	Max. 1 km/3300 ft max. 32 unit recommended
	Test voltage	500 V AC against earth
	Fiber-optic	

Connection fiber-optic cable

For flush-mounting housing/ surface-mounting housing with detached operator panel For surface-mounting housing with two-tier terminal at the

top/bottom part Optical wavelength

Permissible path attenuation

Distance

1) At $I_{nom} = 1$ A, all limits divided by 5.

for FO g location "B"

the housing:

the housing er to footnotes 5 ber 62.5/125 μm

miles miles

Integrated ST connector for fiber-optic connection Mounting location "B"

At the bottom part of the housing Important: Please refer to footnotes $\frac{1}{1}$ and $\frac{2}{2}$ on page 5/215 820 nm Max 8 dB. for glass fiber 62.5/125 µm

Max. 1.5 km/0.9 miles

Time synchronization DCF77/IRIG-B signal (Format IRIG-B000)		
Connection	9-pin subminiature connector (SUB-D) (terminal with surface-mounting bousing)	
Voltage levels	5 V, 12 V or 24 V (optional)	
Functions		
Definite-time overcurrent protection (ANSI 50, 50N, 67, 67N)	, directional/non-directional	
Operating mode non-directional phase protection (ANSI 50)	3-phase (standard) or 2-phase (L1 and L3)	
Number of elements (stages)	<i>I</i> >, <i>I</i> >>, <i>I</i> >>> (phases) <i>I</i> _E >, <i>I</i> _E >>, <i>I</i> _E >>> (earth)	
Setting ranges		
Pickup phase elements Pickup earth elements	0.5 to 175 A or $\infty^{(1)}$ (in steps of 0.01 A) 0.25 to 175 A or $\infty^{(1)}$ (in steps of 0.01 A)	
Delay times T Dropout delay time T_{DO}	0 to 60 s or ∞ (in steps of 0.01 s) 0 to 60 s (in steps of 0.01 s)	
Times Pickup times (without inrush restraint, with inrush restraint + 10 ms)		
With twice the setting value With five times the setting value	Non-directionalDirectionalApprox. 30 ms45 msApprox. 20 ms40 ms	
Dropout times	Approx. 40 ms	
Dropout ratio	Approx. 0.95 for $I/I_{\text{nom}} \ge 0.3$	
Pickup Delay times <i>T</i> , <i>T</i> _{DO}	2 % of setting value or 50 mA ¹⁾ 1 % or 10 ms	
Inverse-time overcurrent protection, (ANSI 51, 51N, 67, 67N)	directional/non-directional	
Operating mode non-directional phase protection (ANSI 51)	3-phase (standard) or 2-phase (L1 and L3)	
Setting ranges Pickup phase element $I_{\rm P}$ Pickup earth element $I_{\rm EP}$ Time multiplier T (IEC characteristics) Time multiplier D (ANSI characteristics)	0.5 to 20 A or ∞^{11} (in steps of 0.01 A) 0.25 to 20 A or ∞^{11} (in steps of 0.01 A) 0.05 to 3.2 s or ∞ (in steps of 0.01 s) 0.05 to 15 s or ∞ (in steps of 0.01 s)	
Undervoltage threshold <i>V</i> < for release <i>I</i> _p	10.0 to 125.0 V (in steps of 0.1 V)	
Trip characteristics IEC ANSI	Normal inverse, very inverse, extremely inverse, long inverse Inverse, short inverse, long inverse moderately inverse, very inverse, extremely inverse, definite inverse	
User-defined characteristic	Defined by a maximum of 20 value pairs of current and time delay	
Dropout setting Without disk emulation	Approx. 1.05 · setting value I_p for $I_p/I_{nom} \ge 0.3$, corresponds to approx. 0.95 · pickup threshold	
With disk emulation	Approx. 0.90 \cdot setting value $I_{\rm p}$	

Tolerances Pickup/dropout thresholds I_p , I_{Ep} Pickup time for $2 \le I/I_p \le 20$	2 % of setting value or 50 mA ¹⁾ 5 % of reference (calculated) value + 2 % current tolerance, respectively
Dropout ratio for $0.05 \le I/I_{\rm p}$ ≤ 0.9	30 ms 5 % of reference (calculated) value + 2 % current tolerance, respectively 30 ms
Direction detection	
For phase faults	
Polarization	With cross-polarized voltages; With voltage memory for measure- ment voltages that are too low
Forward range Rotation of reference voltage $V_{\text{ref,rot}}$	$V_{\text{ref,rot}} \pm 86^{\circ}$ - 180° to 180° (in steps of 1°)
Direction sensitivity	For one and two-phase faults unlimited; For three-phase faults dynamically unlimited; Steady-state approx. 7 V phase-to-phase
For earth faults	
Polarization	With zero-sequence quantities $3V_0$, $3I_0$ or with negative-sequence quantities $3V_2$, $3I_2$
Forward range Rotation of reference voltage $V_{\text{ref,rot}}$	V _{ref,rot} ± 86° - 180° to 180° (in steps of 1°)
Direction sensitivity Zero-sequence quantities $3V_0$, $3I_0$	$V_{\rm E} \approx 2.5 \text{ V}$ displacement voltage,
Negative -sequence quantities	$3V_0 \approx 5$ V displacement voltage, calculated $3V_2 \approx 5$ V negative-sequence voltage;
<i>SV</i> ₂ , <i>SI</i> ₂	$3I_2 \approx 225 \text{ mA}$ negative-sequence current ¹⁾
Tolerances (phase angle error under reference conditions) For phase and earth faults	+ 3 ° electrical
Inrush blocking	
Influenced functions	Time-overcurrent elements IN IN
	$I_{\rm Ep}$ (directional, non-directional)
Lower function limit phases	At least one phase current $(50 \text{ Hz and } 100 \text{ Hz}) \ge 125 \text{ mA}^{1)}$
Lower function limit earth	Earth current $(50 \text{ Hz and } 100 \text{ Hz}) \ge 125 \text{ mA}^{1)}$
Upper function limit (setting range)	1.5 to 125 A $^{1)}$ (in steps of 0.01 A)
Setting range I_{2f}/I	10 to 45 % (in steps of 1 %)
Crossblock (I_{L1}, I_{L2}, I_{L3})	ON/OFF
Dynamic setting change	
Controllable function	Directional and non-directional pickup, tripping time
Start criteria	Current criteria, CB position via aux. contacts, binary input, auto-reclosure ready
Time control	3 timers
Current criteria	Current threshold (reset on dropping below threshold; monitoring with timer)

5

IE and VE measured or

 $3I_0$ and $3V_0$ calculated

Active/reactive power measurement

0.001 to 1.2 A (in steps of 0.001 A)

0.25 to 150 A¹⁾ (in steps of 0.01 A)

 -45° to $+45^{\circ}$ (in steps of 0.1°)

1° to 15° (in steps of 1°)

1 to 60 s (in steps of 1 s)

 $I_{\rm E}$ and $V_{\rm E}$ measured or

3Io and 3Vo calculated

0.4 to 50 V (in steps of 0.1 V)

-180° to 180° (in steps of 0.1°)

10 to 90 V (in steps of 1 V)

0° to 180° (in steps of 0.1°)

3 % of setting value or 0.3 V

3 % of setting value or 3 V

0° to 5° (in steps of 0.1°)

0.001 to 1.5 A (in steps of 0.001 A) 0.25 to 175 $A^{(1)}$ (in steps of 0.01 A)

30

2 % of setting value or 1 mA

2 % of setting value or 50 mA¹⁾

Technical data

(Sensitive) earth-fault detection (ANSI 64, 50 Ns, 51Ns, 67Ns)Displacement voltage starting for all types of earth fault (ANSI 64)Setting ranges
Pickup threshold $V_E>$ (measured)
Pickup threshold $3V_0>$ (calcu-
lated)
Delay time $T_{Delay pickup}$ 1.8 to 200 V (in steps of 0.1 V)
10 to 225 V (in steps of 0.1 V)
lot o 320 s or ∞ (in steps of 0.01 s)
0.1 to 40000 s or ∞ (in steps of 0.01 s)Times

Pickup time Dropout ratio Tolerances

acc. to DIN 57435 part 303

Pickup threshold $V_{\rm E}$ (measured) Pickup threshold $3V_0$ (calculated) Delay times

Phase detection for earth fault in an unearthed system

Measuring principleVoltage measurement
(phase-to-earth)Setting ranges
 $V_{\rm ph min}$ (earth-fault phase)10 to 100 V (in steps of 1 V) $V_{\rm ph max}$ (unfaulted phases)10 to 100 V (in steps of 1 V)Measuring tolerance3 % of setting value, or 1 V

Approx. 50 ms

0.95 or (pickup value -0.6 V)

3 % of setting value or 0.3 V

1 % of setting value or 10 ms

3 % of setting value or 3 V

Earth-fault pickup for all types of earth faults

Definite-time characteristic (ANSI 50Ns)

Setting ranges Pickup threshold *I*_{EE}>, *I*_{EE}>> For sensitive input 0.001 to 1.5 A (in steps of 0.001 A) 0.25 to 175 A¹⁾ (in steps of 0.01 A) For normal input 0 to 320 s or ∞ (in steps of 0.01 s) Delay times T for $I_{\rm EE}$, $I_{\rm EE}$ >> Dropout delay time $T_{\rm DO}$ 0 to 60 s (in steps of 0.01 s) Times Pickup times Approx. 50 ms Dropout ratio Approx. 0.95 Tolerances Pickup threshold For sensitive input 2 % of setting value or 1 mA 2 % of setting value or 50 mA¹⁾ For normal input Delay times 1 % of setting value or 20 ms Earth-fault pickup for all types of earth faults Inverse-time characteristic (ANSI 51Ns) User-defined characteristic Defined by a maximum of 20 pairs of current and delay time values

Setting ranges	
For sensitive input	0.001 A to 1.4 A (in steps of 0.001 A
For normal input	$0.25 \text{ to } 20 \text{ A}^{1)}$ (in steps of 0.01 A)
User defined	
Time multiplier T	0.1 to 4 s or ∞ (in steps of 0.01 s)
Times	
Pickup times	Approx. 50 ms
Pickup threshold	Approx. 1.1 $\cdot I_{\text{EEp}}$
Dropout ratio	Approx. $1.05 \cdot I_{EEp}$
Tolerances	
Pickup threshold	
For sensitive input	2 % of setting value or 1 mA
For normal input	2 % of setting value or 50 mA ¹⁾

Note: Due to the high sensitivity the linear range of the measuring input IN with integrated sensitive input transformer is from 0.001 A to 1.6 A. For currents greater than 1.6 A, correct directionality can no longer be guaranteed.

1) For $I_{nom} = 1$ A, all limits divided by 5.

Delay times in linear range7 % of reference value for $2 \ge I/I_{EEp}$
 $\ge 20 + 2$ % current tolerance, or 70 msLogarithmic inverseRefer to the manualLogarithmic inverse with knee pointRefer to the manual

Direction detection for all types of earth-faults (ANSI 67Ns)

Measuring method " $\cos \varphi / \sin \varphi$ "

Direction measurement

Measuring principle Setting ranges Measuring enable I_{Release direct}.

For sensitive input For normal input Direction phasor $\varphi_{\text{Correction}}$ Reduction of dir. area $\alpha_{\text{Red.dir.area}}$ Dropout delay $T_{\text{Reset delay}}$ Tolerances Pickup measuring enable For sensitive input For normal input Angle tolerance

Measuring method " φ (V_0/I_0)" Direction measurement

Minimum voltage V_{\min} measured Minimum voltage V_{\min} calculated Phase angle φ Delta phase angle $\Delta \varphi$ Tolerances Pickup threshold V_E (measured) Pickup threshold 3 V_0 (calculated) Angle tolerance

Angle correction for cable CT

Angle correction F1, F2 Current value *I*1, *I*2 For sensitive input For normal input

Se

Ti

D Te

High-impedance restricted earth-fault protection (ANSI 87N) / single-phase overcurrent protection

3 °

etting ranges	
Pickup thresholds I>, I>>	
For sensitive input	0.003 to 1.5 A or ∞ (in steps of 0.001 A)
For normal input	$0.25 \text{ to } 175 \text{ A}^{(1)} \text{ or } \infty \text{ (in steps of } 0.01 \text{ A)}$
Delay times $T_I >$, $T_I >>$	0 to 60 s or ∞ (in steps of 0.01 s)
mes	
Pickup times	
Minimum	Approx. 20 ms
Typical	Approx. 30 ms
Dropout times	Approx. 30 ms
ropout ratio	Approx. 0.95 for $I/I_{\rm nom} \ge 0.5$
olerances	
Pickup thresholds	3 % of setting value or
-	1 % rated current at $I_{nom} = 1$ or 5 A;
	5 % of setting value or
	3 % rated current at $I_{\text{nom}} = 0.1 \text{ A}$
Delay times	1 % of setting value or 10 ms

Intermittent earth-fault p	protectio	on
Setting ranges		
Pickup threshold		
For I _E For 3I ₀ For I _{FE}	I_{IE} > I_{IE} > I_{IE} >	0.25 to 175 A ¹ (in steps of 0.01 A) 0.25 to 175 A ¹ (in steps of 0.01 A) 0.005 to 1.5 A (in steps of 0.001 A)
Pickup prolon- gation time	$T_{\rm V}$	0 to 10 s (in steps of 0.01 s)
Earth-fault accu- mulation time	$T_{\rm sum}$	0 to 100 s (in steps of 0.01 s)
Reset time for accumulation	$T_{\rm res}$	1 to 600 s (in steps of 1 s)
Number of pickups for intermittent earth fault		2 to 10 (in steps of 1)
Times Pickup times Current = $1.25 \cdot picku$ Current $\ge 2 \cdot pickup$	p value value	Approx. 30 ms Approx. 22 ms
Dropout time		Approx. 22 ms
Tolerances		
Pickup threshold $I_{\rm IE}$ >		3 % of setting value, or 50 mA ¹⁾
Thermal everlead protoc	tion (AA	1 % of setting value or 10 ms
Sotting ann and	tion (AN	(5) (49)
Setting ranges		0.1 to 4 (in stops of 0.01)
Factor K		$\frac{1}{1}$
		1 to 999.9 mm (m steps of 0.1 mm)
$\Theta_{\rm alarm}/\Theta_{\rm trip}$	ire	to the tripping overtemperature (in steps of 1 %)
Current warning stage I	alarm	0.5 to 20 A (in steps of 0.01 A)
Extension factor when s k_{τ} factor	topped	1 to 10 with reference to the time con- stant with the machine running (in steps of 0.1)
Rated overtemperature (f	or I _{nom})	40 to 200 °C (in steps of 1 °C)
Tripping characteristic		$t = \sigma - \left(I / k \cdot I_{\text{nom}} \right)^2 - \left(I_{\text{pre}} / k \cdot I_{\text{nom}} \right)^2$
For $(I/K \cdot I_{nom}) \leq 8$		$l = \tau_{\rm th} \cdot \ln \frac{(I/k \cdot I_{\rm nom})^2 - 1}{(I/k \cdot I_{\rm nom})^2 - 1}$
Dropout ratios $\Theta / \Theta_{\text{Trip}}$ $\Theta / \Theta_{\text{Alarm}}$ I / I_{Alarm}		Drops out with Θ_{Alarm} Approx. 0.99 Approx. 0.97
Tolerances With reference to $k \cdot I_{no}$ With reference to trippi	^m ng time	Class 5 acc. to IEC 60255-8 5 % +/- 2 s acc. to IEC 60255-8
Auto-reclosure (ANSI 79)		
Number of reclosures		0 to 9 Shot 1 to 4 individually adjustable
Program for phase fault Start-up by		Time-overcurrent elements (dir., non-dir.), negative sequence, binary input

Program for earth fault Start-up by	Time-overcurrent elements (dir. non-dir.) sensitive earth-fault
	protection, binary input
Blocking of ARC	Pickup of protection functions, three-phase fault detected by a protec- tive element, binary input, last TRIP command after the reclosing cycle is complete (unsuccessful reclosing), TRIP command by the breaker failure protection (50BF), opening the CB without ARC initiation external CLOSE command
Setting ranges	0.01 to 320 s (in stops of 0.01 s)
(separate for phase and earth and individual for shots 1 to 4)	0.01 to 520 s (in steps of 0.01 s)
Blocking duration for manual- CLOSE detection	0.5 s to 320 s or 0 (in steps of 0.01 s)
Blocking duration after reclosure	0.5 s to 320 s (in steps of 0.01 s)
Blocking duration after dynamic blocking	0.01 to 320 s (in steps of 0.01 s)
Start-signal monitoring time	0.01 to 320 s or ∞ (in steps of 0.01 s)
Circuit-breaker supervision time	0.1 to 320 s (in steps of 0.01 s)
Max. delay of dead-time start	0 to 1800 s or ∞ (in steps of 0.1 s)
Maximum dead time extension	0.5 to 320 s or ∞ (in steps of 0.01 s)
Action time	0.01 to 320 s or ∞ (in steps of 0.01 s)
The delay times of the following pr can be altered individually by the <i>A</i> (setting value $T = T$, non-delayed <i>T</i> $I >>>, I >>, I >>, I_P, I_{dir} >>, I_{dir}, I_{pdir}$	To the function the function the function $T = 0$, blocking $T = \infty$):
$I_{\rm E}$ >>>, $I_{\rm E}$ >>, $I_{\rm E}$ >, $I_{\rm Ep}$, $I_{\rm Edir}$ >>, $I_{\rm Edir}$ >	>, I _{Edir}
Additional functions	Lockout (final trip), delay of dead-time start via binary input (monitored), dead-time extension via binary input (monitored), co-ordination with other protection relay: circuit-breaker monitoring, evaluation of the CB contacts
Breaker failure protection (ANSI 5	50 BF)
Setting ranges Pickup thresholds	0.2 to 5 A ¹⁾ (in steps of 0.01 A)
Delay time	0.06 to 60 s or ∞ (in steps of 0.01 s)
Times Pickup times with internal start with external start Dropout times	is contained in the delay time is contained in the delay time Approx. 25 ms
Tolerances Pickup value Delay time	2 % of setting value (50 mA) ¹⁾ 1 % or 20 ms
Synchro- and voltage check (ANS	125)
Operating modes	Synchro-checkAsynchronous/synchronous
Additional release conditions	 Live-bus / dead line Dead-bus / live-line Dead-bus and dead-line Bypassing

1) At $I_{nom} = 1$ A, all limits divided by 5.

Voltages

1 onuges	
Max. operating voltage $V_{\rm max}$	20 to 140 V (phase-to-phase) (in steps of 1 V)
Min. operating voltage V_{\min}	20 to 125 V (phase-to-phase) (in steps of 1 V)
<i>V</i> < for dead-line / dead-bus check	1 to 60 V (phase-to-phase) (in steps of 1 V)
<i>V></i> for live-line / live-bus check	20 to 140 V (phase-to-phase) (in steps of 1 V)
Primary rated voltage of transformer V2 _{nom}	0.1 to 800 kV (in steps of 0.01 kV)
Tolerances Drop-off to pickup ratios	2 % of pickup value or 2 V approx. 0.9 (<i>V</i> >) or 1.1 (<i>V</i> <)
ΔV -measurement	
Voltage difference	0.5 to 50 V (phase-to-phase) (in steps of 1 V)
Tolerance	1 V
Δf -measurement	
Δf -measurement ($f2>f1; f2)Tolerance$	0.01 to 2 Hz (in steps of 0.01 Hz) 15 mHz
$\Delta \alpha$ -measurement	
$\Delta \alpha$ -measurement ($\alpha 2 > \alpha 1; \alpha 2 > \alpha 1$)	2 ° to 80 ° (in steps of 1 °)
Tolerance	20
Max. phase displacement	5° for $\Delta f \leq 1$ Hz 10° for $\Delta f > 1$ Hz
Circuit-breaker operating time	10 101 / 11
CB operating time	0.01 to 0.6 s (in steps of 0.01 s)
Threshold ASYN ↔ SYN	······································
Threshold synchronous / asynchronous	0.01 to 0.04 Hz (in steps of 0.01 Hz)
Adaptation	
Vector group adaptation by angle Different voltage transformers V_1/V_2	0 ° to 360 ° (in steps of 1 °) 0.5 to 2 (in steps of 0.01)
Times	
Minimum measuring time Max. duration $T_{\text{SYN DURATION}}$	Approx. 80 ms 0.01 to 1200 s; ∞ (in steps of 0.01 s)
Supervision time T _{SUP VOLTAGE}	0 to 60 s (in steps of 0.01 s)
Closing time of CB $T_{CB close}$	0 to 60 s (in steps of 0.01 s)
Tolerance of all timers	1 % of setting value or 10 ms
Measuring values of synchro-check	c function
Reference voltage V1 Range Tolerance*)	In kV primary, in V secondary or in % V_{nom} 10 to 120 % V_{nom} <1 % of measured value or 0.5 % of V_{nom}
Voltage to be synchronized V2	In kV primary, in V secondary or in % V_{nom}
Tolerance*)	≤ 1 % of measured value or 0.5 % of V_{nom}
Frequency of V1 and V2	<i>f</i> 1, <i>f</i> 2 in Hz
Range Tolerance*)	$f_{\rm N} \pm 5 \text{ Hz}$ 20 mHz
Voltage difference (V2 – V1) Range Tolerance*)	In kV primary, in V secondary or in % V_{nom} 10 to 120 % $V_{\text{nom}} \le 1$ % of measured value or 0.5 % of V_{nom}
Frequency difference (f2 – f1) Range Tolerance*)	In mHz $f_N \pm 5$ Hz 20 mHz
Angle difference $(\alpha 2 - \alpha 1)$ Range Tolerance*)	In ° 0 to 180 ° 0.5 °

Negative-sequence current detection (ANSI 46)

Definite-time characteristic (ANSI 46-1 and 46-2)

Setting ranges	
Pickup current I_2 , I_2 >> Delay times	0.5 to 15 A or ∞ (in steps of 0.01 A) 0 to 60 s or ∞ (in steps of 0.01 s)
Dropout delay time $T_{\rm DO}$	0 to 60 s (in steps of 0.01 s)
Functional limit	All phase currents $\leq 50 \text{ A}^{1)}$
Times Pickup times Dropout times Dropout ratio	Approx. 35 ms Approx. 35 ms Approx. 0.95 for $I_2 / I_{nom} > 0.3$
Tolerances Pickup thresholds Delay times	3 % of the setting value or 50 mA ¹⁾ 1 % or 10 ms
Inverse-time characteristic (ANSI	46-TOC)
Setting ranges Pickup current Time multiplier T (IEC characteristics) Time multiplier D (ANSI characteristics)	0.5 to 10 $A^{(1)}$ (in steps of 0.01 A) 0.05 to 3.2 s or ∞ (in steps of 0.01 s) 0.5 to 15 s or ∞ (in steps of 0.01 s)
Functional limit	All phase currents $\leq 50 \text{ A}^{1)}$
Trip characteristics IEC ANSI	Normal inverse, very inverse, extremely inverse Inverse, moderately inverse, very in- verse, extremely inverse
Pickup threshold	Approx. 1.1 $\cdot I_{2p}$ setting value
Dropout IEC and ANSI (without disk emulation) ANSI with disk emulation	Approx. 1.05 \cdot I_{2p} setting value, which is approx. 0.95 \cdot pickup threshold Approx. 0.90 \cdot I_{2p} setting value
Tolerances Pickup threshold Time for $2 \le M \le 20$	3 % of the setting value or 50 mA ¹⁾ 5 % of setpoint (calculated) +2 % current tolerance, at least 30 ms

Flexible protection functions (ANSI 27, 32, 47, 50, 55, 59, 81R)

Operating modes / measuring	
quantities	
3-phase	I, I1, I2, I2/I1, 3I0, V, V1, V2, 3V0, dV/dt, P, Q,
	$\cos \varphi$
1-phase	$I, I_{\rm E}, I_{\rm E sens.}, V, V_{\rm E}, {\rm P}, Q, \cos \varphi$
Without fixed phase relation	<i>f</i> , d <i>f</i> /d <i>t</i> , binary input
Pickup when	Exceeding or falling below threshold value
Setting ranges	
Current I, I ₁ , I ₂ , 3I ₀ , I _E	0.15 to 200 A ¹⁾ (in steps of 0.01 A)
Current ratio I_2/I_1	15 to 100 % (in steps of 1 %)
Sens. earth curr. I _{E sens.}	0.001 to 1.5 A (in steps of 0.001 A)
Voltages $V, V_1, V_2, 3V_0$	2 to 260 V (in steps of 0.1 V)
Displacement voltage V _E	2 to 200 V (in steps of 0.1 V)
Power P, Q	0.5 to 10000 W (in steps of 0.1 W)
Power factor $(\cos \varphi)$	- 0.99 to + 0.99 (in steps of 0.01)
Frequency $f_{\rm N} = 50 {\rm Hz}$	40 to 60 Hz (in steps of 0.01 Hz)
$f_{\rm N} = 60 \; {\rm Hz}$	50 to 70 Hz (in steps of 0.01 Hz)
Rate-of-frequency change df/dt	0.1 to 20 Hz/s (in steps of 0.01 Hz/s)
Voltage change dV/dt	4 V/s to 100 V/s (in steps of 1 V/s)
Dropout ratio >- stage	1.01 to 3 (in steps of 0.01)
Dropout ratio <- stage	0.7 to 0.99 (in steps of 0.01)
Dropout differential f	0.02 to 1.00 Hz (in steps of 0.01 Hz)
Pickup delay time	0 to 60 s (in steps of 0.01 s)
Trip delay time	0 to 3600 s (in steps of 0.01 s)
Dropout delay time	0 to 60 s (in steps of 0.01 s)
*) With rated frequency.	

1) At $I_{nom} = 1$ A, all limits divided by 5.

Flexible protection functions (ANSI 27, 32, 47, 50, 55, 59, 81R) (cont'd)		
Times Pickup times		
(phase quantities)		
With 2 times the setting value	Approx. 30 ms	
With 10 times the setting value	Approx. 20 ms	
Current, voltages		
(symmetrical components)		
With 2 times the setting value	Approx. 40 ms	
With 10 times the setting value	Approx. 30 ms	
Power		
Typical	Approx. 120 ms	
Maximum (low signals and	Approx. 350 ms	
thresholds)		
Power factor	300 to 600 ms	
Frequency	Approx. 100 ms	
Rate-of-frequency change	A	
With 1.25 times the setting value	Approx. 220 ms	
for 2 times pickup value	Approx. 220 ms	
Binary input	Approx 20 ms	
Dinary input	прих. 20 ша	
Dropout times	- 20	
Current, voltage (phase quantities)	< 20 ms	
current, voltages (symmetrical	< 30 mg	
Power	< 50 ms	
Typical	< 50 ms	
Maximum	< 350 ms	
Power factor	< 300 ms	
Frequency	< 100 ms	
Rate-of-frequency change	< 200 ms	
Voltage change	< 220 ms	
Binary input	< 10 ms	
Tolerances		
Pickup threshold		
Current	0.5 % of setting value or 50 mA ¹⁾	
Current (symmetrical	1 % of setting value or 100 mA ¹⁾	
components)		
Voltage	0.5 % of setting value or 0.1 V	
Voltage (symmetrical	1 % of setting value or 0.2 V	
Power	1 % of setting value or 0.3 W	
Power factor	2 degrees	
Frequency	5 mHz (at $V = V_N$, $f = f_N$)	
Trequency	$10 \text{ mHz} (at V = V_N)$	
Rate-of-frequency change	5 % of setting value or 0.05 Hz/s	
Voltage change dV/dt	5 % of setting value or 2 V/s	
Times	1 % of setting value or 10 ms	
Starting time monitoring for mot	ors (ANSI 48)	
Setting ranges		
Motor starting current ISTARTUP	2.5 to 80 $A^{(1)}$ (in steps of 0.01)	
Pickup threshold IMOTOR START	2 to 50 A ¹⁾ (in steps of 0.01)	
Permissible starting	1 to 180 s (in steps of 0.1 s)	
time T_{STARTUP} , cold motor		
Permissible starting	0.5 to 180 s (in steps of 0.1 s)	
time T _{STARTUP} , WARM MOTOR		

0 to 80 % (in steps of 1 %)

0.5 to 120 s or ∞ (in steps of 0.1 s)

Tripping time characteristic	$(I_{\text{STARTUP}})^2$
IOF I > IMOTOR START	$l = \left(\frac{I}{I}\right) \cdot I_{\text{STARTUP}}$
	<i>I</i> _{STARTUP} = Rated motor starting
	<i>I</i> = Actual current flowing
	T _{STARTUP} = Tripping time for rated motor starting current
	t = Tripping time in seconds
Dropout ratio I _{MOTOR START}	Approx. 0.95
Pickup threshold	2 % of setting value or 50 mA ¹⁾
Delay time	5 % 01 50 IIIS
Softing ranges	ANSI 5 HVI)
Current threshold for	
alarm and trip	0.25 to 60 A ¹⁾ (in steps of 0.01 A)
Delay times Placking duration after	0 to 600 s (in steps of 0.01 s)
CLOSE signal detection	0 to 600 s (in steps of 0.01 s)
Pickup threshold	2 % of setting value or 50 mA ¹⁾
Restart inhibit for motors (ANSI 6	6)
Setting ranges	.,
Motor starting current relative	1.1 to 10 (in steps of 0.1)
to rated motor current	
IMOTOR START/IMotor Nom	$1 + (A^{1}) (1 + 1) + (0 + 1)$
Max. permissible starting time	1 to 320 s (in steps of 1 s)
Equilibrium time T_{Equal}	0 to 320 min (in steps of 0.1 min)
Minimum inhibit time	0.2 to 120 min (in steps of 0.1 min)
<i>I</i> _{MIN. INHIBIT TIME} Max. permissible number of	1 to 4 (in steps of 1)
Difference between cold and	1 to 2 (in steps of 1)
warm starts Extension k-factor for cooling	0.2 to 100 (in steps of 0.1)
simulations of rotor at zero	
speed k _{t at STOP}	
Extension factor for cooling time constant with motor	0.2 to 100 (in steps of 0.1)
running k _{t RUNNING}	
Restarting limit	
	$\Theta_{\text{restart}} = \Theta_{\text{rot max perm}} \cdot \frac{n_{\text{c}} - 1}{n_{\text{c}}}$
	Θ_{restart} = Temperature limit below which restarting is possi-
	ble
	$\Theta_{rot max perm} = Maximum permissible$
	(= 100 % in operational
	measured value
	(H) not / (H) not trip)

nc

Undercurrent monitoring (ANSI 37)

Signal from the operational measured values

Predefined with programmable logic

Temperature threshold

Permissible blocked rotor

time TBLOCKED-ROTOR

cold motor

Temperature monitoring box (ANSI 38)

	Temperature detectors Connectable boxes Number of temperature detectors per box Type of measuring Mounting identification	1 or 2 Max. 6 Pt 100 Ω or Ni 100 Ω or Ni 120 Ω "Oil" or "Environment" or "Stator" or "Bearing" or "Other"	
	Thresholds for indications		
	Stage 1	-50 °C to 250 °C (in steps of 1 °C) -58 °F to 482 °F (in steps of 1 °F) or ∞ (no indication)	
	Stage 2	-50 °C to 250 °C (in steps of 1 °C) -58 °F to 482 °F (in steps of 1 °F) or ∞ (no indication)	
	Undervoltage protection (ANSI 27)		
Operating modes/measuring quantities			
	3-phase	Positive phase-sequence voltage or phase-to-phase voltages or phase-to-earth voltages	
	1-phase	Single-phase phase-earth or phase-phase voltage	
	Setting ranges Pickup thresholds V<, V<<		
	dependent on voltage	10 to 120 V (in steps of 1 V)	
	connection and chosen measuring quantity	10 to 210 V (in steps of $1 V$)	
	Durant anti-	1.01 ± 2 (in stone of 0.01)	

Dropout ratio *r* Delay times *T* Current Criteria "Bkr Closed *I*_{MIN}" Times Pickup times 1.01 to 3 (in steps of 0.01) 0 to 100 s or ∞ (in steps of 0.01 s) 0.2 to 5 A¹⁾ (in steps of 0.01 A)

Approx. 50 ms As pickup times

0.5 % of setting value or 1 V 1 % of setting value or 10 ms

Overvoltage protection (ANSI 59)

Operating modes/measuring quantities

3-phase

Tolerances

Times

Dropout times

Pickup thresholds

1-phase Setting ranges

Pickup thresholds V>, V>> dependent on voltage connection and chosen measuring quantity

Dropout ratio rDelay times T

Times Pickup times VPickup times V_1, V_2 Dropout times

Tolerances Pickup thresholds Times Positive phase-sequence voltage or negative phase-sequence voltage or phase-to-phase voltages or phase-to-earth voltages Single-phase phase-earth or phase-phase voltage

40 to 260 V (in steps of 1 V) 40 to 150 V (in steps of 1 V) 2 to 150 V (in steps of 1 V) 0.9 to 0.99 (in steps of 0.01) 0 to 100 s or ∞ (in steps of 0.01 s)

Approx. 50 ms Approx. 60 ms As pickup times

0.5 % of setting value or 1 V 1 % of setting value or 10 ms

Frequency protection (ANSI 81)

Number of frequency elements	4
Setting ranges Pickup thresholds for $f_{nom} = 50$ Hz Pickup thresholds for $f_{nom} = 60$ Hz Dropout differential = pickup threshold - dropout the Delay times Undervoltage blocking, with positive-sequence voltage V_1	40 to 60 Hz (in steps of 0.01 Hz) 50 to 70 Hz (in steps of 0.01 Hz) 0.02 Hz to 1.00 Hz (in steps of 0.01 Hz) preshold 0 to 100 s or ∞ (in steps of 0.01 s) 10 to 150 V (in steps of 1 V)
Times Pickup times Dropout times	Approx. 80 ms Approx. 75 ms
Dropout Ratio undervoltage blocking	Approx. 1.05
Tolerances Pickup thresholds Frequency Undervoltage blocking Delay times	5 mHz (at $V = V_{NS} f = f_N$) 10 mHz (at $V = V_N$) 3 % of setting value or 1 V 3 % of the setting value or 10 ms
Fault locator (ANSI 21FL)	
Output of the fault distance	In Ω primary or secondary, in km / miles of line length, in % of line length
Starting signal	Trip command, dropout of a pro- tection element, via binary input
Setting ranges Reactance (secondary)	0.001 to 1.9 $\Omega/km^{2)}$ (in steps of 0.0001) 0.001 to 3 $\Omega/mile^{2)}$ (in steps of 0.0001)
Tolerances Measurement tolerance acc. to VDE 0435, Part 303 for sinusoi- dal measurement quantities	2.5 % fault location, or 0.025 Ω (without intermediate infeed) for 30 ° ≤ φ K ≤ 90 ° and V _K /V _{nom} ≥ 0.1 and $I_{\rm K}/I_{\rm nom} \ge 1$
Additional functions	
Operational measured values	
Currents I_{L1}, I_{L2}, I_{L3} Positive-sequence component I_1 Negative-sequence component I_2 I_E or $3I_0$	In A (kA) primary, in A secondary or in % I_{nom}
Range Tolerance ³⁾	10 to 200 % <i>I</i> _{nom} 1 % of measured value or 0.5 % <i>I</i> _{nom}
Phase-to-earth voltages V_{L1-E} , V_{L2-E} , V_{L3-E} Phase-to-phase voltages V_{L1-L2} , V_{L2-L3} , V_{L3-L1} , V_{SYN} , V_E or V_0 Positive-sequence component V_1	In kV primary, in V secondary or in % $V_{\rm nom}$
Negative-sequence component V_2	

Range Tolerance³⁾ *S*, apparent power

Range Tolerance³⁾ 10 to 120 % V_{nom} 1 % of measured value or 0.5 % of V_{nom} In kVAr (MVAr or GVAr) primary and in % of S_{nom} 0 to 120 % S_{nom} 1 % of S_{nom}

1 % of $S_{\rm nom}$ for $V/V_{\rm nom}$ and $I/I_{\rm nom} = 50$ to 120 %

3) At rated frequency.

At *I*_{nom} = 1 A, all limits divided by 5.
 At *I*_{nom} = 1 A, all limits multiplied with 5.

Operational measured values (cont'd)

P, active power

Range Tolerance¹⁾

Q, reactive power

Range Tolerance¹⁾

 $\cos \varphi$, power factor (p.f.) Range

Tolerance¹⁾ Frequency f

Range

Tolerance¹⁾ Temperature overload protection In % $\Theta/\Theta_{\text{Trip}}$

Range Tolerance¹⁾

Temperature restart inhibit $\Theta_L / \Theta_L \operatorname{Trip}$

Range Tolerance¹⁾

Restart threshold $\Theta_{Restart}\!/\Theta_{L\,Trip}$

Reclose time T_{Reclose}

detection (total, real, and reactive current) IEE, IEE real, IEE reactive Range Tolerance¹⁾

RTD-box

Synchronism and voltage check

Long-term averages

Time window

Frequency of updates

Long-term averages of currents of real power of reactive power of apparent power

With sign, total and phase-segregated in kW (MW or GW) primary and in % Snom 0 to 120 % S_{nom} 1 % of Snom for V/V_{nom} and $I/I_{\text{nom}} = 50$ to 120 % and $|\cos \varphi| = 0.707$ to 1 with $S_{\rm nom} = \sqrt{3} \cdot V_{\rm nom} \cdot I_{\rm nom}$ With sign, total and phase-segregated in kVAr (MVAr or GVAr)primary and in % Snorr 0 to 120 % S_{nom} 1 % of Snom for V/V_{nom} and $I/I_{\text{nom}} = 50$ to 120 % and $|\sin \varphi| = 0.707$ to 1 with $S_{\rm nom} = \sqrt{3} \cdot V_{\rm nom} \cdot I_{\rm nom}$ Total and phase segregated - 1 to + 1 2 % for $|\cos \varphi| \ge 0.707$ In Hz $f_{\rm nom} \pm 5 \, \text{Hz}$ 20 mHz 0 to 400 % 5 % class accuracy per IEC 60255-8 In % 0 to 400 % 5 % class accuracy per IEC 60255-8 In % In min Currents of sensitive ground fault In A (kA) primary and in mA secondary 0 mA to 1600 mA 2 % of measured value or 1 mA See section "Temperature monitoring box' See section "Synchronism and voltage check" 5, 15, 30 or 60 minutes Adjustable IL1dmd, IL2dmd, IL3dmd, I1dmd in A (kA) P_{dmd} in W (kW, MW) Qdmd in VAr (kVAr, MVAr) Sdmd in VAr (kVAr, MVAr)

Max. / Min. report Report of measured values With date and time Reset, automatic Time of day adjustable (in minutes, 0 to 1439 min) Time frame and starting time adjustable (in days, 1 to 365 days, and ∞) Reset, manual Using binary input, using keypad, via communication Min./Max. values for current $I_{L1}, I_{L2}, I_{L3},$ *I*¹ (positive-sequence component) Min./Max. values for voltages VL1-E, VL2-E, VL3-E V_1 (positive-sequence component) V_{L1-L2}, V_{L2-L3}, V_{L3-L1} Min./Max. values for power S, P, Q, $\cos \varphi$, frequency Min./Max. values for overload Θ/Θ_{Trip} protection Min./Max. values for mean values IL1dmd, IL2dmd, IL3dmd I_1 (positive-sequence component); Sdmd, Pdmd, Qdmd Local measured values monitorina Current asymmetry $I_{\text{max}}/I_{\text{min}}$ > balance factor, for I>Ibalance limit $V_{\text{max}}/V_{\text{min}}$ > balance factor, Voltage asymmetry for V>Vlim Current phase sequence Clockwise (ABC) / counter-clockwise (ACB) Voltage phase sequence Clockwise (ABC) / counter-clockwise (ACB) Predefined limit values, user-defined Limit value monitoring expansions via CFC Fuse failure monitor For all types of networks With the option of blocking affected protection functions Fault recording Recording of indications of the last 8 power system faults Recording of indications of the last 3 power system ground faults Time stamping Resolution for event log 1 ms (operational annunciations) Resolution for trip log $1 \, \mathrm{ms}$ (fault annunciations) Maximum time deviation 0.01 % (internal clock) Lithium battery 3 V/1 Ah, type CR 1/2 AA, message "Battery Fault" Battery for insufficient battery charge Oscillographic fault recording Maximum 8 fault records saved, memory maintained by buffer battery in case of loss of power supply Recording time Total 20 s Pre-trigger and post-fault recording and memory time adjustable 1 sample/1.25 ms (16 samples/cycle) Sampling rate for 50 Hz Sampling rate for 60 Hz 1 sample/1.04 ms (16 samples/cycle)

Energy/power Meter values for power Wp, Wq (real and reactive power		Control
Meter values for power Wp, Wq (real and reactive power		Control
demand)	in kWh (MWh or GWh) and kVARh (MVARh or GVARh)	Number of switching uni
Tolerance ¹⁾	$\leq 2 \%$ for $I > 0.1 I_{\text{nom}}, V > 0.1 V_{\text{nom}}$ and $ \cos \varphi $ (p.f.) ≥ 0.707	Interlocking Circuit-breaker signals
Statistics		Control commands
Saved number of trips	Up to 9 digits	
Number of automatic reclosing commands (segregated according to 1^{st} and $\ge 2^{nd}$ cycle)	Up to 9 digits	Programmable controller Local control Units with small displa
Circuit-breaker wear		
Methods Operation	 Σ<i>l</i>^x with x = 13 2-point method (remaining service life) Σ<i>i</i>²<i>t</i> Phase-selective accumulation of mea- 	Units with large display
	sured values on TRIP command, up to 8 digits, phase-selective limit values,	CE conformity
•• • • • • •	monitoring indication	This product is in confor
Motor statistics		nities on the harmonizati
Total operating time Total down-time Ratio operating time/down-time Active energy and reactive energy Motor start-up data: – Start-up time – Start-up current (primary) – Start-up voltage (primary)	0 to 99999 h(resolution 1 h)0 to 99999 h(resolution 1 h)0 to 100 %(resolution 0.1 %)See operational measured valuesOf the last 5 start-ups0.30 s to 9999.99 s(resolution 10 ms)0 A to 1000 kA(resolution 1 A)0 V to 100 kV(resolution 1 V)	electrical equipment desi Directive 73/23/EEC). This unit conforms to the man standard DIN 57435 Further applicable standa The unit conforms to the man standard DIN 57435
Operating hours counter		This conformity is the res
Display range	Up to 7 digits	generic standards EN 500
Criterion	Overshoot of an adjustable current threshold (BkrClosed I_{MIN})	standard EN 60255-6 for
Trip circuit monitoring		c(UL)us
With one or two binary inputs		LISTED
Commissioning aids		
Phase rotation field check, operational measured values, circuit-breaker / switching device test, creation of a test measurement report		
Clock		
Time synchronization	DCF77/IRIG-B signal (telegram format IRIG-B000), binary input, communication	
Setting group switchover of the	function parameters	
Number of available setting groups	4 (parameter group A, B, C and D)	
Switchover performed	Via keypad, DIGSI, system (SCADA) interface or binary input	

Number of switching units	Depends on the binary inputs and outputs
nterlocking	Programmable
Circuit-breaker signals	Feedback, close, open, intermediate position
Control commands	Single command / double command 1, 1 plus 1 common or 2 trip contacts
Programmable controller	CFC logic, graphic input tool
Local control Units with small display Units with large display	Control via menu, assignment of a function key Control via menu, control with control keys
Remote control	Via communication interfaces, using a substation automation and control system (e.g. SICAM), DIGSI 4 (e.g. via modem)

This product is in conformity with the Directives of the European Communities on the harmonization of the laws of the Member States relating to electromagnetic compatibility (EMC Council Directive 89/336/EEC) and electrical equipment designed for use within certain voltage limits (Council Directive 73/23/EEC).

This unit conforms to the international standard IEC 60255, and the German standard DIN 57435/Part 303 (corresponding to VDE 0435/Part 303).

Further applicable standards: ANSI/IEEE C37.90.0 and C37.90.1.

The unit conforms to the international standard IEC 60255, and the German standard DIN 57435/Part 303 (corresponding to VDE 0435/Part 303).

This conformity is the result of a test that was performed by Siemens AG in accordance with Article 10 of the Council Directive complying with the generic standards EN 50081-2 and EN 50082-2 for the EMC Directive and standard EN 60255-6 for the "low-voltage Directive".

Unit version

Description

Housing, binary inputs and outputs

9th position only with: *B*, *D*, *E*

contact, graphic display

contact, graphic display

contact, graphic display

contact, graphic display

Measuring inputs $(4 \times V, 4 \times I)$ $I_{ph} = 1 A^{1}, I_e = 1 A^{1}$ (min. = 0.05 A) Position 15 only with A, C, E, G

Position 15 only with B, D, F, H

 $\begin{array}{l} I_{\rm ph} = 1 \ {\rm A}^{1}, I_{\rm e} = {\rm sensitive (min. = 0.001 \ {\rm A})} \\ {\rm Position 15 \ only \ with } B, D, F, H \\ \hline I_{\rm ph} = 5 \ {\rm A}^{1}, I_{\rm e} = 5 \ {\rm A}^{1} ({\rm min. = 0.25 \ {\rm A}}) \\ {\rm Position 15 \ only \ with } A, C, E, G \end{array}$

 $I_{\rm ph} = 5 \, {\rm A}^{1}$, $I_{\rm e} = {\rm sensitive} \, ({\rm min.} = 0.001 \, {\rm A})$

Rated auxiliary voltage (power supply, binary inputs) 24 to 48 V DC, threshold binary input 19 V DC³

60 to $125 \text{ V DC}^{2)}$, threshold binary input $19 \text{ V DC}^{3)}$

110 to 250 V DC^{2} , 115 to 230 V AC, threshold binary input 88 V DC^{3}

 $I_{\text{ph}} = 5 \text{ A}^{(1)}, I_{\text{e}} = 1 \text{ A}^{(1)} (\text{min.} = 0.05 \text{ A})$ Position 15 only with *A*, *C*, *E*, *G*

Housing 1/3 19", 7 BI, 5 BO, 1 live status contact, text display 4 x 20 character (only for 7SJ640)

7SJ64 multifunction protection relay with synchronization

Housing 1/2 19", 15 BI, 13 BO (1 NO/NC or 1a/b contact), 1 live status

Housing 1/2 19", 20 BI, 8 BO, 4 (2) power relays, 1 live status

Housing 1/1 19", 33 BI, 11 BO, 8 (4) power relays, 1 live status

Housing 1/1 19", 48 BI, 21 BO, 8 (4) power relays, 1 live status

Surface-mounting housing, plug-in terminals, detached operator panel,	
panel mounting in low-voltage housing	Α
Surface-mounting housing, 2-tier terminals on top/bottom	В
Surface-mounting housing, screw-type terminals (direct connection/	
ring-type cable lugs), detached operator panel, panel mounting in	
low-voltage housing	С
Flush-mounting housing, plug-in terminals (2/3 pin connector)	D
Flush-mounting housing, screw-type terminals	
(direct connection/ring-type cable lugs)	E
Surface-mounting housing, screw-type terminals	
(direct connection/ring-type cable lugs), without operator panel,	
panel mounting in low-voltage housing	F
Surface-mounting housing, plug-in terminals,	
without operator panel, panel mounting in low-voltage housing	G
Region-specific default settings/function versions and language settings	
Region DE, 50 Hz, IEC, language: German (language selectable)	A
Region World, 50/60 Hz, IEC/ANSI, language: English (GB) (language selectable)	В
Region US, 60 Hz, ANSI, language: English (US) (language selectable)	С
Region FR, 50/60 Hz, IEC/ANSI, language: French (language selectable)	D
Region World, 50/60 Hz, IEC/ANSI, language: Spanish (language selectable)	E
Region IT, 50/60 Hz, IEC/ANSI, language: Italian (language selectable)	F

Region RU, 50/60 Hz, IEC/ANSI, language: Russian(language can be changed)

1) Rated current can be selected by means of jumpers

- Transition between the two auxiliary voltage ranges can be selected by means of jumpers.
- The binary input thresholds can be selected per binary input by means of jumpers.

G

Order No.

5

5

6

2

4

5

75J6400 - 00000 - 0000

see next page

data	Description	Order No.			Order
	7SJ64 multifunction protection relay with synchronization	7SJ64□□	-00000	-0000	
	System interface (on rear of unit, Port B) No system interface		0		
	IEC 60870-5-103 protocol, RS232		1	see	
	IEC 60870-5-103 protocol, RS485		2	followin	g
	IEC 60870-5-103 protocol, 820 nm fiber, ST connector		3	pages	
	PROFIBUS-FMS Slave, RS485		4		
	PROFIBUS-FMS Slave, 820 nm wavelength, single ring, ST conne	ector ¹⁾	5		
	PROFIBUS-FMS Slave, 820 nm wavelength, double ring, ST conr	nector ¹⁾	6		
	PROFIBUS-DP Slave, RS485		9		LOA
	PROFIBUS-DP Slave, 820 nm wavelength, double ring, ST connect	tor ¹⁾	9		L 0 B
	MODBUS, RS485		9		LOD
	MODBUS, 820 nm wavelength, ST connector ²⁾		9		L 0 E
	DNP 3.0, RS485		9		LOG
	DNP 3.0, 820 nm wavelength, ST connector ²⁾		9		LOH
	IEC 60870-5-103 protocol, redundant, RS485, RJ45 connector ²⁾		9		LOP
	IEC 61850, 100 Mbit Ethernet, electrical, double, RJ45 connector	(EN 100)	9		LOR
	IEC 61850, 100 Mbit Ethernet, optical, double, LC connector (EN	(100) ²⁾	9		L 0 S
	Only Port C (service interface) DIGSI 4/modem, electrical RS232		1		
	DIGSI 4/modem/RTD-box ³⁾ , electrical RS485		2		
	Port C and D (service and additional interface)		9		мпп
	Port C (service interface)				
	DIGSI 4/modem/RTD-box ³⁾ , electrical RS485				2
	Port D (additional interface) $PTD har^{3}$ 220 per fiber ST connector $^{4)}$				4
	RTD-box ³ , electrical RS485				F
	Measuring/fault recording			1	
	Slave pointer, mean values, min/max values, fault recording			3	

 Not with position 9 = "B"; if 9 = "B", please order 7SJ6 unit with RS485 port and separate fiber-optic converters. For single ring, please order converter 6GK1502-2CB10, not available with position 9 = "B". For double ring, please order converter 6GK1502-3CB10, not available with position 9 = "B". The converter requires a 24 V AC power supply (e.g. power supply 7XV5810-0BA00).

2) Not available with position 9 = "B".

3) Temperature monitoring box 7XV5662-□AD10, refer to "Accessories".

4) When using the RTD-box at an optical interface, the additional RS485 fiber-optic converter 7XV5650-0 A00 is required.

Selection and ordering

Description					Order No.			
7SJ64 mult	ifuncti	on prot	tection	relay with syr	nchronization 7SJ64🗆 – 🗆 🗆 🗆 –][
Designation				ANSI No.	Description	ļ		1
Basic version	ı				Control			
				50/51	Time-overcurrent protection <i>I</i> >, <i>I</i> >>, <i>I</i> >>>, <i>I</i> _p			
				50N/51N	Earth-fault protection $I_{\rm E}$, $I_{\rm E}$, $I_{\rm E}$, $I_{\rm ED}$			
				50N/51N	Insensitive earth-fault protection through			
					IEE function: I_{EE} , I_{EE} , I_{EE}			
				50/50N	Elevible protection functions (index quantities derive	bd		
				50/501	from current): Additional time-overcurrent protection	on		
				51 3 7	stages I ₂ >, I>>>>, I _E >>>>	•		
				51 V	voltage-dependent inverse-time overcurrent protect	ion		
				49	Overload protection (with 2 time constants)			
				46	Phase balance current protection			
					(negative-sequence protection)			
				37	Undercurrent monitoring			
				47	Phase sequence			
				59N/64	Displacement voltage			
				50BF	Breaker failure protection			
				74TC	Trip circuit supervision; 4 setting groups,			
					cold-load pickup; inrush blocking			
				86	Lockout	F	A	
			VPf	27/59	Under-/overvoltage			1
-			,,,,j	81 O/U	Under-/overfrequency			
				27/47/50(NI)	Elevible protection (index quantities derived from			
				27/47/39(IN) 32/55/81D	current and voltages). Voltage power p f			
				<i>32/33/</i> 01K	current and voltages). voltage, power, p.i.,	F	E	
					rate-of-frequency-change protection	Г	E	ł
		IEF	V, P, f	27/59	Under-/overvoltage			
				81 O/U	Under-/overfrequency			
				27/47/59(N)	Flexible protection (index quantities derived from			
				32/55/81R	current and voltages): Voltage, power, p.f.,			
					rate-of-frequency-change protection			
					Intermittent earth fault	Ρ	E	
	Dir			67/67N	Direction determination for overcurrent,			
					phases and earth	F	С	
	Dir		V, P, f	67/67N	Direction determination for overcurrent,			
					phases and earth			
				27/59	Under-/overvoltage			
				81O/U	Under-/overfrequency			
				27/47/59(N)	Flexible protection (index quantities derived from			
				32/55/81R	current and voltages): Voltage, power, p.f.,			
					rate-of-frequency-change protection	F	G	
	Dir	IEF		67/67N	Direction determination for overcurrent,			
					phases and earth; intermittent earth fault	Р	С	
Directional	Dir			67/67N	Direction determination for overcurrent,			
earth-fault					phases and earth			
detection				67Ns	Directional sensitive earth-fault detection			
				87N	High-impedance restricted earth fault	F	D	2)
Directional			VPf	67Ns	Directional sensitive earth-fault detection			1
earth_fault			v, r, j	87N	High_impedance restricted earth fault			
detection				27/59	Under_/overvoltage			
				21135 810/IT	Under /overfrequency			
-				010/U 27/47/50(NT)	Elavible protection (index quantities dorived from			
				27/47/39(IN)	every structure of the second se			
				52/55/81K	current and voltages): voltage, power, p.t.,	-		2)
					rate-oi-frequency-change protection	Г	r	ĺ
Directional	Dir	IEF		67/67N	Direction determination for overcurrent,			
earth-fault					phases and earth			
detection				67Ns	Directional sensitive earth-fault detection			
				87N	High-impedance restricted earth fault			
					Intermittent earth fault	Р	D	2)
								1

Basic version included

V, P, f = Voltage, power, frequency protection

Dir = Directional overcurrent protection

IEF = Intermittent earth fault

1) Only with insensitive earth-current transformer when position 7 = 1, 5, 7.

2) For isolated/compensated networks only with sensitive earth-current transformer when position 7 = 2, 6.

Selection and ordering data	Description Order No.					
	Designation	nunction protectio	ANSI No.	Description		
	Basic version	L	50/51 50N/51N 50N/51N	Control Time-overcurrent protection $I>$, $I>>$, $I>>>$, I_p Earth-fault protection $I_E>$, $I_E>>$, $I_E>>>$, I_Ep Insensitive earth-fault		
			50/50N	protection via IEE function: I_{EE} , I_{EE} , I_{EEP} ¹ Flexible protection functions (index quantities derived from current): Additional time-overcurrent protection		
			51 V 49 46	stages <i>I</i> ₂ >, <i>I</i> ₂ >>>>, <i>I</i> _E >>>> Voltage-dependent inverse-time overcurrent protection Overload protection (with 2 time constants) Phase balance current protection (nagrating convaries protection)		
	37 47 59N/64 50BF 74TC	37 47 59N/64 50BF 74TC	Undercurrent monitoring Phase sequence Displacement voltage Breaker failure protection Trip circuit supervision, 4 setting groups, cold.lead pickup inpuck blocking			
	Directional		86 67Ns	Directional sensitive earth-fault detection,		
	earth-fault detection		87N	High-impedance restricted earth fault	² B ²⁾	
	Directional earth-fault detection	Motor V, P, f	67Ns 87N 48/14 66/86 51M 27/59 81O/U 27/47/59(N) 32/55/81R	Directional sensitive earth-fault detection, High-impedance restricted earth fault Starting time supervision, locked rotor Restart inhibit Load jam protection, motor statistics Under-/overvoltage Under-/overfrequency Flexible protection (index quantities derived from current and voltages): Voltage, power, p.f.,		
	Directional earth-fault detection	Motor V, P, f Dir	67/67N 67Ns 87N 48/14 66/86 51M 27/59 81O/U 27/47/59(N) 32/55/81R	rate-of-frequency-change protectionHDirection determination for overcurrent, phases and earth Directional sensitive earth-fault detection High-impedance restricted earth fault Starting time supervision, locked rotor Restart inhibit Load jam protection, motor statistics Under-/overvoltage Under-/overfrequency Flexible protection (index quantities derived from current and voltages): Voltage, power, p.f., rate-of-frequency-change protectionH	<u>1 H</u> ²⁾	
 Basic version included V, P, f = Voltage, power, frequency protection Dir = Directional overcurrent protection 	Directional earth-fault detection	Motor IEF <i>V</i> , <i>P</i> , <i>f</i> Dir	67/67N 67Ns 87N 48/14 66/86 51M 27/59 81O/U 27/47/59(N) 32/55/81R	Direction determination for overcurrent, phases and earth Directional sensitive earth-fault detection High-impedance restricted earth fault Intermittent earth fault Starting time supervision, locked rotor Restart inhibit Load jam protection, motor statistics Undervoltage/overvoltage Underfrequency/overfrequency Flexible protection (index quantites derived from current and voltages): Voltage, power, p.f., rate-of-frequency-change protection	R H ²⁾	
 IEF = Intermittent earth fault 1) Only with insensitive earth-current transformer when position 7 = 1, 5, 7. 2) For isolated/compensated networks only with sensitive earth-current 				Continued on ne:	ext page	

transformer when position 7 = 2, 6.

Description		
7SJ64 multifunction pro with synchronization	otection relay	
Designation	ANSI No.]
Basic version		(

with synchi	ronization			/5J64ЦЦ – ЦЦЦЦЦ – ЦЦ			- L			
Designation			ANSI No.	Description						1
Basic version	1			Control						
			50/51	Time-overcurrent protection <i>I</i> >, <i>I</i> >>>, <i>I</i> _p						
			50N/51N	Earth-fault protection $I_{\rm E}$, $I_{\rm E}$, $I_{\rm E}$, $I_{\rm E}$, $I_{\rm E}$						
			50N/51N	Insensitive earth-fault						
				protection via IEE function: I_{EE} , I_{EE} , $N_{\text{EEP}}^{(1)}$						
			50/50N	Flexible protection functions (index quantities						
				derived from current):						
				Additional time-overcurrent						
				protection stages I_2 , I >>>, I_E >>>>						
			51 V	Voltage-dependent inverse-time						
				overcurrent protection						
			49	Overload protection (with 2 time constants)						
			46	Phase balance current protection						
				(negative-sequence protection)						
			37	Undercurrent monitoring						
			47	Phase sequence						
			59N/64	Displacement voltage						
			50BF	Breaker failure protection						
			741C	Trip circuit supervision						
				4 setting groups, cold-load pickup						
			96	Inrush blocking						
			80	Lockout						
	Motor	V, P, f	67/67N	Direction determination for overcurrent,						
	Dir			phases and earth						
			48/14	Starting time supervision, locked rotor						
			66/86	Restart inhibit						
			51M	Load jam protection, motor statistics						
			27/59	Under-/overvoltage						
			810/U	Under-/overfrequency						
			27/47/59(N) Flexible protection (index quantities derived from						
			32/55/81R	current and voltages): Voltage, power, p.f.,						
				rate-of-frequency-change protection	G					
	Motor		48/14	Starting time supervision, locked rotor						
			66/86	Restart inhibit						
			51M	Load jam protection, motor statistics H	Α					
ARC, fault le	ocator synch	ironizati	ion							
· ····································		onneau	Without			0				
			79	With auto-reclosure		1				
			21FL	With fault locator		2				
			79, 21FL	With auto-reclosure, with fault locator		3				
			25	With synchronization		4				
			25,79,21FL	With synchronization, auto-reclosure,						
			–	fault locator		7				
ATEV100 C										
ATEXI00 Ce	ertification	:		(in anomal sufety time of must satisfy "a"			7	V	0	0
ror protectio	лі от explosi	ion-prot	ected motos	increased-salety type of protection e			∠		2	1

Order No.

1) Only with insensitive earth-current transformer when position 7 = 1, 5, 7.

2) This variant might be supplied with a previous firmware version. Order code

sories	Description	Order No.
	DIGSI 4	
	Software for configuration and operation of Siemens protection units	
	running under MS Windows 2000/XP Professional Edition	
	Basis Full version with license for 10 computers, on CD-ROM	
	(authorization by serial number)	7XS5400-0AA00
	Professional DIGSI 4 Basis and additionally SIGRA (fault record analysis),	
	CFC Editor (logic editor), Display Editor (editor for default	
	and control displays) and DIGSI 4 Remote (remote operation)	7XS5402-0AA00
	Professional + IEC 61850	
	Complete version:	
	DIGSI 4 Basis and additionally SIGRA (fault record analysis),	
	and control displays) and DICSI 4 Permote (remote operation)	
	+ IEC 61850 system configurator	7X\$5403-0AA00
		7765765 677766
	IEC 61850 System configurator	
	Software for configuration of stations with IEC 61850 communication under	
	DIGSI, running under MS Windows 2000 or XP Professional Edition	
	Optional package for DIGSI 4 Basis or Professional	
	License for 10 PCs. Authorization by serial number. On CD-ROM	7XS5460-0AA00
	SIGRA 4	
	Software for graphic visualization, analysis and evaluation of fault records.	
	Can also be used for fault records of devices of other manufacturers (Comtrade format). Dunning under MS Windows 2000 or XD Professional Edition	
	(generally contained in DIGSI Professional but can be ordered additionally)	
	Authorization by serial number. On CD-ROM.	7XS5410-0AA00
	Temperature monitoring box	
	24 to 60 V AC/DC	7XV5662-2AD10
	90 to 240 V AC/DC	7XV5662-5AD10
	Varistor/Voltage Arrester	
	voltage arrester for high-impedance REF protection	CE2207 4401 D.71 1
	125 Vrms; 600 A; 15/S 256	C53207-A401-D76-1
	240 Vrms; 600 A; 15/5 1088	C53207-A401-D77-1
	Connecting cable	
	Cable between PC/notebook (9-pin con.) and protection unit (9-pin connector)	
	(contained in DIGSI 4, but can be ordered additionally)	7XV5100-4
	Cable between temperature monitoring box and SIPROTEC 4 unit	
	- length 5 m /16.4 ft	7XV5103-7AA05
	- length 25 m /82 ft	7XV5103-7AA25
	- length 50 m /164 ft	7XV5103-7AA50
	Manual for 7SJ64	
	English	C53000-G1140-C20 7-x ¹⁾

Accessories

1) x = please inquire for latest edition (exact Order No.).

Accessories		Description	Order No.	Size of package	Supplier
Commence and and	-af p. eps	Terminal safety cover Voltage/current terminal 18-pole/12-pole	C73334-A1-C31-1	1	Siemens
	5289	Voltage/current terminal 12-pole/8-pole	C73334-A1-C32-1	1	Siemens
Manuating will		Connector 2-pin		1	Siemens
Mounting rall		Connector 3-pin	C73334-A1-C36-1	1	Siemens
0		Crimp connector CI2 0.5 to 1 mm ²	0-827039-1	4000 taped on reel	AMP ¹⁾
0-afp.ep	1-afp.ep	Crimp connector CI2 0.5 to 1 mm ²	0-827396-1	1	AMP ¹⁾
SP209	SP208	Crimp connector: Type III+ 0.75 to 1.5 mm ²	0-163084-2	1	AMP ¹⁾
2-pin connector	3-pin connector	Crimp connector: Type III+ 0.75 to 1.5 mm ²	0-163083-7	4000 taped on reel	AMP ¹⁾
		Crimping tool for Type III+	0-539635-1	1	AMP ¹⁾
10		and matching female	0-539668-2	1	AMP ¹⁾
p-ep	S O	Crimping tool for CI2	0-734372-1	1	AMP ¹⁾
83-at	Gallon Contraction	and matching female	1-734387-1	1	AMP ¹⁾
SP2C	2002	Short-circuit links			
	- LSF	for current terminals	C73334-A1-C33-1	1	Siemens
Short-circuit links for current termi-	Short-circuit links for other terminals	for other terminals	C73334-A1-C34-1	1	Siemens
nals		Mounting rail for 19" rack	C73165-A63-D200-1	1	Siemens

5

1) Your local Siemens representative can inform you on local suppliers.

Fig. 5/176 7SJ640 connection diagram

 *) For pinout of communication ports see part 15 of this catalog.
 For allocation of terminals of the panel surface mounting version refer to the manual (http://www.siemens.com/siprotec).

Connection diagram

Fig. 5/177 7SJ641 connection diagram

 *) For pinout of communication ports see part 15 of this catalog.
 For allocation of terminals of the panel surface mounting version refer to the manual (http://www.siemens.com/siprotec).

Fig. 5/178 7SJ642 connection diagram

- *) For pinout of communication ports see part 15 of this catalog. For allocation of terminals of the panel surface mounting version refer to the manual (http://www.siemens.com/siprotec).
- 1) Power relays are intended to directly control motorized switches. The power relays are interlocked so only one relay of each pair can close at a time, in order to avoid shorting out the power supply. The power relay pairs are BO6/BO7, BO8/BO9. If used for protection purposes only one binary output of a pair can be used.

Fig. 5/179

Connection diagram

	ļ	Housing for pa	nel surface mounting	<u>g</u>			• •	
		H	lousing for surface a	nd flush mountin	g			7SJ647x-x B xxx-xxxx
	50	Q1		7SJ647	BO1		11/0	7SJ647x-x A xxx-xxxx C
	100				BO2		- 199	D
	49				воз 🔶 🦳		148	F
	199		,				198	G
	98		1 _{L3}		B04		197	
	47	07	-•^^~				147	
	97	Q8			BO2		146	
	45					J1 (-) 1)	- 19	
						-+ J2 (+) 1)	- 69	
	94		V _{L3}			- J3 ¹⁾	- 18	
	46		$-M_{V_{i}}$			1)		
	96				BO7	J4 /	68	
	108	F5	— — BI1			1)		
	107	F6			вов		1/01	
	106	F7				K17	20	
	105	F8			BO9			
	104	F9] +			BO10 -		23	
	158	F10			BO11		- 22	
	195		— 🔄 🖂 BI6				72	
	145	R10			B012			
	194	R11				(-) 1)		
	144	<u>R12</u>				<u> N1</u> (+)1)		
						N3 1)	- 33	
	124				B013			
	123					<u>N4</u>]1)	- 83	
						1)		
	1/5				B015	<u> P18</u>	85	
	174					1)	25	
	173	<u></u>			BO16		1	
	172	К9			B017	 	40	
	171	K5 +			BO18		- 39	
						<u> N8</u>	- 89	
					BO19	-+ <u>N11</u>	- 36	
					BO30		122	
	170	<u> K13</u>			B021		182	
	169	K14 +					- 181	
	118	K16			B024		- 130	
	140	P1+			BO25		180	
	139	P2					- 131	
	138	P3			BO22		179	
Power relays are intended	137	P4			B023		129	
to directly control motor-	190	P6			B027		128	
ized switches. The power	189	P7				M11	127	
relays are interlocked so	188				BO28	M12	126	
can close at a time in or-	187				BO29		176	
der to avoid shorting	186				L		1177	
out the power supply.	136	P10					1	
The power relay pairs are	135	P11)+					1	
BO6/BO7, BO8/BO9,	134	[P12]						
If used for protection pur-	185	P13					-	
poses only one binary out-	184	P14					sde	
put of a pair can be used.	183	P15					 36en.	
	133	P16					 SA47:	
		< 1					ت ر	

Fig. 5/180 7SJ647 connection diagram part 1; continued on following page

1) Power relays are intended

part 2

*) For pinout of communication ports see part 15 of this catalog. For allocation of terminals of the panel surface mounting version refer to the manual (http://www.siemens.com/siprotec).

Distance Protection

SIPROTEC 4 7SA6 Distance Protection Relay for all Voltage Levels	6 /3
SIPROTEC 4 7SA522 Distance Protection Relay for Transmission Lines	6 /45

ICh 1

1

Page

6

SIPROTEC 4 7SA6 Distance Protection Relay for all Voltage Levels

Description

The SIPROTEC 4 7SA6 distance protection relay is a universal device for protection, control and automation on the basis of the SIPROTEC 4 system. Its high level of flexibility makes it suitable to be implemented at all voltage levels. With this relay you are ideally equipped for the future: it offers security of investment and also saves on operating costs.

- High-speed tripping time
- Impedance setting range allows very small settings for the protection of very short lines
- Self-setting detection for power swing frequencies up to 7 Hz
- Current transformer saturation detector prevents non-selective tripping by distance protection in the event of CT saturation.
- Phase-segregated teleprotection for improved selectivity and availability
- Digital relay-to-relay communication by means of an integrated serial protection data interface
- Adaptive auto-reclosure (ADT)

Function overview

Protection functions

- Non-switched distance protection with 6 measuring systems (21/21N)
- High resistance earth-fault protection for single and three-pole tripping (50N, 51N, 67N)
- Earth-fault detection in isolated and resonant-earthed networks
- Tele (pilot) protection (85)
- Fault locator (FL)
- Power-swing detection/tripping (68/68T)
- Phase overcurrent protection (50/51/67)
- Switch-onto-fault protection (50HS)
- STUB bus overcurrent protection (50STUB)
- Overvoltage/undervoltage protection (59/27)
- Over/underfrequency protection (81O/U)
- Auto-reclosure (79)
- Synchro-check (25)
- Breaker failure protection (50BF)
- Thermal overload protection (49)

Control function

• Commands f. ctrl. of CBs and isolators

Monitoring functions

- Trip circuit supervision (74TC)
- Self-supervision of the relay
- Measured-value supervision
- Event logging/fault logging
- Oscillographic fault recording
- Switching statistics

Front design

- Easy operation w. numeric keys
- Function keys
- LEDs for local alarm
- PC front port for convenient relay setting

Communication interfaces

- Front interface for connecting a PC
- System interface for connecting to a control system via various protocols
 – IEC 61850 Ethernet
 - IEC 60870-5-103 protocol
 - PROFIBUS-FMS/-DP
- DNP 3.0
- 1 serial protection data interface for teleprotection
- Rear-side service/modem interface
- Time synchronization via
 - IRIG-B or DCF 77 or
 - system interface

Application

The distance protection relay 7SA6 is non-switched incorporating all the additional functions for protection of overhead lines and cables at all voltage levels from 5 to 765 kV.

All methods of neutral point connection (resonant earthing, isolated, solid or low-resistance earthing) are reliably dealt with. The unit can issue single or three-pole TRIP commands as well as CLOSE commands. Consequently both single-pole, three-pole and multiple auto-reclosure is possible.

Teleprotection functions as well as earth-fault protection and sensitive earth-fault detection are included. Power swings are detected reliably and non-selective tripping is prevented. The unit operates reliably and selectively even under the most difficult network conditions.

Cost-effective power system management

The SIPROTEC 4 units are numerical relays which also provide control and monitoring functions and therefore support the user in view of a cost-effective power system management. The security and reliability of power supply is increased as a result of minimizing the use of hardware.

The local operation has been designed according to ergonomic criteria. Large, easyto-read backlit displays are provided.

The SIPROTEC 4 units have a uniform design and a degree of functionality which represents a benchmark-level of performance in protection and control. If the requirements for protection, control or interlocking change, it is possible in the majority of cases to implement such changes by means of parameterization using DIGSI 4 without having to change the hardware. The use of powerful microcontrollers and the application of digital measured-value conditioning and processing largely suppresses the influence of higher-frequency transients, harmonics and DC components.

ANSI	Protection functions
21/21N	Distance protection
FL	Fault locator
50N/51N	Directional earth-fault protection
(67N)	
50/51/67	Backup overcurrent protection
50 STUB	STUB-bus overcurrent stage
68/68T	Power swing detection/tripping
85/21	Teleprotection for distance protection
(27WI)	Weak-infeed protection
85/67N	Teleprotection for earth-fault protection
50HS	Switch-onto-fault protection
(50BF)	Breaker-failure protection
59/27	Overvoltage/undervoltage protection
810/U	Over/underfrequency protection
25	Synchro-check
79	Auto-reclosure
(74TC)	Trip circuit supervision
86	Lockout (CLOSE command inter- locking)
49	Thermal overload protection
(I _{EE})	Sensitive earth-fault detection

Fig. 6/2 Function diagram

1) Teleprotection schemes can use conventional signaling or serial data exchange

Construction

Connection techniques and housing with many advantages

1/3, 1/2, 2/3, and 1/1-rack sizes: These are the available housing widths of the 7SA6 relays, referred to a 19" module frame system. This means that previous models can always be replaced. The height is a uniform 245 mm for flush-mounting housings and 266 mm for surface-mounting housings for all housing widths. All cables can be connected with or without ring lugs. Plug-in terminals are available as an option. It is thus possible to employ prefabricated cable harnesses. In the case of surface mounting on a panel, the connection terminals are located above and below in the form of screw-type terminals. The communication interfaces are located in a sloped case at the top and bottom of the housing. The housing can also be supplied optionally with a detached operator panel (refer to Fig. 6/5), in order to allow optimum operation for all types of applications.

Fig. 6/3 Flush-mounting housing with screw-type terminals

Fig. 6/4 Rear view of flush-mounting housing with covered connection terminals and wirings

Fig. 6/5 Flush-mounting housing with plug-in terminals and detached operator panel

Fig. 6/7 Com munication interfaces in a sloped case in a surfacemounting housing

Fig. 6/6 Surface-mounting housing with screw-type terminals

Distance protection (ANSI 21, 21N)

The main function of the 7SA6 is a nonswitched distance protection. By parallel calculation and monitoring of all six impedance loops, a high degree of sensitivity and selectivity is achieved for all types of fault. The shortest tripping time is less than one cycle. All methods of neutral-point connection (resonant earthing, isolated, solid or low-resistance earthing) are reliably dealt with. Single-pole and three-pole tripping is possible. Overhead lines can be equipped with or without series capacitor compensation.

Four pickup methods

The following pickup methods can be employed alternatively:

- Overcurrent pickup *I*>>
- Voltage-dependent overcurrent pickup *V/I*
- Voltage-dependent and phase angledependent overcurrent pickup V/I/φ
- Impedance pickup Z<

Load zone

The pickup mode with quadrilateral impedance pickup (Z<) is fitted with a variable load zone. In order to guarantee a reliable discrimination between load operation and short-circuit (especially on long high loaded lines), the relay is equipped with a selectable load encroachment characteristic. Impedances within this load encroachment characteristic prevent the distance zones from unwanted tripping.

Absolute phase-selectivity

The 7SA6 distance protection incorporates a well-proven, highly sophisticated phase selection algorithm. The pickup of unfaulted phases is reliably eliminated. This phase selection algorithm achieves single-pole tripping and correct distance measurement in a wide application range. Interference to distance measurement caused by parallel lines can be compensated by taking the earth current of the parallel system into account.

This parallel line compensation can be taken into account both for distance measurement and for fault locating.

Fig. 6/9

Fig. 6/10 Angle pickup for the *V* / *I* / φ fault detection

Voltage and angle-dependent overcurrent fault detection $V/I/\varphi$

Seven distance zones

Six independant distance zones and one separate overreach zone are available. Each distance zone has dedicated time stages, partially separate for single-phase and three-phase faults. Earth faults are detected by monitoring the earth current $3I_0$ and the zero-sequence voltage $3V_0$. The quadrilateral tripping characteristic allows use of separate settings for the X and the R directions. Different *R* settings can be employed for earth and phase faults. This characteristic offers advantages in the case of faults with fault resistance. For applications to medium-voltage cables with low line angles, it may be advantageous to select the distance zones with the optional circle characteristic.

All the distance protection zones can be set to forward, reverse or non-directional.

Optimum direction detection

Use of voltages, which are not involved with the short-circuit loop, and of voltage memories for determination of the fault direction ensure that the results are always reliable.

Elimination of interference signals

Digital filters render the unit immune to interference signals contained in the measured values. In particular, the influence of DC components, capacitive voltage transformers and frequency changes is considerably reduced. A special measuring method is employed in order to assure protection selectivity during saturation of the current transformers.

Measuring voltage monitoring

Tripping of the distance protection is blocked automatically in the event of failure of the measuring voltage, thus preventing spurious tripping.

The measuring voltage is monitored by the integrated fuse failure monitor. Distance protection is blocked if either the fuse failure monitor or the auxiliary contact of the voltage transformer protection switch operates and in this case the EMERGENCY definite-time overcurrent protection can be activated.

Fault locator

The integrated fault locator calculates the fault impedance and the distance-to-fault. The results are displayed in ohms, kilometers (miles) and in percent of the line length. Parallel line compensation and load current compensation for high-resistance faults is also available.

Fig. 6/12 Power swing current and voltage wave forms

Power swing detection (ANSI 68, 68T)

Dynamic transient reactions, for instance short-circuits, load fluctuations, autoreclosures or switching operations can cause power swings in the transmission network. During power swings, large currents along with small voltages can cause unwanted tripping of distance protection relays. To avoid uncontrolled tripping of the distance protection and to achieve controlled tripping in the event of loss of synchronism, the 7SA6 relay is equipped with an efficient power swing detection function. Power swings can be detected under symmetrical load conditions as well as during single-pole auto-reclosures.

Tele (pilot) protection for distance protection (ANSI 85-21)

A teleprotection function is available for fast clearance of faults up to 100 % of the line length. The following operating modes may be selected:

- POTT
- Directional comparison pickup
- Unblocking
- PUTT acceleration with pickup
- PUTT acceleration with Z1B
- Blocking
- Pilot-wire comparison
- Reverse interlocking
- DUTT, direct underreaching zone transfer trip (together with Direct Transfer Trip function).

The carrier send and receive signals are available as binary inputs and outputs and can be freely assigned to each physical relay input or output. At least one channel is required for each direction.

Common transmission channels are powerline carrier, microwave radio and fiberoptic links. A serial protection data interface for direct connection to a digital communication network or fiber-optic link is available.

7SA6 also permits the transfer of phaseselective signals. This feature is particularly advantageous as it ensures reliable singlepole tripping, if single-pole faults occur on different lines. The transmission methods are suitable also for lines with three ends (three-terminal lines). Phase-selective transmission is also possible with multi-end application, if some user-specific linkages are implemented by way of the integrated CFC logic.

During disturbances in the signaling channel receiver or on the transmission circuit, the teleprotection function can be blocked via a binary input signal without losing the zone selectivity.

The control of the overreach zone Z1B (zone extension) can be switched over to the auto-reclosure function.

Transient blocking (current reversal guard) is provided for all the release and blocking methods in order to suppress interference signals during tripping of parallel lines.

Direct transfer tripping

Under certain conditions on the power system it is necessary to execute remote tripping of the circuit-breaker. The 7SA6 relay is equipped with phase-selective phaseselective "external trip inputs" that can be assigned to the received inter-trip signal for this purpose.

Weak-infeed protection: echo and/or trip (ANSI 27 WI)

To prevent delayed tripping of permissive schemes during weak or zero infeed situations, an echo function is provided. If no fault detector is picked up at the weakinfeed end of the line, the signal received here is returned as echo to allow accelerated tripping at the strong infeed end of the line. It is also possible to initiate phase-selective tripping at the weak-infeed end. A phaseselective single-pole or three-pole trip is issued if a permissive trip signal (POTT or Unblocking) is received and if the phaseearth voltage drops correspondingly. As an option, the weak infeed logic can be equipped according to a French specification.

Overvoltage protection, undervoltage protection (ANSI 59, 27)

A voltage rise can occur on long lines that are operating at no-load or that are only lightly loaded. The 7SA6 contains a number of overvoltage measuring elements. Each measuring element is of two-stage design. The following measuring elements are available:

- Phase-to-earth overvoltage
- Phase-to-phase overvoltage
- Zero-sequence overvoltage The zero-sequence voltage can be connected to the 4th voltage input or be derived from the phase voltages.
- Positive-sequence overvoltage of the local end or calculated for the remote end of the line (compounding)
- Negative-sequence overvoltage

Tripping by the overvoltage measuring elements can be effected either at the local circuit-breaker or at the remote station by means of a transmitted signal.

The 7SA6 is fitted, in addition, with three two-stage undervoltage measuring elements:

- Phase-to-earth undervoltage
- Phase-to-phase undervoltage
- Positive-sequence undervoltage

Frequency protection (ANSI 810/U)

Frequency protection can be used for overfrequency and underfrequency protection. Unwanted frequency changes in the network can be detected and the load can be removed at a specified frequency setting. Frequency protection can be used over a wide frequency range (45 to 55, 55 to 65 Hz). There are four elements (selectable as overfrequency or underfrequency) and each element can be delayed separately.

Directional earth-fault protection for high-resistance faults (ANSI 50N, 51N, 67N)

In an earthed network it may happen that the distance protection's sensitivity is not sufficient to detect high-resistance earth faults. The 7SA6 protection relay therefore offers protection functions for faults of this nature.

The earth-fault protection can be used with three definite-time stages and one inverse-time stage (IDMT).

Inverse-time characteristics according to IEC 60255-3 and ANSI/IEEE are provided (see "Technical data"). A 4th definite-time stage can be applied instead of the 1st inverse-time stage.

An additional logarithmic inverse-time characteristic is also available.

The direction decision is determined by the earth current and the zero-sequence voltage or by the negative-sequence components V_2 and I_2 . In addition or as an alternative, the direction can be determined with the earth current of an earthed power transformer and the zero-sequence voltage. Dual polarization applications can therefore be fulfilled. Alternatively, the direction can be determined by evaluation of zero-sequence power. Each overcurrent stage can be set in forward or reverse direction or in both directions (non-directional).

The function is equipped with special digital filter algorithms, providing the elimination of higher harmonics. This feature is particularly important for small zero-sequence fault currents which usually have a high content of 3rd and 5th harmonic.

Fig. 6/13 Normal inverse

Fig. 6/14 Transient earth-fault relay 7SN60

Inrush stabilization and instantaneous switch-onto-fault tripping can be activated separately for each stage as well.

Different operating modes can be selected. The earth-fault protection is suitable for three-phase and, optionally, for singlephase tripping by means of a sophisticated phase selector. It may be blocked during the dead time of single-pole auto-reclose cycles or during pickup of the distance protection.

Tele (pilot) protection for directional earth-fault protection (ANSI 85-67N)

The directional earth-fault protection can be combined with the available signaling methods:

- Directional comparison
- BLOCKING
- UNBLOCKING

The transient blocking function (current reversal guard) is also provided in order to suppress interference signals during tripping of parallel lines.

The pilot functions for distance protection and for earth-fault protection can use the same signaling channel or two separate and redundant channels.

Backup overcurrent protection (ANSI 50, 50N, 51, 51N, 67)

The 7SA6 provides a backup overcurrent protection. Two definite-time stages and one inverse-time stage (IDMTL) are available, separately for phase currents and for the earth current. The application can be extended to a directional overcurrent protection (ANSI 67) by taking into account the decision of the available direction detection elements. Two operating modes are selectable. The function can run in parallel to the distance protection or only during failure of the voltage in the VT secondary circuit (emergency operation).

The secondary voltage failure can be detected by the integrated fuse failure monitor or via a binary input from a VT miniature circuit-breaker (VT m.c.b. trip).

Inverse-time characteristics according to IEC 60255-3 and ANSI/IEEE are provided (see "Technical data").

Instantaneous high-speed switch-onto-fault overcurrent protection (ANSI 50HS)

Instantaneous tripping is required when energizing a faulty line. In the event of large fault currents, the high-speed switch-ontofault overcurrent stage can initiate very fast three-pole tripping.

With smaller fault currents, instantaneous tripping after switch-onto-fault is also possible with the overreach distance zone Z1B or with pickup.

The switch-onto-fault initiation can be detected via the binary input "manual close" or automatically via measurement.

Earth-fault detection in systems with a star-point that is not effectively earthed

In systems with an isolated or resonant earthed (grounded) star-point, single-phase earth faults can be detected. The following functions are integrated for this purpose:

- Detection of an earth fault by monitoring of the displacement voltage
- Determination of the faulted phase by measurement of the phase-to-earth voltage
- Determination of the earth-fault direction by highly accurate measurement of the active and reactive power components in the residual earth fault current.
- Alarm or trip output can be selected in the event of an earth-fault in the forward direction.
- Operation measurement of the active and reactive component in the residual earth current during an earth-fault.

Earth-fault direction detection can also be effected on the basis of the transient earth-fault principle by interfacing with the additional unit 7SN60 (see Fig. 6/14). Procedures for logging, time stamping and event recording for the network control system are standardized by the 7SA6.

Breaker failure protection (ANSI 50BF)

The 7SA6 relay incorporates a two-stage breaker failure protection to detect failures of tripping command execution, for example, due to a defective circuit-breaker. The current detection logic is phase-selective and can therefore also be used in single-pole tripping schemes. If the fault current is not interrupted after a settable time delay has expired, a retrip command or a busbar trip command will be generated. The breaker failure protection can be initiated by all integrated protection functions, as well as by external devices via binary input signals.

STUB bus overcurrent protection (ANSI 50(N)-STUB)

The STUB bus overcurrent protection is a separate definite-time overcurrent stage. It can be activated via a binary input signaling that the line isolator (disconnector) is open.

Separate settings are available for phase and earth faults.

Auto-reclosure (ANSI 79)

The 7SA6 relay is equipped with an autoreclosure function (AR). The function includes several operating modes:

- 3-pole auto-reclosure for all types of faults; different dead times are available depending on the type of fault
- 1-pole auto-reclosure for 1-phase faults, no reclosing for multi-phase faults
- 1-pole auto-reclosure for 1-phase faults and for 2-phase faults without earth, no reclosing for multi-phase faults
- 1-pole auto-reclosure for 1-phase and 3-pole auto-reclosure for multi-phase faults
- 1-pole auto-reclosure for 1-phase faults and 2-phase faults without earth and 3-pole auto-reclosure for multi-phase faults
- Multiple-shot auto-reclosure
- Interaction with an external device for auto-reclosure via binary inputs and outputs
- Control of the internal AR function by external protection
- Interaction with the internal or an external synchro-check
- Monitoring of the circuit-breaker auxiliary contacts

In addition to the above-mentioned operating modes, several other operating principles can be employed by means of the integrated programmable logic (CFC).

Auto-reclosure (cont'd) (ANSI 79)

Integration of auto-reclosure in the feeder protection allows evaluation of the line-side voltages. A number of voltage-dependent supplementary functions are thus available:

• DLC

By means of <u>d</u>ead-<u>l</u>ine <u>c</u>heck, reclosure is effected only when the line is deenergized (prevention of asynchronous breaker closure).

• ADT

The <u>a</u>daptive <u>d</u>ead <u>time</u> is employed only if auto-reclosure at the remote station was successful (reduction of stress on equipment).

• RDT

<u>Reduced dead time is employed in conjunction with auto-reclosure where no</u> teleprotection method is employed: When faults within the zone extension but external to the protected line are switched off for rapid auto-reclosure (RAR), the RDT function decides on the basis of measurement of the return voltage from the remote station which has not tripped whether or not to reduce the dead time.

Synchronism check (ANSI 25)

Where two network sections are switched in by control command or following a 3-pole auto-reclosure, it must be ensured that both network sections are mutually synchronous. For this purpose a synchro-check function is provided. After verification of the network synchronism, the function releases the CLOSE command. Alternatively, reclosing can be enabled for different criteria, e.g. checking that the busbar or line is not carrying a voltage (dead line or dead bus).

Fuse failure monitoring and other supervision functions

The 7SA6 relay provides comprehensive supervision functions covering both hardware and software. Furthermore, the measured values are continuously checked for plausibility. Therefore the current and voltage transformers are also included in this supervision system.

If any measured voltage is not present due to short-circuit or open circuit in the voltage transformer secondary circuit, the distance protection would respond with an unwanted trip due to this loss of voltage. This secondary voltage interruption can be detected by means of the integrated fuse failure monitor. Immediate blocking of distance protection and switching to the backup-emergency overcurrent protection is provided for all types of secondary voltage failures.

Additional measurement supervision functions are

- Symmetry of voltages and currents
- Broken-conductor supervision
- Summation of currents and voltages
- Phase-sequence supervision.

Directional power protection

The 7SA6 has a function for detecting the power direction by measuring the phase angle of the positive-sequence system's power. Fig. 6/15 shows an application example displaying negative active power. An indication is issued in the case when the measured angle φ (S1) of the positive-sequence system power is within the P - Q - level sector. This sector is between angles φ A and φ B. Via CFC the output signal of the directional monitoring can be linked to the "Direct Transfer Trip (DTT)" function and thus, as reverse power protection, initiate tripping of the CB.

Fig. 6/16 shows another application displaying capacitive reactive power. In the case of overvoltage being detected due to long lines under no-load conditions it is possible to select the lines where capacitive reactive power is measured.

Trip circuit supervision (ANSI 74TC)

One or two binary inputs for each circuitbreaker pole can be used for monitoring the circuit-breaker trip coils including the connecting cables. An alarm signal is issued whenever the circuit is interrupted.

Lockout (ANSI 86)

Under certain operating conditions it is advisable to block CLOSE commands after a TRIP command of the relay has been issued. Only a manual "RESET" command unblocks the CLOSE command. The 7SA6 is equipped with such an interlocking logic.

Fig. 6/15 Monitoring of active power direction

Fig. 6/16 Monitoring of reactive power

Thermal overload protection (ANSI 49)

For thermal protection of cables and transformers an overload protection with an early-warning stage is provided. The thermal replica can be generated with the maximum or mean value of the respective overtemperatures in the three phases, or with the overtemperature corresponding to the maximum phase current.

The tripping time characteristics are exponential functions according to IEC 60255-8 and they take account of heat loss due to the load current and the accompanying drop in temperature of the cooling medium. The previous load is therefore taken into account in the tripping time with overload. A settable alarm stage can output a current or temperature-dependent indication before the tripping point is reached.

BCD-coded output of fault location

The fault location calculated by the unit can be output for remote indication in BCD code. The output of the fault location is made in percent of the set line length with 3 decimal digits.

Analog output 0 to 20 mA

Some measured values can be output as analog values (0 to 20 mA). On a plug-in module (Fig. 6/21) two analog channels are made available. Up to two plug-in modules can be installed in the 7SA6. As an option, 2, 4 or no analog channels are available (please refer to the selection and ordering data). The measured values available for output are listed in the technical data.

Commissioning and fault event analyzing

Special attention has been paid to commissioning. All binary inputs and outputs can be displayed and activated directly. This can simplify the wiring check significantly for the user. The operational and fault events and the fault records are clearly arranged. For applications with serial protection data interface, all currents, voltages and phases are available via communication link at each local unit, displayed at the front of the unit with DIGSI 4 or with WEB Monitor¹⁾. A common time tagging facilitates the comparison of events and fault records.

WEB Monitor - Internet technology simplifies visualization

In addition to the universal DIGSI 4 operating program, the relay contains a WEB server that can be accessed via a telecommunication link using a browser (e.g. Internet Explorer). The advantage of this solution is to operate the unit with standard software tools and at the same time make use of the Intranet/Internet infrastructure. Apart from numeric values, graphical displays in particular provide clear information and a high degree of operating reliability. Of course, it is also possible to call up detailed measured value displays and annunciation buffers. By emulation of the integrated unit operation on the PC it is also possible to adjust selected settings for commissioning purposes.

Fig. 6/18 Web Monitor: Display of the protection direction

With respect to communication, particular emphasis is placed on the customer requirements in energy automation:

- Every data item is time-stamped at the source, i.e. where it originates.
- Already during the process of communication, information is assigned to the cause thereof (e.g. assignment of the indication "circuit-breaker TRIP" to the corresponding command).
- The communication system automatically handles the transfer of large data blocks (e.g. fault recordings or parameter data files). The user has access to these features without any additional programming effort.
- For the safe execution of a control command the corresponding data telegram is initially acknowledged by the unit which will execute the command. After the release and execution of the command a feedback signal is generated. At every stage of the control command execution particular conditions are checked. If these are not satisfied, command execution may be terminated in a controlled manner.

The units offer a high degree of flexibility by supporting different standards for connection to industrial and power automation systems. By means of the communication modules, on which the protocols run, exchange and retrofit is possible. Therefore, the units will also in future allow for optimal adaptation to changing communication infrastructure such as the application of Ethernet networks which are already widely applied in the power supply sector.

Local PC interface

The serial RS232 PC interface accessible from the front of the unit permits quick access to all parameters and fault event data. The use of the DIGSI 4 operating program is particularly advantageous during commissioning.

Service/modem interface

7SA6 units are always fitted with a rear-side hardwired service interface, optionally as RS232 or RS485. In addition to the front-side operator interface, a PC can be connected here either directly or via a modem.

Time synchronization interface

The time synchronization interface is a standard feature in all units. The supported formats are IRIG-B and DCF77.

Reliable bus architecture

• RS485 bus

With this data transmission via copper conductors, electromagnetic fault influences are largely eliminated by the use of twisted-pair conductors. Upon failure of a unit, the remaining system continues to operate without any problem.

• Fiber-optic double ring circuit The fiber-optic double ring circuit is immune to electromagnetic interference. Upon failure of a section between two units, the communication system continues to operate without disturbance. It is usually impossible to communicate with a unit that has failed. Should a unit fail, there is no effect on the communication with the rest of the system.

Retrofitting: Modules for every type of communication

Communication modules for retrofitting are available for the entire SIPROTEC 4 unit range. These ensure that, where different communication protocols (IEC 61850, IEC 60870-5-103, PROFIBUS, DNP, etc.) are required, such demands can be met. For fiber-optic communication, no external converter is required for SIPROTEC 4.

IEC 61850 protocol

The Ethernet-based IEC 61850 protocol is the worldwide standard for protection and control systems used by power supply corporations. Siemens was the first manufacturer to support this standard. By means of this protocol, information can also be exchanged directly between bay units so as to set up simple masterless systems for bay and system interlocking. Access to the units via the Ethernet but is also possible with DIGSI. It is also possible to retrieve operating and fault records as well as fault recordings via a browser. This Web monitor will also provide a few items of unit-specific information in browser windows.

Fig. 6/19

IEC 60870-5-103 star-type RS232 copper conductor connection or fiber-optic connection

Fig. 6/20 Bus structure for station bus with Ethernet and IEC 61850

IEC 60870-5-103 protocol

IEC 60870-5-103 is an internationally standardized protocol for efficient communication with protection relays. IEC 60870-5-103 is supported by a number of protection device manufacturers and is used worldwide. Supplements for control functions are defined in the manufacturer-specific part of this standard.

PROFIBUS-DP

PROFIBUS-DP is an industrial communications standard and is supported by a number of PLC and protection device manufacturers.

DNP 3.0

DNP 3.0 (Distributed Network Protocol, Version 3) is an internationally recognized protection and bay unit communication protocol. SIPROTEC 4 units are Level 1 and Level 2 compatible.

Analog outputs 0 to 20 mA

2 or 4 analog output interfaces for transmission of measured or fault location values are available for the 7SA6. Two analog output interfaces are provided in an analog output module. Up to two analog output modules can be inserted per unit.

Fig. 6/21 820 nm fiber-optic communication module

Fig. 6/23 RS232/RS485 electrical communication module

Fig. 6/22 Fiber-optic Ethernet communication module for IEC 61850 with integrated Ethernet switch

Fig. 6/24 Output module 0 to 20 mA, 2 channels

Communication

System solutions for protection and station control

Together with the SICAM power automation system, SIPROTEC 4 can be used with PROFIBUS-FMS. Over the low-cost electrical RS485 bus, or interference-free via the optical double ring, the units exchange information with the control system. Units equipped with IEC 60870-5-103 interfaces can be connected to SICAM in parallel via the RS485 bus or connected in star by fiber-optic link. Through this interface, the system is open for the connection of units of other manufacturers (see Fig. 6/25).

Because of the standardized interfaces, SIPROTEC units can also be integrated into systems of other manufacturers or in SIMATIC. Electrical RS485 or optical interfaces are available. The optimum physical data transfer medium can be chosen thanks to opto-electrical converters. Thus, the RS485 bus allows low-cost wiring in the cubicles and an interference-free optical connection to the master can be established.

For IEC 61850, an interoperable system solution is offered with SICAM PAS. Via the 100 Mbits/s Ethernet bus, the units are linked with PAS electrically or optically to the station PC. The interface is standardized, thus also enabling direct connection of units of other manufacturers to the Ethernet bus. With IEC 61850, however, the units can also be used in other manufacturers' systems. Units with an IEC 60870-5-103 interface are connected with PAS via the Ethernet station bus by means of serial/Ethernet converters. DIGSI and the Web monitor can also be used via the same station bus.

Serial protection data interface

The tele (pilot) protection schemes can be implemented using digital serial communication. The 7SA6 is capable of remote relay communication via direct links or multiplexed digital communication networks. The serial protection data interface has the following features:

- Fast phase-selective teleprotection signaling for distance protection, optionally with POTT or PUTT schemes
- 1) For flush-mounting housing.
- 2) For surface-mounting housing.
- For surface-mounting housing the internal fiber-optic module OMA1 will be delivered together with an external repeater.

- Signaling for directional earth-fault protection – directional comparison for high resistance faults in solidly earthed systems
- Echo-function
- Two and three-terminal line applications can be implemented without additional logic
- Interclose command transfer with the auto-reclosure "Adaptive dead time" (ADT) mode
- 28 remote signals for fast transfer of binary signals
- Flexible utilisation of the communication channels by means of the programmable CFC logic
- Display of the operational measured values of the opposite terminal(s) with phase-angle information relative to a common reference vector
- Clock synchronization: the clock in only one of the relays must be synchronized from an external so called "Absolute Master" when using the serial protection data interface. This relay will then synchronize the clock of the other (or the two other relays in 3 terminal applications) via the protection data interface.
- 7SA522 and 7SA6 can be combined via the protection data interface.

The communication possibilities are identical to those for the line differential protection relays 7SD5 and 7SD610. The following options are available:

- FO5¹⁾, OMA1²⁾ module: Optical 820 nm, 2 ST connectors, FO cable length up to 1.5 km for link to communication networks via communication converters or for direct FO cable connection
- FO6¹⁾, OMA2²⁾ module: Optical 820 nm, 2 ST connectors, FO cable length up to 3.5 km, for direct connection via multi-mode FO cable
- FO17¹: For direct connection up to 25 km³, 1300 nm, for mono-mode fiber 9/125 μm, LC-Duplex connector
- FO18¹: For direct connection up to 60 km³) 1300 nm, for mono-mode fiber 9/125 μm, LC-Duplex connector
- FO19¹): For direct connection up to 100 km³ 1550 nm, for mono-mode fiber 9/125 μm, LC-Duplex connector
- FO30¹): For transmission with the IEEE C37.94 standard.

The link to a multiplexed communication network is made by separate communication converters (7XV5662). These have a fiber-optic interface with 820 nm and ST connectors to the protection relay. The link to the communication network is optionally an electrical X21 or a G703.1 interface. If the connection to the multiplexor supports IEEE C37.94, a direct fibre optic connection to the relay is possible using the FO30 module.

For operation via copper wire communication (pilot wires), a modern communication converter for copper cables is available. This operates with both the two-wire and three-wire copper connections which were used by conventional differential protection systems before. The communication converter for copper cables is designed for 5 kV insulation voltage. An additional 20 kV isolation transformer can extend the field of applications of this technique into ranges with higher insulation voltage requirements. With SIPROTEC 4 and the communication converter for copper cables a digital follow-up technique is available for two-wire protection systems (typical 15 km) and all three-wire protection systems using existing copper communication links.

Communication data:

- Supported network interfaces G703.1 with 64 kBit/s; X21/RS422 with 64 or 128 or 512 kBit/s; IEEE C37.94
- Max. channel delay time 0.1 ms to 30 ms (in steps of 0.1 ms)
- Protocol HDLC
- 32-bit CRC-check according to CCITT and ITU
- Each protection relay possesses a unique relay address
- Continuous communication link supervision: Individual faulty data telegrams do not constitute an immediate danger, if they occur only sporadically. The statistical availability, per minute and hour, of the serial protection data interface can be displayed.

Figure 6/26 shows four applications for the serial protection data interface on a two-terminal line.

Communication topologies for the serial protection data interface on a two-terminal line

Three-terminal lines can also be protected with a tele (pilot) protection scheme by using SIPROTEC 4 distance protection relays. The communication topology may then be a ring or a chain topology, see Fig. 6/27. In a ring topology a loss of one data connection is tolerated by the system. The topology is re-routed to become a chain topology within less than 100 ms. To reduce communication links and to save money for communications, a chain topology may be generally applied.

Fig. 6/27 Ring or chain communication topology

Typical connection

Connection for current and voltage transformers

3 phase current transformers with neutral point in the line direction, I_4 connected as summation current transformer (=3 I_0): Holmgreen circuit

3 voltage transformers, without connection of the broken (open) delta winding on the line side; the $3V_0$ voltage is derived internally.

Fig. 6/28 Example of connection for current and voltage transformers

Alternative current measurement

The 3 phase current transformers are connected in the usual manner. The neutral point is in line direction. I_4 is connected to a separate neutral core-balance CT, thus permitting a high sensitive $3I_0$ measurement.

Note: Terminal Q7 of the I_4 transformer must be connected to the terminal of the core balance CT pointing in the same direction as the neutral point of the phase current transformers (in this case in line direction). The voltage connection is effected in accordance with Fig. 6/28, 6/32 or 6/33.

Fig. 6/29 Alternative connection of current transformers for sensitive earth-current measuring with core-balance current transformers

Typical connection

Alternative current connection

3 phase current transformers with neutral point in the line direction, I_4 connected to a current transformer in the neutral point of an earthed transformer for directional earth-fault protection. The voltage connection is effected in accordance with Fig. 6/28, 6/32 or 6/33.

Fig. 6/30 Alternative connection of current transformers for measuring neutral current of an earthed power transformer

Alternative current connection

3 phase current transformers with neutral point in the line direction, I_4 connected to summation current of the parallel line for parallel line compensation on overhead lines. The voltage connection is effected in accordance with Fig. 6/28, 6/32 or 6/33.

Fig. 6/31 Alternative connection of current transformers for measuring the earth current of a parallel line

Typical connection

Alternative voltage connection

3 phase voltage transformers, V_4 connected to broken (open) delta winding (V_{en}) for additional summation voltage monitoring and earth-fault directional protection. The current connection is effected in accordance with Fig. 6/28, 6/29, 6/30 and 6/31.

Fig. 6/32 Alternative connection of voltage transformers for measuring the displacement voltage (e-n voltage)

Alternative voltage connection

3 phase voltage transformers, V_4 connected to busbar voltage transformer for synchrocheck.

Note: Any phase-to-phase or phase-to-earth voltage may be employed as the busbar voltage. Parameterization is carried out on the unit. The current connection is effected in accordance with Fig. 6/28, 6/29, 6/30 and 6/31.

Fig. 6/33 Alternative connection of voltage transformers for measuring the busbar voltage

General unit data Analog inputs Rated frequency 50 or 60 Hz (selectable) Rated current Inom 1 or 5 A (selectable) 80 to 125 V (selectable) Rated voltage Vnom Power consumption With $I_{nom} = 1$ A Approx. 0.05 VA With $I_{nom} = 5 A$ Approx. 0.30 VA For IE, sensitive with 1 A Approx. 0.05 VA Voltage inputs ≤ 0.10 VA Overload capacity of current circuit (r.m.s.) Thermal 500 A for 1 s 150 A for 10 s 20 A continuous Dynamic (peak value) 1250 A (half cycle) Earth current Sensitive 300 A for 1 s 100 A for 10 s 15 A continuous Dynamic (peak value) 750 A (half cycle) Thermal overload capacity of volt-230 V continuous age circuit Auxiliary voltage Rated voltages 24 to 48 V DC 60 to 125 V DC 110 to 250 V DC and 115 to 230 V AC (50/60 Hz) Permissible tolerance -20 % to +20 % Superimposed AC voltage ≤ 15 % (peak-to-peak) Power consumption Approx. 5 W Quiescent Energized Approx. 12 W to 18 W, depending on design Bridging time during failure of the auxiliary voltage For $V_{aux} = 48$ V and $V_{aux} \ge 110$ V ≥ 50 ms For $V_{aux} = 24$ V and $V_{aux} = 60$ V ≥ 20 ms **Binary inputs** Quantity 7SA610*-*A/E/J 5 7SA610*-*B/F/K 7 7SA6*1*-*A/E/J 13 7SA6*1*-*B/F/K 20 7SA6*2*-*A/E/J 21 7SA6*2*-*B/F/K 29 7SA6*2*-*C/G/L 33 Rated voltage range 24 to 250 V, bipolar 17 or 73 or 154 V DC, bipolar Pickup threshold Functions are freely assignable Pickup/reset voltage thresholds 19 V DC/10 V DC or 88 V DC/44 V DC, or 176 V DC/88 V DC bipolar Ranges are settable by means of (3 nominal ranges 17/73/154 V DC) jumpers for each binary input 300 V DC Maximum permissible voltage Current consumption, energized Approx. 1.8 mA Input impulse suppression 220 nF coupling capacitance at 220 V with a recovery time >60 ms

1)
1 NC/NO contact ¹)
5 NO contacts, 3 NC/NO contact ¹⁾ 5 NO contacts, 12 NO contacts, 4 NC/NO contacts ¹⁾ 8 NO contacts, 4 power relays ²⁾ 19 NO contacts, 5 NC/NO contacts ¹⁾ 26 NO contacts, 6 NC/NO contacts ¹⁾ 11 NO contacts, 8 power relays ²⁾
1000 W / VA 1000 W / VA 30 VA 40 W 25 VA
250 V
30 A for 0.5 seconds 5 A continuous
8 ms 8 ms 5 ms < 1 ms
1000 W/ VA 1000 W/ VA 500 W/ VA 500 W/ VA
250 V
30 A for 0.5 seconds 5 A continuous
30 s
1 %
Quantity 1 1 7 14

1) Can be set via jumpers.

2) Each pair of power relays is mechanically interlocked to prevent simultaneous closing.

6/20

6

Unit desian

-		
Housing		7XP20
Dimensions		Refer to part 15 f. dimension drawings
Degree of protection a EN 60529	acc. to	
Surface-mounting housing		IP 51
Flush-mounting ho	ousing	
Front		IP 51
Rear		IP 50
For the terminals		IP 20 with terminal cover put on
Weight		
Flush-mounting	1/3 x 19"	4 kg
housing	1/2 x 19"	6 kg
	2/3 x 19"	8 kg
	1/1 x 19"	10 kg
Surface-mounting	1/3 x 19"	6 kg
housing	1/2 x 19"	11 kg
	1/1 x 19"	19 kg

Serial interfaces

Operating interface for DIGSI 4 (front of unit)

Connection

Baud rate

Time synchronization DCF77/ IRIG-B signal (format IRIG-B000)

- · · · · · · · · · · · · · · · · · · ·	
Connection	9-pin subminiature connector (SUB-D) (terminal with surface-mounting housing)
Voltage levels	5 V, 12 V or 24 V (optional)

3) For surface-mounting housing the internal fiber-optic module (OMA1)

Service/modem interface for DIGSI 4 / modem / service

Isolated RS232/RS485 Dielectric test Distance for RS232 Distance for RS485

9-pin subminiature connector (SUB-D) 500 V / 50 Hz Max. 15 m Max. 1000 m

IEC 61850 Ethernet

Non-isolated, RS232,

4800 to 115200 baud

(SUB-D)

parity 8E1

9-pin subminiature connector

setting as supplied: 38400 baud;

System interface

Isolated RS232/RS485

Baud rate Dielectric test Distance for RS232 Distance for RS485

PROFIBUS RS485 Dielectric test Baud rate Distance

IEC 60870-5-103 protocol PROFIBUS-FMS PROFIBUS-DP DNP 3.0 9-pin subminiature connector (SUB-D) 4800 to 38400 baud 500 V / 50 Hz Max. 15 m Max. 1000 m

500 V / 50 Hz Max. 12 Mbaud 1 km at 93.75 kBd; 100 m at 12 MBd PROFIBUS fiber-optic Only for flush-mounting housing ST connector For surface-mounting housing Optical interface with OLM⁴⁾ Baud rate Max. 1.5 Mbaud Optical wavelength $\lambda = 820 \text{ nm}$ Permissible attenuation Max. 8 dB for 62.5/125 µm fiber Distance 500 kbit/s 1.6 km 1500 kbit/s 530 m Protection data interface Quantity 1 FO5¹⁾, OMA1²⁾: Fiber-optic interface For multi-mode fiber 62.5/125 µm, with clock recovery for direct con-ST connectors nection up to 1.5 km or for connec-Permissible fiber attenuation 8 dB tion to a communication converter, 820 nm FO6¹⁾, OMA2²⁾: Fiber-optic interface For multi-mode fiber 62.5/125 µm, for direct connection up to 3.5 km, ST connectors Permissible fiber attenuation 16 dB 820 nm FO30¹⁾: for direct fibre-optic For multi-mode fiber 62.5/125 µm, connection to a multiplexor using ST connectors IEEE C37.94 standard Permissible fiber attenuation 8 dB FO17¹): for direct connection up to For mono-mode fiber 9/125 µm, 24 km³⁾, 1300 nm LC-Duplex connector Permissible fiber attenuation 13 dB FO18¹⁾: for direct connection up to $60 \text{ km}^{3)}$, 1300 nm For mono-mode fiber 9/125 µm, LC-Duplex connector Permissible fiber attenuation 29 dB FO19¹⁾: for direct connection up to For mono-mode fiber 9/125 µm, 100 km³⁾, 1550 nm LC-Duplex connector Permissible fiber attenuation 29 dB Relay communication equipment External communication converter 7XV5662-0AA00 with X21/RS422 or G703 1 interface External communication converter Electrical X21/RS422 or G703.1 for linking the optical 820 nm interinterface settable by jumper face of the unit (FO5/OMA1 option Baud rate settable by jumper with clock recovery) to the X21/RS422/G703.1 interface of the communication network FO interface with 820 nm with clock Max. 1.5 km with 62.5/125 µm multi- mode fiber to protection relay recoverv 64/128/512 kbit (settable by jumper) Electrical X21/RS422 interface max. 800 m, 15-pin connector to the communication network Electrical G703.1 interface 64 kbit/s max. 800 m, screw-type terminal to the communication network External communication converter 7XV5662-0AC00 for pilot wires External communication converter Typical distance: 15 km max. for linking the optical 820 nm interface of the unit (FO5/OMA1 option with clock recovery) to pilot wires. FO interface for 820 nm with clock Max. 1.5 km with 62.5/125 µm multirecovery mode fiber to protection relay, 128 kbit Electrical interface to pilot wires 5 kV-isolated

4) Conversion with external OLM

For fiber-optic interface please complete order number at 11th position with 4 (FMS RS485) or 9 and Order Code LOA (DP RS485) or 9 and Order Code LOG (DNP 3.0) and additionally a suitable external repeater.

1) For flush-mounting housing.

2) For surface-mounting housing.

will be delivered together with an external repeater.

Electrical tests		Oscillatory surge withstand
Specifications		capability, IEEE Std C37.90.1
Standards	IEC 60255 (product standards) IEEE Std C37.90.0/.1/.2; UL 508 VDE 0435 Further standards see "Individual func- tions"	Fast transient surge withstand capability, IEEE Std C37.90.1 Radiated electromagnetic
Insulation tests		interference IEEE Std C37.90.2
Standards	IEC 60255-5 and 60870-2-1	Damped oscillations
High-voltage test (routine test)	110 00255 5 and 00070 2 1	IEC 60694, IEC 61000-4-12
All circuits except for power supply, binary inputs, high-speed outputs, communication and time synchronization interfaces	2.5 kV (r.m.s.), 50 Hz	EMC tests for noise emission; type Standard Radio noise voltage to lines, only auxiliary voltage IEC_CISPR 22
Auxiliary voltage, binary inputs and high-speed outputs (routine test)	3.5 kV DC	Radio interference field strength IEC-CISPR 22
only isolated communication interfaces and time synchroniza- tion interface (routine test)	500 V (r.m.s.), 50 Hz	Harmonic currents on the network lead at 230 V AC, IEC 61000-3-2 Voltage fluctuations and flicker
Impulse voltage test (type test) All circuits except for communi- cation interfaces and time	5 kV (peak); 1.2/50 μs; 0.5 Ws, 3 positive and 3 preative impulses in	on the network incoming feeder at 230 V AC, IEC 61000-3-3
synchronization interface, class III	intervals of 5 s	Mechanical stress test
EMC tests for noise immunity; type to	ests	Vibration, shock stress and seismic
Standards	IEC 60255-6/-22 (product standard) EN 61000-6-2 (generic standard), VDE 0435 part 301 DIN VDE 0435-110	<u>During operation</u> Standards Vibration JEC 60255-21-1, class 2
High-frequency test IEC 60255-22-1 class III and VDE 0435 Section 303, class III	2.5 kV (peak); 1 MHz; $\tau = 15 \mu s$; 400 surges per s; test duration 2 s, $R_i = 200 \Omega$	IEC 60068-2-6
Electrostatic discharge IEC 60255-22-2 class IV and IEC 61000-4-2, class IV	8 kV contact discharge; 15 kV air discharge; both polarities; 150 pF; $R_i = 330 \Omega$	Shock IEC 60255-21-2, class 1 IEC 60068-2-27
Irradiation with HF field, frequency sweep IEC 60255-22-3 (report) class III IEC 61000-4-3 class III	10 V/m; 80 to 1000 MHz: 80 % AM; 1 kHz 10 V/m; 800 to 960 MHz: 80 % AM; 1 kHz 10 V/m; 1 4 to 2 CHz; 80 % AM; 1 kHz	Seismic vibration IEC 60255-21-2, class 1 IEC 60068-3-3
Irradiation with HF field, single fre- quencies IEC 60255-22-31, IEC 61000-4-3, class III amplitude/pulse modulated	10 V/m; 80, 160, 450. 900 MHz; 80 % AM; 1 kHz; duty cycle > 10 s 900 MHz; 50 % PM, repetition fre- quency 200 Hz	
Fast transient disturbance/bursts IEC 60255-22-4 and IEC 61000-4-4, class IV	4 kV; 5/50 ns; 5 kHz; burst length = 15 ms; repetition rate 300 ms; both polarities; $R_i = 50 \Omega$; test duration 1 min	During transport Standards
High-energy surge voltages (SURGE), IEC 61000-4-5 installation class III Auxiliary supply	Impulse: 1.2/50 μs Common mode: 2 kV; 12 Ω; 9 μF Differential mode:1 kV; 2 Ω; 18 μF	Vibration IEC 60255-21-1, class 2 IEC 60068-2-6
Analog measurement inputs, binary inputs, relays output	Common mode: 2 kV; 42 Ω ; 0.5 μ F Differential mode: 1 kV; 42 Ω ; 0.5 μ F	Shock IEC 60255-21-2, class 1
modulated, IEC 61000-4-6, class III	1 kHz	IEC 60068-2-27
Power system frequency magnetic field IEC 61000-4-8, class IV; IEC 60255-6	30 A/m continuous; 300 A/m for 3 s; 50 Hz 0.5 mT; 50 Hz	Continuous shock IEC 60255-21-2, class 1 IEC 60068-2-29

ty, IEEE Std C37.90.1 $\tau = 50 \ \mu s$; 400 surges per second, test duration 2 s, $R_i = 200 \Omega$ sient surge withstand 4 kV; 5/50 ns; 5 kHz; burst length = 15 ms ty, IEEE Std C37.90.1 repition rate 300 ms, ; both polarities; test duration 1 min; $R_i = 50 \Omega$ d electromagnetic 35 V/m; 25 to 1000 MHz, ence IEEE Std C37.90.2 amplitude and pulse-modulated l oscillations 2.5 kV (peak value); polarity alternating 94, IEC 61000-4-12 100 kHz; 1 MHz; 10 and 50 MHz; $R_{\rm i} = 200 \ \Omega$ ts for noise emission; type test EN 61000-6-3 (generic standard) 150 kHz to 30 MHz oise voltage to lines, only voltage Limit class B PR 22

30 to 1000 MHz Limit class B ic currents on the network Class A limits are observed

2.5 kV (peak); 1 MHz

Limits are observed

ical stress test

n, shock stress and seismic vibration

IEC 60255-21 and IEC 60068-2 Sinusoidal 10 to 60 Hz: ± 0.075 mm amplitude; 60 to 150 Hz: 1 g acceleration frequency sweep 1 octave/min 20 cycles in 3 orthogonal axes Semi-sinusoidal

Acceleration 5 g, duration 11 ms, 3 shocks on each of the 3 axes in both directions Sinusoidal 1 to 8 Hz: \pm 3.5 mm amplitude (horizontal axis) 1 to 8 Hz: ± 1.5 mm amplitude (vertical axis) 8 to 35 Hz: 1 g acceleration (horizontal axis) 8 to 35 Hz: 0.5 g acceleration

(vertical axis) Frequency sweep 1 octave/min 1 cycle in 3 orthogonal axes

IEC 60255-21 and IEC 60068-2

Sinusoidal 5 to 8 Hz: \pm 7.5 mm amplitude; 8 to 150 Hz: 2 g acceleration Frequency sweep 1 octave/min 20 cycles in 3 orthogonal axes

Semi-sinusoidal Acceleration 15 g, duration 11 ms, 3 shocks on each of the 3 axes in both directions

Semi-sinusoidal Acceleration 10 g, duration 16 ms, 1000 shocks on each of the 3 axes in both directions

6/22

Climatic stress tests

Standard	IEC 60255-6
Temperatures	
Type-tested acc. to IEC 60068-2-1 and -2, test Bd	-25 °C to +85 °C / -13 °F to +185 °F
Temporarily permissible operating temperature, tested for 96 h (Legibility of display may be im- paired above +55 °C / +131 °F)	-20 °C to +70 °C / -4 °F to +158 °F
Recommended permanent operat- ing temperature acc. to IEC 60255-6	-5 °C to +55 °C / +23 °F to +131 °F
 Limiting temperature during permanent storage Limiting temperature during transport 	-25 °C to +55 °C / -13 °F to 131 °F -25 °C to +70 °C / -13 °F to +158 °F
Humidity	
Permissible humidity stress: It is recommended to arrange the	Annual average on \leq 75 % relative humidity; on 56 days per year up to

is not permitted.

units in such a way that they are not 93 % relative humidity; condensation exposed to direct sunlight or pronounced temperature changes that could cause condensation.

Functions

Distance protection (ANSI 21, 21N)	
Types of pickup	Overcurrent pickup (I >); Voltage-dependent overcurrent pickup (V < / I >); Voltage-dependent and phase an- gle-dependent overcurrent pickup (V < / I > / φ >); Impedance pickup (Z <)
Types of tripping	Three-pole for all types of faults; Single-pole for single-phase faults / otherwise three-pole;
	Single-pole for single-phase faults and two-pole phase-to-phase faults / otherwise three-pole
Characteristic	Quadrilateral or circle
Distance protection zones	7, 1 of which as controlled zone All zones can be set to forward, re- verse, non-directional or inactive
Timer stages for tripping delay Setting range	7 for multi-phase faults 3 for single-phase faults 0 to 30 s or deactivated (steps 0.01 s)
Zone setting X (for distance zones and Z< starting)	0.050 to 600 $\Omega_{~(1A)}$ / 0.01 to 120 $\Omega_{~(5A)}$ (step 0.001 $\Omega)$
Resistance setting (for quadrilateral distance zones and Z< starting)	
Phase-to-phase faults and phase-to-earth faults	0.05 to 600 Ω $_{(1A)}$ / 0.01 to 120 Ω $_{(5A)}$ (step 0.001 $\Omega)$
Line angle	10 ° to 89 °

Inclination angle for quadrilateral characteristic Zone setting Z_r

(for circle characteristic) Threshold angle α for increased

resistance tolerance (circle charac.)

Overcurrent pickup I>> (for I >>, V < I >, $V < I > / \varphi >$)

Minimum current pickup I> (for V < /I >, $V < /I > /\varphi >$ and Z <)

Minimum current pickup I_{φ} > (for $V < I > /\varphi >$)

Undervoltage pickup (for V</I> and $V < I > / \varphi >$ V_{PH-e}< V_{PH-PH}<

Load angle pickup (for $V < I > /\phi >$) Load angle φ Load angle φ Load zone (for Z<)

Load angle Resistance

Earth-fault detection Earth current $3I_0 >$

Zero-sequence voltage $3V_0$ > for earthed networks for resonant-earthed networks

Earth impedance matching Parameter formats Separately settable for

 $R_{\rm E}/R_{\rm L}$ and $X_{\rm E}/X_{\rm L}$ k_0 and $\varphi(k_0)$

Parallel line matching $R_{\rm M}/R_{\rm L}$ and $X_{\rm M}/X_{\rm L}$

Phase preference on double earth-faults in resonant-earthed / non-earthed networks

Direction decision for all types of faults

Direction sensitivity

30° to 90° (step 1°)

0.050 to 600 $\Omega_{(1 \text{ A})}/0.010$ to 120 $\Omega_{(5 \text{ A})}$ $(step 0.001 \Omega)$

10 to 90 ° (step 1°)

0.25 to 10 A $_{(1A)}$ / 1.25 to 50 A $_{(5A)}$ (step 0.01 A)

0.05 to 4 A $_{(1A)}$ / 0.25 to 20 A $_{(5A)}$ (step 0.01 Å)

0.1 to 8 A (1A) / 0.5 to 40 A (5A) (step 0.01 A)

20 to 70 V (step 1 V) 40 to 130 V (step 1 V)

30 ° to 80 ° 90° to 120°

Impedances within the load zone do not cause pickup in pickup mode Z<; Load zones for phase-to-phase and phase-to-earth faults can be set separately 20° to 60°

0.1 to 600 $\Omega_{(1A)}$ / 0.02 to 120 $\Omega_{(5A)}$

0.05 to 4 A $_{(1A)}$ / 0.25 A to 20 A $_{(5A)}$ (step 0.01 A)

1 to 100 V (step 1 V) or deactivated 10 to 200 V (step 1 V) or deactivated

 $R_{\rm E}/R_{\rm L}$ and $X_{\rm E}/X_{\rm L}$ or k₀ and φ (k₀) Distance protection zone Z1 and higher distance zones (Z1B, Z2 to Z6) -0.33 to +7.00 (step 0.01) 0 to 4 (step 0.01) and - 135 ° to 135 ° (step 0.01 °)

For parallel compensation 0 to 8 (step 0.01)

Phase preference or no preference (selectable)

With fault-free voltages and/or voltage memory Dynamically unlimited

Times		We
Shortest trip time	Approx. 17 ms for $f_{\rm N} = 50$ Hz	Or
(measured at the fast relay;	Approx. 15 ms for $f_{\rm N} = 60$ Hz	na
connection diagram)		Ur
Shortest trip time (measured at	Approx. 12 ms at 50 Hz	Ti
the high-speed trip outputs)	Approx. 10 ms at 60 Hz	Ec
Reset time	Approx. 30 ms	T
Tolerances	For sinusoidal measured variables	То
Response values (in conformity		
V and I	< 5% of setting value	Di
Angle (ϕ)	$\leq 3^{\circ}$	Di
		bir
Impedances	$\frac{\Delta X}{W} \le 5\%$ for 30° $\le \varphi_{SC} \le 90°$	Tr
(in conformity with DIN 57435,		Tir
Part 303)	$\left \frac{\Delta R}{R}\right \le 5\% \text{ for } 0^\circ \le \varphi_{SC} \le 60^\circ$	Po
Time stages	1 % of setting value or 10 ms	Ро
Fault locator		
Output of the distance to fault	<i>X</i> , <i>R</i> (secondary) in Ω	Ma
-	X, R (primary) in Ω	qu
	Distance in kilometers or in % of line length	OF
Start of calculation	With trip, with reset of pickup, with binary input	Po
Peactance per unit length	$0.005 \text{ to } 6.5 \Omega/\text{km}(10) / 0.001 \text{ to}$	10
Reactance per unit lengui	$1.3 \Omega/km_{(5A)}$	P
	(step 0.001 \$2/km)	De
Tolerance	For sinusoidal quantities	Sw
	≤ 2.5 % line length for 30 ° < $\omega_{sc} < 90$ ° and $V_{sc}/V_{nom} > 0.1$	ва
BCD-coded output of fault location	$\varphi = \varphi = \varphi$	OĮ
Indicated value	Fault location in % of the line length	Ch
Output signals	Max 10.	CI.
Output signals	d[1 %], d[2 %], d[4 %], d[8 %],	
	d[10 %], d[20 %], d[40 %], d[80 %],	Ins
	d[100 %], d[release]	sw
Indication range	0 % to 195 %	De
Tele (pilot) protection for distance p	rotection (ANSI 85-21)	Ph
Modes of operation	PUTT (Z1B acceleration); DUTT;	
I I I I I I I I I I I I I I I I I I I	PUTT (acceleration with pickup);	Ear
	POTT; Directional comparison;	
	Reverse interlocking	Ph
	Pilot-wire comparison; Unblocking;	
		Ea
Additional functions	(refer to weak-infeed function)	
	Transient blocking for schemes with	Ti
	measuring range extension	То
Transmission and reception signals	Phase-selective signals available for	10
	maximum selectivity with single-pole	
	tripping; signals for 2- and 3-end-	Op
	lines	

Neak-infeed protection (ANSI 27-WI)	
Dperating modes with carrier (sig- nal) reception and no fault detection	Echo Echo and trip with undervoltage
Undervoltage phase-earth	2 to 70 V (step 1 V)
Гіme delay	0 to 30 s (step 0.01 s)
Echo impulse	0 to 30 s (step 0.01 s)
Folerances Voltage threshold Timer	≤ 5 % of setting value or 0.5 V 1 % of setting value or 10 ms
Direct transfer trip (DTT)	
Direct phase-selective tripping via binary input	Alternatively with or without auto-reclosure
Гrip time delay	0 to 30 s (step 0.01 s)
Fimer tolerance	1 % of setting value or 10 ms
Power swing detection (ANSI 68, 68T)	
Power swing detection principle	Measurement of the rate of change of the impedance vector and monitoring of the vector path
Max. detectable power swing fre- quency	Approx. 7 Hz
Operating modes	Power swing blocking and/or power swing tripping for out-of-step conditions
Power swing blocking programs	All zones blocked; Z1/Z1B blocked; Z2 to Z6 blocked; Z1, Z1B, Z2 blocked
Detection of faults during power wing blocking	Reset of power swing blocking for all types of faults
Backup overcurrent protection (ANS)	50 (N), 51 (N), 67)
Operating modes	Active only with loss of VT secondary circuit or always active
Characteristic	2 definite-time stages / 1 inverse-time stage, 1 definite-time Stub-protection stage
nstantaneous trip after witch-onto-fault	Selectable for every stage
Definite-time stage (ANSI 50, 50N)	
Phase current pickup <i>I</i> _{PH} >>	0.1 to 25 A $_{\rm (1A)}$ / 0.5 to 125 A $_{\rm (5A)}$ (step 0.01 A)
Earth current pickup 3 <i>I</i> ₀ >>	0.05 to 25 A $_{\rm (1A)}$ / 0.25 to 125 A $_{\rm (5A)}$ (step 0.01 A)
Phase current pickup <i>I</i> _{PH} >	0.1 to 25 A $_{\rm (1A)}$ / 0.5 to 125 A $_{\rm (5A)}$ (step 0.01 A)
Earth current pickup 3 <i>I</i> ₀ >	0.05 to 25 A $_{\rm (1A)}$ / 0.25 to 125 A $_{\rm (5A)}$ (step 0.01 A)
Fime delay	0 to 30 s (step 0.01 s) or deactivated
Folerances	
Current pickup Delay times	\leq 3 % of setting value or 1 % $I_{\rm N}$ 1 % of setting value or 10 ms
Operating time	Approx. 25 ms

Inverse-time stage (ANSI 51, 51N)	
Phase current pickup <i>I</i> _P	

Phase current pickup $I_{\rm P}$	0.1 to 4 A $_{\rm (1A)}$ / 0.5 to 20 A $_{\rm (5A)}$ (step 0.01 A)
Earth current pickup $3I_{0P}$	0.05 to 4 A $_{\rm (1A)}$ / 0.25 to 20 A $_{\rm (5A)}$ (step 0.01 A)
Tripping time characteristics acc. to IEC 60255-3	Normal inverse; very inverse; extremely inverse; long time inverse
Tripping time characteristics acc. to ANSI/IEEE (not for DE region, see selection and ordering data $10^{\rm th}$ position)	Inverse; short inverse; long inverse; moderately inverse; very inverse; extremely inverse; definite inverse
Time multiplier for IEC charac. T	$T_{\rm p} = 0.05$ to 3 s (step 0.01 s)
Time multiplier for ANSI charac. D	$D_{\rm IP} = 0.5$ to 15 s (step 0.01 s)
Pickup threshold	Approx. 1.1 I/I_p (ANSI: $I/I_p = M$)
Reset threshold	Approx. 1.05 x $I/I_{\rm p}$ (ANSI: $I/I_{\rm p}={\rm M}$)
Tolerances Operating time for $2 \le I/I_p \le 20$	\leq 5 % of setpoint ± 15 ms

Directional earth-fault overcurrent protection for high-resistance faults in systems with earthed star point (ANSI 50N, 51N, 67N)

Characteristic	3 definite-time stages / 1 inverse-time stage or 4 definite-time stages or 3 definite-time stages / 1 V _{0invers.} stage
Phase selector	Permits 1-pole tripping for single- phase faults or 3-pole tripping for multi-phase faults selectable for every stage
Inrush restraint	Selectable for every stage
Instantaneous trip after switch-onto-fault	Selectable for every stage
Influence of harmonics Stages 1 and 2 (<i>I</i> >>> and <i>I</i> >>)	3 rd and higher harmonics are com- pletely suppressed by digital filtering
Stages 3 and 4 (<i>I</i> > and inverse 4 th stage)	2 nd and higher harmonics are com- pletely suppressed by digital filtering
Definite-time stage (ANSI 50N)	
Pickup value $3I_0>>>$	0.5 to 25 A $_{\rm (1A)}$ / 2.5 to 125 A $_{\rm (5A)}$ (step 0.01 A)
Pickup value $3I_0 >>$	0.2 to 25 A $_{\rm (1A)}$ / 1 to 125 A $_{\rm (5A)}$ (step 0.01 A)
Pickup value 3 <i>I</i> ₀ >	0.05 to 25 A $_{(1A)}$ / 0.25 to 125 A $_{(5A)}$ (step 0.01 A) Neutral (residual) current trans- former with normal sensitivity (refer to ordering data, position 7); 0.003 to 25 A $_{(1A)}$ / 0.015 to 125 A $_{(5A)}$ (step 0.001 A) Neutral (residual) current trans- former with high sensitivity (refer to ordering data, position 7)
Pickup value 3 <i>I</i> ₀ , 4 th stage	$\begin{array}{l} 0.05 \mbox{to } 25 \mbox{ A}_{(1A)} \ / \ 0.25 \mbox{ to } 125 \mbox{ A}_{(5A)} \\ (step \ 0.01 \ A) \\ Neutral (residual) \ current transformer with normal sensitivity \\ (refer to ordering \ data, \ position \ 7); \\ 0.003 \ to \ 25 \ A_{(1A)} \ / \ 0.015 \ to \ 125 \ A_{(5A)} \\ (step \ 0.001 \ A) \\ Neutral (residual) \ current \ transformer \ with \ high \ sensitivity \\ (refer to \ ordering \ data, \ position \ 7) \end{array}$
Time delay for definite-time stages	0 to 30 s (step 0.01 s) or deactivated

Tolerances Current pickup	$< 3\%$ of setting value or 1% $I_{\rm nom}$
Delay times	1 % of setting value or 10 ms
Command / pickup times $3I_0 >>>$ and $3I_0 >>$	Approx. 30 ms
Command / pickup times $3I_0$ and $3I_0$, 4^{th} stage	Approx. 40 ms
Inverse-time stage (ANSI 51N)	
Earth-current pickup 3 <i>I</i> ₀ p	$\begin{array}{l} 0.05 \mbox{ to 4 A }_{(1A)} \ / \ 0.25 \mbox{ to 20 A }_{(5A)} \\ (step \ 0.01 \ A) \\ Neutral (residual) current transformer with normal sensitivity \\ (refer to ordering data, position 7) \\ 0.003 \ to 4 \ A _{(1A)} \ / \ 0.015 \ to \ 20 \ A _{(5A)} \\ (step \ 0.001 \ A) \\ Neutral (residual) \ current transformer with high sensitivity (refer to ordering data, position 7) \\ \end{array}$
Tripping characteristics acc. to IEC 60255-3	Normal inverse; very inverse; extremely inverse; long time
ANSI/IEEE tripping characteristic (not for region DE, see selection and ordering data, position 10)	Inverse; short inverse; long inverse; moderately inverse; very inverse; extremely inverse; definite inverse
Inverse logarithmic tripping charac- teristics (not for regions DE and US, see selection and ordering data, position 10)	$t = T_{3I0Pmax} - T_{3I0P} \ln \frac{3I0}{3I0_{\rm p}}$
Pickup threshold	1.1 to 4.0 x $I\!/I_{\rm p}~({\rm step}~0.1~{\rm s})$
Time multiplier for IEC charac. T	$T_{\rm p} = 0.05$ to 3 s (step 0.01 s)
Time multiplier for ANSI charac. D	$D_{\rm IOP} = 0.5$ to 15 s (step 0.01 s)
Pickup threshold	Approx. 1.1 I/I_p (ANSI: $I/I_p = M$)
Inverse logarithmic pickup threshold	1.1 to 4.0 x I/I_{0P} (step 0.1)
Reset threshold	Approx. 1.05 $I/I_{\rm 0P}~({\rm ANSI:}~I/I_{\rm p}={\rm M})$
Tolerance Operating time for $2 \le I/I_p \le 20$	\leq 5 % of setpoint ± 15 ms
Zero-sequence voltage protection V	-
Tripping characteristic	$t = \frac{2 \text{ s}}{\frac{V_0}{4} - V_{0\text{inv min}}}$
Zero-sequence power-dependent st	age
Compensated zero-sequence power	$S_{\rm r} = 3I_0 \cdot 3V_0 \cdot \cos{(\varphi - \varphi_{\rm comp.})}$
Direction decision (ANSI 67N)	
Measured signals for direction decision	$3I_0$ and $3V_0$ or $3I_0$ and $3V_0$ and I_Y (star point currer of an earthed power transformer) or $2I_0$ and $3V_0$ (magnitum computing

Min. zero-sequence voltage 3V0 Min. current IY (of earthed transformers) Min. negative-sequence voltage $3V_2$ 0.5 to 10 V (step 0.1 V) Min. negative-sequence current 3I2

a, position 7)
rse; very inverse;
verse; long time
t inverse; long inverse;
nverse; very inverse;
verse; definite inverse

$$-T_{3I0P} \ln \frac{3I0}{3I0_{p}}$$

 I_{P} (step 0.1 s)
3 s (step 0.01 s)
15 s (step 0.01 s)
 I_{P} (ANSI: I/I_{P} = M)

rrent :) or system) or zero-sequence power Sr or automatic selection of zero-sequence or negative-sequence quantities dependent on the magnitude of the component voltages

0.5 to 10 V (step 0.1 V)

0.05 to 1 A $_{\rm (1A)}$ / 0.25 to 5 A $_{\rm (5A)}$ (step 0.01 A)

0.05 to 1 A $_{\rm (1A)}$ / 0.25 to 5 A $_{\rm (5A)}$ (step 0.01 A)

Inrush current blocking, capable of bei	ng activated for each stage
Component of the 2 nd harmonic	10 to 45 % of the fundamental (step 1 %)
Max. current, which cancels inrush current blocking	0.5 to 25 A $_{\rm (1A)}$ / 2.5 to 125 A $_{\rm (5A)}$ (step 0.01 A)
Tele (pilot) protection	
For directional earth-fault protection	n (ANSI 85-67N)
Operating modes	Directional comparison, blocking, unblocking
Additional functions	Echo (see function "weak infeed"); transient blocking for schemes with parallel lines
Send and receive signals	Suitable for 2 and 3 end-lines
Instantaneous high-speed switch-ont	to-fault overcurrent protection
Operating mode	Active only after CB closing; instantaneous trip after pickup
Pickup current <i>I</i> >>>	1 to 25 A $_{\rm (1A)}/$ 5 to 125 A $_{\rm (5A)}$ (step 0.01 A)
Reset ratio	Approx. 0.90
Tolerances	
Current starting	\leq 3 % of setting value or 1 % $I_{\rm N}$
Shortest tripping time With reference to fast relays With high-speed trip to outputs	Approx. 12 ms Approx. 8 ms
Voltage protection (ANSI 59, 27)	
Operating modes	Local tripping and/or carrier trip for remote end
Overvoltage protection	
Pickup values <i>V</i> _{PH-E} >>, <i>V</i> _{PH-E} > (phase-earth overvoltage)	1 to 170 V (step 0.1 V)
Pickup values <i>V</i> _{PH-PH} >>, <i>V</i> _{PH-PH} > (phase-phase overvoltage)	2 to 220 V (step 0.1 V)
Pickup values $3V_0 >>, 3V_0 >$ ($3V_0$ can be measured via V4 transformers or calculated by the relay) (zero-sequence overvoltage)	1 to 220 V (step 0.1 V)
Pickup values $V_1 >>$, $V_1 >$	2 to 220 V (step 0.1 V)
(positive-sequence overvoltage) Measured voltage	Local positive-sequence voltage or calculated remote positive- sequence voltage (compounding)
Pickup values V ₂ >>, V ₂ > (negative-sequence overvoltage)	2 to 220 V (step 0.1 V)
Reset ratio (settable)	0.5 to 0.98 (step 0.01)
Undervoltage protection	
Pickup values <i>V</i> _{PH-E} <<, <i>V</i> _{PH-E} < (phase-earth undervoltage)	1 to 100 V (step 0.1 V)
Pickup values <i>V</i> _{PH-PH} <<, <i>V</i> _{PH-PH} < (phase-phase undervoltage)	1 to 170 V (step 0.1 V)
Pickup values <i>V</i> ₁ <<, <i>V</i> ₁ < (positive-sequence undervoltage)	1 to 100 V (step 0.1 V)
Blocking of undervoltage prot. stages	Minimum current; binary input
Reset ratio (settable)	1.01 to 1.20 (step 0.01)

Time delays	
Time delay for all stages	0 to 100 s (step 0.01 s) or deactivated
Command / pickup time	Approx. 30 ms
Command/pickup time for <i>3V</i> ₀ stages	Approx. 30 ms or 65 ms (settable)
Tolerances Voltage limit values Time stages	≤ 3 % of setting value or 1 V 1 % of setting value or 10 ms
Frequency protection (ANSI 81)	
Number of frequency elements	4
Setting range	45.5 to 54.5 Hz (in steps of 0.01) at $f_{nom} = 50$ Hz 55.5 to 64.5 Hz (in steps of 0.01) at $f_{nom} = 60$ Hz
Delay times	0 to 600 s or ∞ (in steps of 0.01 s)
Operating voltage range	6 to 230 V (phase-to-earth)
Pickup times	Approx. 80 ms
Dropout times Hysteresis Dropout condition	Approx. 80 ms Approx. 20 mHz Voltage = 0 V and current = 0 A
Tolerances Frequency Delay times	15 mHz for V _{PH-PH} : 50 to 230 V 1 % of the setting value or 10 ms
Thermal overload protection (ANSI 4	9)
Factor k acc. to IEC 60255-8	0.1 to 4 (steps 0.01)
Time constant τ	1 to 999.9 min (steps 0.1 min)
Thermal alarm stage $\Theta_{Alarm}/\Theta_{Trip}$	50 to 100 % referred to tripping temperature (steps 1 %)
Current-based alarm stage I _{Alarm}	0.1 to 4 A $_{\rm (1A)}$ / 0.5 to 20 A $_{\rm (5A)}$ (steps 0.01 A)
Calculating mode for overtemperature	$\Theta_{\max}, \Theta_{\max}, \Theta$ with I_{\max}
Pickup time characteristic	$t = \tau \ln \frac{I^2 - I_{\text{pre}}^2}{I^2 - (k I_{\text{nom}})^2}$
Reset ratio Θ/Θ _{Alarm} Θ/Θ _{Trip} <i>I</i> / I _{Alarm}	Approx. 0.99 Approx. 0.99 Approx. 0.97
Overload measured values	Θ/Θ_{Trip} L1; Θ/Θ_{Trip} L2; Θ/Θ_{Trip} L3; Θ/Θ_{Trip}
Tolerances	Class 10 % acc. to IEC 60255-8
Breaker failure protection (ANSI 50Bl	5)
Number of stages	2
Pickup of current element	0.05 to 20 A $_{(1A)}$ / 0.25 to 100 A $_{(5A)}$ (step 0.01 A)
Time delays $T1_{1\text{phase}}$, $T1_{3\text{phase}}$, $T2$	0 to 30 s (steps 0.01 s) or deactivated
Additional functions	End-fault protection CB pole discrepancy monitoring
Drop-off (overshoot) time, internal	\leq 15 ms, typical; 25 ms, max.
Tolerances Current limit value Time stages	\leq 5 % of setting value or 1 % <i>I</i> _{nom} 1 % of setting value or 10 ms

Auto-reclosure (ANSI 79)	
Number of auto-reclosures	Up to 8
Operating mode	Only 1-pole; only 3-pole, 1 or 3-pole
Operating modes with line voltage check	DLC – dead-line check ADT – adaptive dead time RDT – reduced dead time
Dead times T_{1-PH} , T_{3-PH} , T_{Seq}	0 to 1800 s (step 0.01 s) or deactivated
Action times	0.01 to 300 s (step 0.01 s) or deactivated
Reclaim times	0.5 to 300 s (step 0.01 s)
Start-signal monitoring time	0.01 to 300 s (step 0.01 s)
Additional functions	Synchro-check request 3-phase intertripping InterCLOSE command to the remote end Check of CB ready state Blocking with manual CLOSE
Voltage limit values for DLC, ADT, RDT Healthy line voltage PH-E	30 to 90 V (step 1 V)
Dead line voltage PH-E	2 to 70 V (step 1 V)
Tolerances Time stages Voltage limit values	1 % of setting value or 10 ms \leq 3 % of setting value or 1 V
Synchro-check (ANSI 25)	
Initiate options	Auto-reclosure; Manual CLOSE control Control commands
Operating modes With auto-reclosure	Synchro-check Line dead/busbar live Line live/busbar dead Line and busbar dead Bypassing
For manual closure and control commands	As for auto-reclosure
Permissible voltage difference	1 to 60 V (step 0.1 V)
Permissible frequency difference	0.03 to 2 Hz (step 0.01 Hz)
Permissible angle difference	2 to 80 ° (step 1°)
Max. duration of synchronization	0.01 to 600 s (step 0.01 s) or deactivated
Release delay with synchronous networks	0 to 30 s (step 0.01 s)
Minimum measuring time	Approx. 80 ms
Tolerances Time stages Voltage limit values	1 % of setting value or 10 ms \leq 2 % of setting value or 1 V
Earth-fault detection for compensate	ed / isolated networks
Zero-sequence voltage $3V_0$	1 to 150 V (step 1 V)
Phase selection with phase voltages $V <$ and $V >$	10 to 100 V (step 1 V)
Directional determination	Active / reactive power measurements
Minimum current for directional determination	3 to 1000 mA (steps 1 mA)
Angle correction for core-balance CT	0 to 5 ° at 2 operating points (step 0.1 °)
Operating modes	Only indication; indication and trip

Delay times	0 to 320 s (step 0.01 s)		
Pickup time	Approx. 50 ms		
Earth-fault measured values	Active and reactive component of earth-fault current I_{EEac} , I_{EEreac}		
Tolerances Voltage limit values Current limit values Time stages	≤ 5 % of setting value or 1 V ≤ 10 % of setting value 1 % of setting value or 10 ms		
Trip circuit supervision (ANSI 74TC)			
Number of supervisable trip circuits	Up to 3		
Number of required binary inputs per trip circuit	1 or 2		
Indication relay	1 to 30 s (step 1 s)		
Additional functions			
Operational measured values			
Representation	Primary, secondary and percentage referred to rated value		
Currents	3 x I _{Phase} ; 3I ₀ ; I _{E sensitve} ; I ₁ ; I ₂ ; I _Y ; 3I ₀ PAR		
Tolerances	Typ. 0.3 % of indicated measured value or 0.5 % <i>I</i> _{nom}		
Voltages	3 x V _{Phase-Earth} ; 3 x V _{Phase-Phase} ; 3V ₀ , V ₁ , V ₂ , V _{SYNC} , V _{en}		
Tolerances	Typ. 0.25 % of indicated measured value or 0.01 % V_{nom}		
Power with direction indication	P, Q, S		
Tolerances <i>P</i> : for $ \cos \varphi = 0.7$ to 1 and <i>V</i> / <i>V</i> _{nom} , <i>I</i> / <i>I</i> _{nom} = 50 to 120 % <i>Q</i> : for $ \sin \varphi = 0.7$ to 1 and <i>V</i> / <i>V</i> _{nom} , <i>I</i> / <i>I</i> _{nom} = 50 to 120 % <i>S</i> : for <i>V</i> / <i>V</i> _{nom} , <i>I</i> / <i>I</i> _{nom} = 50 to 120 %	Typical $\leq 1\%$ Typical $\leq 1\%$ Typical $\leq 1\%$		
Frequency Tolerance	$f \le 10 \text{ mHz}$		
Power factor	p.f. $(\cos \varphi)$		
Tolerance for $ \cos \varphi = 0.7$ to 1	Typical ≤ 0.02		
Load impedances with directional indication	3 x R _{Phase-Earth} , X _{Phase-Earth} 3 x R _{Phase-Phase} , X _{Phase-Phase}		
Earth-fault measured values	Active and reactive component of earth-fault current <i>I</i> _{EEac} , <i>I</i> _{EEreac}		
Overload measured values	Θ/Θ_{Trip} L1; Θ/Θ_{Trip} L2; Θ/Θ_{Trip} L3; Θ/Θ_{Trip}		
Long-term mean values			
Interval for derivation of mean value	15 min / 1 min; 15 min / 3 min; 15 min / 15 min		
Synchronization instant	Every ¼ hour; every ½ hour; every hour		
Values	3 x I _{Phase} ; I ₁ ; P; P+; P-; Q; Q+; Q-; S		

Minimum/maximum memory	
Indication	Measured values with date and time
Resetting	Cyclically
0	Via binary input
	Via the keyboard
	Via serial interface
Values Min /max. of measured values	3 x Interes In 3 x Values Forth
ivini, max. of measured values	$3 \ge V_{\text{Phase-to-phase}}; 3V_0; V_1;$
	<i>P</i> +; <i>P</i> -; <i>Q</i> +; <i>Q</i> -; <i>S</i> ; <i>f</i> ; power factor (+);
Min (may of mean values	power factor (–)
	5 x Iphase; 11, F , Q, S
Energy meters	147 147 147 147
Four-quadrant meters	Wp+; Wp-; WQ+; WQ-
Tolerance $for cos c > 0.7$ and $V > 50.06$	5.04
V_{nom} and $I > 50 \% I_{\text{nom}}$	5 70
Analog measured value output 0 to	20 mA
Number of analog channels	2 per plug-in module
	Alternatively 1 or 2 or no plug-in
	module (Refer to ordering data,
	position 11 and Order code for
Indication range	
Selectable measured values	fault location [%]; fault location [km]: VL23 [%]: L2
	[%]; [<i>P</i>] [%]; [<i>Q</i>] [%];
	breaking current Imax-primary
Max. burden	350 Ω
Oscillographic fault recording	
Analog channels	3 x I _{Phase} , 3I ₀ , 3I _{0 PAR} 3 x V _{Phase} , 3V ₀ , V _{SYNC} , V _{en}
Max. number of available recordings	8, backed-up by battery if auxiliary voltage supply fails
Sampling intervals	20 samplings per cycle
Total storage time	> 15 s
Binary channels	Pickup and trip information; number
	and contents can be freely configured
	by the user
Max. number of displayed binary	100
cnannels	
Control	
Number of switching units	Depends on the number of binary / indication inputs and indication / command outputs
Control commands	Single command / double command 1, 1 plus 1 common or 2 pole
Feed back	CLOSE, TRIP, intermediate position
Interlocking	Freely configurable
Local control	Control via menu function keve
	control keys (if available)
Remote control	Control protection, DIGSI,
	pilot wires

Further additional functions			
Measured value supervision	Current sum Current symmetry Voltage sum Voltage symmetry Phase sequence Fuse failure monitor Power direction		
Indications			
Operational indications	Buffer size 200		
System disturbance indication	Storage of indications of the last 8 faults, buffer size 600		
Earth-fault indication	Storage of indications of the last 8 faults, buffer size 200		
Switching statistics	Number of breaking operations per CB pole Sum of breaking current per phase Breaking current of last trip operation Max. breaking current per phase		
Circuit-breaker test	TRIP/CLOSE cycle, 3 phases TRIP/CLOSE per phase		
Dead time for CB TRIP / CLOSE cycle	0 to 30 s (steps 0.01 s)		
Commissioning support	Operational measured values, cb. test, status display of binary inputs, setting of output relays, generation of indications for testing serial inter- faces		
Phase rotation adjustment	Clockwise or anti-clockwise		

CE conformity

This product complies with the directive of the Council of the European Communities on the approximation of the laws of the Member States relating to electromagnetic compatibility (EMC Council Directive 89/336/EEC) and concerning electrical equipment for use within specified voltage limits (Low-voltage directive 73/23/EEC).

This conformity is proved by tests conducted by Siemens AG in accordance with Article 10 of the Council Directive in agreement with the generic standards EN 61000-6-2 and EN 61000-6-4 for the EMC directive and with the standard EN 60255-6 for the low-voltage directive.

This device is designed and produced for industrial use.

The product conforms with the international standard of the series IEC 60255 and the German standard VDE 0435.

Selection and ordering data Description Order No. 7SA6100-000-000 7SA61 distance protection relay for all voltage levels Housing, number of LEDs see pages 6/32 0 Housing width 1/3 19", 7 LEDs to 6/35 Housing width 1/2 19", 14 LEDs 1 Housing width 1/1 19", 14 LEDs 2 Housing width 2/3 19", 14 LEDs 3 Operator panel with: - 4-line backlit display, 2 - function keys, 5 - numerical keys, 6 - PC interface Rated auxiliary voltage (power supply, binary inputs) 24 to 48 V DC, binary input threshold 17 V³) $\frac{60 \text{ to } 125 \text{ V DC}^2)}{110 \text{ to } 250 \text{ V DC}^2)}, \text{ binary input threshold 17 V}^{3)}$ $\frac{110 \text{ to } 250 \text{ V DC}^2)}{115 \text{ to } 230 \text{ V AC}, \text{ binary input threshold 73 V}^{3)}$ 4 5 Flush-Flush-Surfacemounting mounting mounting tion outputs incl. housing/ housing/ housing/ live status inputs screw-type plug-in screw-type contact terminals terminals terminals For 7SA610 5 5 4 F 5 4 5 5 5 4 В 7 6 F 7 6 Κ 7 6 For 7SA611 12 13 5 Ε 13 5 12 13 5 12 J М 13 4 8 5 Ν 13 4 8 5 Р 13 4 8 5 В 20 9 4 F 20 9 4 Κ 9 20 4 For 7SA612 21 13 12 A 21 13 12 Ε 21 13 12 М 21 12 8 5 1) Rated current can be selected by Р 21 12 8 5 means of jumpers. 5 R 21 12 8 2) Transition between the two auxiliary В 29 21 12 voltage ranges can be selected by F 29 21 12 means of jumpers. 29 12 K 21 3) The binary input thresholds are 29 20 8 5 Ν selectable in three stages by means of Q 29 20 5 jumpers, exception: versions with 8 S power relays have some binary inputs 29 20 5 8 with only two binary input thresh-С 33 12 8 olds. G 33 12 8 33 12 8 I

- 4) Fast relays are identified in the terminal connection diagram.
- 5) Power relay for direct control of disconnector actuator motors. Each pair of contacts is mechanically interlocked to prevent simultaneous closure.

For 7SA613

13

12

12

8

5

21

21

A

М

Description

Selection and ordering data

- Operator panel with:
- backlit graphic display for single-line diagram
- control keys,
- key-operated switches,
- function keys,
- numerical keys,
- PC interface

7SA6300-0000-0000 7SA63 distance protection relay for all voltage levels Housing, number of LEDs see pages 6/32 Housing width 1/2 19", 14 LEDs to 6/35 Housing width 1/1 19", 14 LEDs 2 Measuring input (4 x V, 4 x I) $\frac{I_{\text{PH}} = 1 \text{ A}^{[1]}, I_{\text{e}} = 1 \text{ A (min.} = 0.05 \text{ A)}}{I_{\text{PH}} = 1 \text{ A}^{[1]}, I_{\text{e}} = \text{sensitive (min.} = 0.003 \text{ A)}}$ $\frac{I_{\text{PH}} = 5 \text{ A}^{[1]}, I_{\text{e}} = 5 \text{ A (min.} = 0.25 \text{ A)}}{I_{\text{PH}} = 5 \text{ A}^{[1]}, I_{\text{e}} = 5 \text{ A (min.} = 0.25 \text{ A)}}$ 2 5 $\overline{I_{\rm PH} = 5 \, {\rm A}^{1)}}, I_{\rm e} = \text{sensitive} \,({\rm min.} = 0.003 \, {\rm A})$ 6 Rated auxiliary voltage (power supply, binary inputs) 24 to 48 V DC, binary input threshold 17 V³⁾ $\frac{60 \text{ to } 125 \text{ V DC}^2}{110 \text{ to } 250 \text{ V DC}^2}, \text{ binary input threshold } 17 \text{ V}^{3)}$ $\frac{110 \text{ to } 250 \text{ V DC}^2}{115 \text{ to } 230 \text{ V AC, binary input threshold } 73 \text{ V}^{3)}$ 4 5 Flush-Flush-Surfacemounting mounting mounting tionoutputs incl. housing/ housing/ housing/ inputs live status screw-type plug-in screw-type terminals terminals terminals contact For 7SA631 13 5 12 12 13 5 13 5 12 М 13 4 8 5 13 4 8 5 Ν Р 13 4 8 5 В 9 20 4 F 9 20 4 20 9 4 Κ For 7SA632 12 21 13 Ε 21 13 12 21 13 12 J М 21 12 8 5 Р 21 12 8 5 R 21 12 8 5 В 29 21 12 F 29 21 12 Κ 29 21 12 Ν 29 20 8 5 Q 29 20 5 8 29 5 S 20 8 33 12 С 8 G 33 12 8 33 12 8 L

Order No.

1) Rated current can be selected by means of jumpers.

- 2) Transition between the two auxiliary voltage ranges can be selected by means of jumpers.
- 3) The binary input thresholds are selectable in three stages by means of jumpers, exception: versions with power relays have some binary inputs with only two binary inputs thresholds.
- 4) Fast relays are identified in the terminal connection diagram.
- 5) Power relay for direct control of disconnector actuator motors. Each pair of contacts is mechanically interlocked to prevent simultaneous closure.

Selection and ordering data

Units with detached operator panel with - backlit graphic display

- control keys
- key-operated switches

- function keys

- numerical keys
- PC interface

ZSA64 distance protection relay for all voltage levels ZSA64 D-DDD-DDD-DDD Housing, number of LEDs 1 Housing width 1/2 19", 14 LEDs 1 Housing width 1/1 19", 14 1EDs 2 Measuring input $(4 \times V, 4 \times I)$ 1 $P_{HT} = 1 A^1, I_c = 1 A (min. = 0.05 A)$ 1 $P_{HT} = 5 A^{(1)}, I_c = 5 A (min. = 0.03 A)$ 2 $P_{HT} = 5 A^{(1)}, I_c = 5 A (min. = 0.03 A)$ 5 $P_{HT} = 5 A^{(1)}, I_c = 5 A (min. = 0.03 A)$ 6 Rated auxiliary voltage (power supply, binary input torshold 17 V ³⁾ 2 24 to 48 V DC, binary input threshold 17 V ³⁾ 2 60 to 125 V DC ² , binary input threshold 17 V ³⁾ 4 110 to 250 V DC ² , 115 to 230 V AC, binary input threshold 73 V ³⁾ 5 Binary/ Indication/ Fast High-speed Power terminals Fourthight housing bousing screw-type plug-in terminals For 7SA641 1 1 13 5 1 13 4 8 9 20 9 4 6 21 13 12 4 13 12 4 6 20 9 4 6	Descript	tion						Order No.	
Housing, number of LEDs see pages 6/32 Housing width 1/2 19", 14 LEDs 1 Housing width 1/1 19", 14 LEDs 2 Measuring input (4x V, 4x 1) 1 $I_{PH} = 1 A^3$, $I_e = 1A^{(1)}$, I	7SA64 (distance prot	ection	relay for all v	voltage l	evels		7SA64□□-□□	
Housing width 1/2 19", 14 LEDs 1 Housing width 1/2 19", 14 LEDs 1 Housing width 1/1 19", 14 LEDs 2 Measuring input (4 xV, 4 xl) 1 Ipm = 1 A ¹ , $I_c = sensitive (min. = 0.003 A) 1 Ipm = 5 A1, I_c = sensitive (min. = 0.003 A) 2 Ipm = 5 A1, I_c = sensitive (min. = 0.003 A) 2 Ipm = 5 A1, I_c = sensitive (min. = 0.003 A) 6 Rated auxiliary voltage (power supply, binary inputs) 2 24 to 48 V DC, binary input threshold 17 V3) 2 60 to 125 V DC21, binary input threshold 17 V3) 4 10 to 250 V DC2, 115 to 230 V AC, binary input threshold 73 V3) 5 Binary/ Indication/ Fast High-speed Power contact Flush- mounting mounting housing/ bousing/ bousin$	Housing	ı. number of LE	Ds						
Housing with 1/1 19', 14 LEDs 2 Measuring input (4x V, 4x I) 1 $I_{PH} = 1 A^{11}$, $I_e = 1 A (min. = 0.05 A) 1 I_{PH} = 5 A^{11}, I_e = 5 A (min. = 0.25 A) 2 I_{PH} = 5 A^{11}, I_e = 5 A (min. = 0.25 A) 5 I_{PH} = 5 A^{11}, I_e = 5 A (min. = 0.25 A) 5 I_{PH} = 5 A^{11}, I_e = 5 A (min. = 0.25 A) 5 I_{PH} = 5 A^{11}, I_e = 5 a (min. = 0.003 A) 6 Rated auxiliary voltage (power supply, binary inputs) 2 24 to 48 V DC, binary input threshold 17 V31 2 10 to 250 V DC21, 115 to 230 V AC, binary input threshold 73 V31 5 Binary Indication / Fast High-speed Power niputs Ive status screw-type plug-in 4 inputs screw-type plug-in terminals 7 inputs status screw-type plug-in 8 20 9 4 6 7 21 13 12 4 7 21 13 12 4 7 21 13 12 7 7 21 12 8$	Housing	g width 1/2 19	", 14 LE	Ds				1	see pages 6/32
Measuring input (4 x/, 4 x I) $I_{PH} = 1 A^{1}$, $I_e = 1 A$ (min. = 0.05 A) $I_{PH} = 1 A^{1}$, $I_e = sensitive (min. = 0.003 A) I_{PH} = 5 A^{11}, I_e = sensitive (min. = 0.003 A) I_{PH} = 5 A^{11}, I_e = sensitive (min. = 0.003 A) I_{PH} = 5 A^{11}, I_e = sensitive (min. = 0.003 A) I_{PH} = 5 A^{11}, I_e = sensitive (min. = 0.003 A) I_{PH} = 5 A^{11}, I_e = sensitive (min. = 0.003 A) I_{PH} = 5 A^{11}, I_e = sensitive (min. = 0.003 A) I_{PH} = 5 A^{11}, I_e = sensitive (min. = 0.003 A) I_{PH} = 5 A^{11}, I_e = sensitive (min. = 0.003 A) I_{PH} = 5 A^{11}, I_e = sensitive (min. = 0.003 A) I_{PH} = 5 A^{11}, I_e = sensitive (min. = 0.003 A) I_{PH} = 5 A^{11}, I_e = sensitive (min. = 0.003 A) I_{PH} = 1 A^{11}, I_e = sensitive (min. = 0.003 A) I_{II} = 1 A^{11}, I_e = sensitive (min. = 0.003 A) I_{II} = 1 A^{11}, I_e = sensitive (min. = 0.003 A) I_{II} = 1 B^{11}, I_e = 1 $	Housing	g width 1/1 19	, 14 LE	Ds				2	to 6/35
Measuring input $(4 \times V, 4 \times I)$ I $I_{PH} = 1 A^{1}, I_c = 1 A$ (min. = 0.05 A) I $I_{PH} = 5 A^{1}, I_c = 5 A$ (min. = 0.03 A) 2 $I_{PH} = 5 A^{1}, I_c = 5 A$ (min. = 0.25 A) 5 $I_{PH} = 5 A^{1}, I_c = 5 A$ (min. = 0.003 A) 6 Rated auxiliary voltage (power supply, binary inputs) 2 24 to 48 V DC, binary input threshold 17 V ³⁾ 2 60 to 125 V DC ² , binary input threshold 17 V ³⁾ 4 110 to 250 V DC ² , 115 to 230 V AC, binary input threshold 73 V ³⁾ 5 Binary/ Indication/ Fast High-speed Power reavery Flush mounting mouting housing/ housing/ housing/ housing/ housing/ screw-type plug-in contact tion- outputs incl. bousing housing/ housing/ screw-type plug-in contact 13 5 12 4 13 4 8 5 9 20 9 4 21 13 12 4 21 13 12 8 21 12 8 29 21 12 8 29 20 8 5 8 29 21 12 8 20 3 12 8	,		-						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Measuri	ing input (4 x V	',4xI)						
$I_{PH} = 1 A^{1/2}, I_e = sensitive (min. = 0.003 A)$ 2 $I_{PH} = 5 A^{1/3}, I_e = 5 A (min. = 0.025 A)$ 5 $I_{PH} = 5 A^{1/3}, I_e = 5 A (min. = 0.003 A)$ 6 Rated auxiliary voltage (power supply, binary inputs) 2 24 to 48 V DC, binary input threshold 17 V ³) 2 60 to 125 V DC ²), binary input threshold 17 V ³) 4 110 to 250 V DC ²), 115 to 230 V AC, binary input threshold 73 V ³) 5 Binary/ Indication/ Fast High-speed Power contact Flush-mounting housing/ housing/ housing/ screw-type plug-in terminals inputs live status screw-type plug-in terminals J 13 5 12 4 13 4 8 5 P 20 9 4 8 M 13 4 8 5 P 20 9 4 A K For 7SA642 21 13 12 4 21 12 4 1 21 12 8 1 1 21 12 8 1 1 22 9 4 1 1 31	$I_{\rm PH} = 1$	A^{1} , $I_e = 1 A (n)$	nin. = 0	.05 A)				1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$I_{\rm PH} = 1$	A^{1} , $I_e = \text{sensit}$	ive (miı	n = 0.003 A				2	
$I_{PH} = 5 A^{r}, I_e = sensitive (min. = 0.003 A)$ 6 Rated auxiliary voltage (power supply, binary inputs) 2 24 to 48 V DC, binary input threshold 17 V ³) 2 60 to 125 V DC ²), binary input threshold 17 V ³) 4 110 to 250 V DC ²), 115 to 230 V AC, binary input threshold 73 V ³) 5 Binary/ Indication/ Fast High-speed Power indica- command relay ⁴) trip outputs relay ⁵) inguts live status screw-type plug-in contact trip outputs relay ⁵) mounting for 75A641 1 1 1 13 5 12 4 4 13 4 8 5 4 13 4 8 5 7 20 9 4 6 7 21 13 12 4 7 21 12 8 7 7 21 12 8 7 7 21 12 8 7 7 21 12 8 7 7	$I_{\rm PH} = 5 I$	A^{1} , $I_e = 5 A (n)$	nin. = 0	.25 A)				5	
Rated auxiliary voltage (power supply, binary inputs) 24 to $48 \vee DC$, binary input threshold $17 \vee^3$ 2 60 to $125 \vee DC^2$), binary input threshold $17 \vee^3$ 4 110 to $250 \vee DC^2$), 115 to $230 \vee AC$, binary input threshold $73 \vee^3$ 5 Binary/ Indication/ Fast High-speed Power outputs incl. inputs live status contact Flush-mounting housing/ bousing/ screw-type plug-in terminals For 75A641 1 1 13 5 12 4 13 5 12 4 13 4 8 5 4 13 12 4 4 6 60 9 4 6 7 13 12 4 7 7 13 12 4 7 7 13 12 4 7 7 13 12 8 7 7 13 12 8 7 7 12 8 5 7 7 13 12 8 7 7 12 13 12 8 <td< td=""><td>$I_{\rm PH} = 5 I$</td><td>A^{1}, I_e = sensit</td><td>ive (mii</td><td>n = 0.003 A</td><td></td><td></td><td></td><td>6</td><td></td></td<>	$I_{\rm PH} = 5 I$	A^{1} , I_e = sensit	ive (mii	n = 0.003 A				6	
National problem supply, outly first 24 to 48 V DC, binary input threshold 17 V ³) 2 60 to 125 V DC ²), tinary input threshold 17 V ³) 4 110 to 250 V DC ²), 115 to 230 V AC, binary input threshold 73 V ³) 5 Binary/ Indication/ Fast High-speed Power indica- command relay ⁴) trip outputs relay ⁵) mounting mounting indica- contact trip outputs relay ⁵) mounting housing/ inputs live status screw-type plug-in terminals for 75A641 13 5 12 4 4 13 4 8 5 4 8 20 9 4 6 7 21 13 12 4 8 20 9 4 6 7 21 13 12 4 7 21 13 12 4 7 21 12 6 7 7 21 12 8 7	Patoda	wilianwoltaa	a (powe	r cupply bing	n (in putc)				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	24 to 48	VDC binary	input t	hreshold 17 V	3)			2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{24 \text{ to } 40}{60 \text{ to } 12}$	$\frac{VDC}{5VDC^{2}}$ bin	arvinni	it threshold 17	7 V ³⁾			2	
Indication / East High-speed Power indica- command relay ⁴¹ trip outputs relay ⁵¹ Binary/ Indication / Fast High-speed Power outputs incl.Flush-mounting housing/ housing/ housing/ screw-type plug-in terminalsInputs live status contactImput means the second screw type plug-in terminalsFor 75A64113512134820942094211312211312211312211312211282294239482482594826975A642921122112311231123283312331233123484594647484949404041414243444445454646474748494941414142434444454647484849 <td>$\frac{000012}{110 \text{ to } 2}$</td> <td>$50 \text{ V DC}^{(2)}$, 11</td> <td>5 to 230</td> <td>V AC, binary</td> <td>input th</td> <td>reshold 73 V</td> <td>,3)</td> <td>5</td> <td></td>	$\frac{000012}{110 \text{ to } 2}$	$50 \text{ V DC}^{(2)}$, 11	5 to 230	V AC, binary	input th	reshold 73 V	,3)	5	
Binary/ indica- command tion- outputs incl.Fast relay ⁴ High-speed relay ³ Power relay ³ Flush- mounting housing/ screw-type plug-in terminalsFlush- mounting housing/ screw-type plug-in terminalsFor 75A64113512• A 13485• M 13485• M 13485• M 13485• M 13485• M 2094• K For 75A642211312•211285•211285•2294• K 231285•2496 K 25912122685•2794•28208529208531128•29208533128•2812829208533128•292085331282085208520852128	110 10 2		0 10 200	, , 110, oniar)	mpara	i conora / c ·			
indica- tion- inputs command outputs incl. inputs relay ⁴ trip outputs screw-type plug-in terminals mounting housing/ screw-type plug-in terminals 13 5 12 Image: Algorithm outputs Algorithm outputs 13 5 12 Image: Algorithm outputs Algorithm outputs 13 4 8 5 Image: Algorithm outputs Algorithm outputs 13 4 8 5 Image: Algorithm outputs Bloothem outputs Bloothem outputs Bloothem outputs Algorithm outputs 21 13 12 Image: Algorithm outputs Algorithm outputs Bloothem outputs Algorithm outputs Algorithm outputs 21 12 8 Image: Algorithm outputs Bloothem outputs Algorithm outputs Algorithm outputs Algorithm outputs	Binary/	Indication/	Fast	High-speed	Power	Flush-	Flush-		
tion- inputs outputs incl. ive status contact housing/ screw-type terminals housing/ plug-in terminals 13 5 12 4 13 5 12 4 13 4 8 5 6 13 4 8 5 7 13 4 8 5 7 13 4 8 5 7 13 4 8 5 7 20 9 4 8 7 20 9 4 8 7 21 13 12 7 1 21 12 8 5 8 29 21 12 8 8 29 21 12 8 8 29 20 8 5 8 1 29 20 8 5 8 1 1 29 20 8 5 1 1 1 12 1 1 33 12 8	indica-	command	relay4)	trip outputs	relay ⁵⁾	mounting	mountin	ıg	
Inputs Investatus Screw-type plug-in contact terminals terminals For 7SA641 Image: A gradient of the status A gradient of terminals 13 5 12 Image: A gradient of terminals 13 4 8 5 Image: A gradient of terminals 13 4 8 5 Image: A gradient of terminals 13 4 8 5 Image: A gradient of terminals 13 4 8 5 Image: A gradient of terminals 20 9 4 Image: A gradient of terminals Image: A gradient of terminals For 7SA642 Image: A gradient of terminals Image: A gradient of terminals Image: A gradient of terminals 21 13 12 Image: A gradient of terminals Image: A gradient of terminals 21 12 8 Image: A gradient of terminals Image: A gradient of terminals 29 20 8 5 Image: A gradient of terminals Image: A gradient of terminals 29 20 8 5 Image: A gradient of terminals Image: A gradient of terminals	tion-	outputs incl.				housing/	housing/	/	
Control Contrection	inputs	live status				screw-type terminals	plug-in terminal	s	
13 5 12 A 13 5 12 Image: constraint of the state of t		<u></u>				terminato			
13 3 12 4 7 13 4 8 5 M 13 4 8 5 M 13 4 8 5 P 20 9 4 R B 20 9 4 R R 20 9 4 R R 20 9 4 R R 21 13 12 R J 21 12 R R R 29 21 12 R R 29 21 12 R R 29 20 8 5 R S 29 20 8 5 R S 33 12 8 C C	FOR /SAG	541	12					٨	
13 3 12 M 13 4 8 5 M 13 4 8 5 M 13 4 8 5 P 20 9 4 R B 20 9 4 K For 7SA642 Z A A 21 13 12 A 21 13 12 A 21 12 A M 21 12 B M 21 12 B M 21 12 B B 29 21 12 B 29 21 12 B 29 20 8 S N 29 20 8 S S 33 12 8 C C	13	5	12			-	-	A	
13 4 8 5 1 M 13 4 8 5 P 20 9 4 R B 20 9 4 R R 20 9 4 R R 20 9 4 R A 21 13 12 R J 21 12 R B 29 21 12 R B 29 21 12 R R 29 21 12 R R 29 20 8 5 R S 29 20 8 5 S S 33 12 8 C C	13	3	12 Q	5			-	J	
13 4 6 3 4 6 7 20 9 4 6 8 8 7 20 9 4 6 K R 20 9 4 6 K $For 7SA642$ 21 13 12 A 21 13 12 A M 21 12 8 5 R 29 21 12 8 R 29 21 12 R R 29 20 8 5 N 29 20 8 5 6 5 33 12 8 C 33 12 8 L	13	4	8	5			-	 D	
20 9 4 K 20 9 4 K For 75A642 21 13 12 A 21 13 12 A J 21 12 R J 21 12 R B 29 21 12 R 29 21 12 R 29 21 12 R 29 20 8 5 N 29 20 8 5 S 33 12 8 C	20	9	0	5	4		-	R	
For 7SA642 A 21 13 12 A 21 13 12 J 21 12 A 29 21 12 29 20 8 S 29 20 8 S 33 12 8 C	20	9			4			K	
For 75A642 21 13 12 A 21 13 12 Image: A gradient of the state of the sta	20	2			4		-	K	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	For 7SA	542							
21 13 12 I J 21 12 8 5 M 21 12 8 5 R 29 21 12 R B 29 21 12 R R 29 20 8 5 R 29 20 8 5 R 33 12 8 C	21	13	12			•		Α	
21 12 8 5 M 21 12 8 5 R 29 21 12 R B 29 21 12 R B 29 20 8 5 R R 33 12 8 R C 33 12 8 R L	21	13	12					J	
21 12 8 5 \blacksquare R 29 21 12 \blacksquare B 29 21 12 \blacksquare K 29 20 8 5 \blacksquare N 29 20 8 5 \blacksquare S 33 12 8 \blacksquare C	21	12	8	5				М	
29 21 12 B 29 21 12 K 29 20 8 5 N 29 20 8 5 S 33 12 8 C 33 12 8 L	21	12	8	5				R	
29 21 12 K 29 20 8 5 N 29 20 8 S S 33 12 8 C C 33 12 8 L	29	21	12					В	
29 20 8 5 Image: Normal state	29	21	12					K	
29 20 8 5 S 33 12 8 C 33 12 8 L	29	20	8	5				N	
33 12 8 C 33 12 8 L	29	20	8	5				S	
33 12 8 L	33	12			8			С	
	33	12			8			L	

1) Rated current can be selected by means of jumpers.

- 2) Transition between the two auxiliary voltage ranges can be selected by means of jumpers.
- 3) The binary input thresholds are selectable in three stages by means of jumpers, exception: versions with power relays have some binary inputs with only two binary inputs thresholds.
- 4) Fast relays are identified in the terminal connection diagram.
- 5) Power relay for direct control of disconnector actuator motors. Each pair of contacts is mechanically interlocked to prevent simultaneous closure.

Selection and ordering data

Description	Order No.	Oı	rder	code
7SA6 distance protection relay for all voltage levels	7SA6□□□-□□□			
Region-specific default settings / language settings Region DE, language: German Region World, language: English (GB) Region US, language: English (US)	A B C	see pages 6/33 to 6/35		
Region FR, French	D			
Region World, Spanish	E			
Region World, Italian	F			
Region World, language: Russian	G			
Region World, language: Polish	Н			
Port B Empty System interface IEC 60870 5 103 protocol electrical PS232	0			
System interface, IEC 60870-5-103 protocol, electrical RS485	2			
System interface, IEC 60870-5-103 protocol, optical 820 nm, S	T connector 3			
System interface, PROFIBUS-FMS Slave ²⁾ , electrical RS485	4			
System interface, PROFIBUS-FMS Slave ²⁾ , optical ³⁾ , double r	(\log^{3}) , ST connector 6			
2 analog outputs, each 020 mA	7			
System interface, PROFIBUS-DP, electrical RS485	9		LC) A
System interface, PROFIBUS-DP, optical 820 nm, double ring	(3^3) , ST connector 9		LC) <i>B</i>
System interface, DNP 3.0, electrical RS485	9		LC) G
System interface, DNP 3.0, optical 820 nm, ST connector ³⁾	9		LC) H
System interface, IEC 61850, 100 Mbit/s Ethernet, electrical, d RJ45 plug connectors	uplicate, 9		LC) R
System interface, IEC 61850, 100 Mbit/s Ethernet, optical, dou	ible, LC connector ⁴⁾ 9		LC) S

1) Definitions for region	n-specific default settings and functions:
Region DE:	preset to $f = 50$ Hz and line length in km, only IEC
	inverse characteristic can be selected, directional earth (ground)
	fault protection: no logarithmic inverse characteristic, no direction decision
	with zero-sequence power S _r ; distance protection can be selected with
	quadrilateral or circle characteristic.
Region US:	preset to $f = 60$ Hz and line length in miles, ANSI inverse
	characteristic only, directional earth (ground) fault protection:
	no logarithmic inverse characteristic, no direction decision
	with zero-sequence power S_r , no U_0 inverse characteristic.
Region World:	preset to $f = 50$ Hz and line length in km, directional earth (ground) fault
	protection: no direction decision with zero-sequence power S_r ,
	no U_0 inverse characteristic.
Region FR:	preset to $f = 50$ Hz and line length in km, directional earth (ground)
	fault protection: no U_0 inverse characteristic, no logarithmic inverse
	characteristic, weak infeed logic selectable between French specification
	and world specification.

2) For SICAM energy automation systems.

3) Optical double ring interfaces are not available with surface mounting housings.

4) For surface mounting housing applications please order the relay with electrical Ethernet interface and use a separate fiber-optic switch.
| Description | Order No. | Order code |
|---|----------------------------------|---------------|
| 7SA6 distance protection relay for all voltage levels | 7SA6□□□-□□□□ | |
| Port C and port D | | see pages |
| Port C: DIGSI/modem, electrical RS232, | 1 | 6/34 and 6/35 |
| Port D: empty | 1 | |
| Port C: DIGSI/modem, electrical RS485, | | |
| Port D: empty | 2 | |
| Port C <u>and</u> Port D installed | 9 | |
| | | |
| Port C | | |
| DIGSI/modem, electrical RS232 | | 1 |
| DIGSI/modem, electrical RS485 | | 2 |
| | | |
| Port D | | |
| Protection data interface: optical 820 nm, two ST connector | rs. FO cable length up to 1.5 km | |
| For direct connection via multi-mode FO cable or commun | nication networks ¹⁾ | A |
| Protection data interface: optical 820 nm, two ST connector | rs, FO cable length up to 3.5 km | l |
| For direct connection via multi-mode FO cable | , 0 1 | В |
| Two analog outputs, each 020 mA | | K |
| Protection data interface: optical 1300 nm, LC-Duplex com | nector | |
| FO cable length up to 24 km for direct connection via mone | o-mode FO cable ²⁾ | G |
| Protection data interface: optical 1300 nm, LC-Duplex com | nector | |
| FO cable length up to 60 km for direct connection via mono | o-mode FO cable ²⁾³⁾ | Н |
| Protection data interface: optical 1550 nm, LC-Duplex com | nector | |
| FO cable length up to 100 km for direct connection via mor | no-mode FO cable ²⁾⁴⁾ | J |
| FO30 optical 820 nm, 2-ST-connector, length of optical fib: | re up to 1.5 km | |
| for multimode fibre, for communication networks with IEI | EEC37.94 interface | |
| or direct optical fibre connection (not available for surface i | mounted housing) | S |

6

- For suitable communication converters 7XV5662 (optical to G703.1/X21/RS422 or optical to pilot wire) see "Accessories".
- 2) For surface -mounting housing applications an internal fiber-optic module 820 nm will be delivered in combination with an external repeater.
- 3) For distances less than 25 km, two optical attenuators 7XV5107-0AA00 are required to avoid optical saturation of the receiver element.
- 4) For distances less than 50 km, two optical attenuators 7XV5107-0AA00 are required to avoid optical saturation of the receiver element.

Selection and ordering data

Description			Order No.	
7SA6 distance pro	otection relay for all v	oltage levels	7SA6000-00000-	
Functions 1	,			
Trip mode	Thermal overload protection (ANSI 49)	BCD-coded output for fault location		
3-pole				2
3-pole				1
3-pole				2
3-pole				3
1/3-pole				4
1/3-pole				5
1/3-pole				5
1/3-pole				7
Functions 2 Distance protectior	1	Power swing de-	Parallel line	
pickup (ANSI 21, 2	1N)	tection (ANSI 68, 68T)	compensation	
I>				A
V 1				В
Quadrilateral (Z<)				С
Quadrilateral $(Z<)$	$V < I > / \varphi$			D
Ouadrilateral (Z<)	· · · · T			F
Quadrilateral (7~)	. V/ m			G
V < I>	, , , <i>ιν</i> , ψ		1)	
$\sqrt{1/1}$			1)	K
Quadrilateral $(Z <)$	Velbloo		1)	
Quadrilateral $(Z <)$	$, v < 1 > 1 \psi$	-	1)	
Quadrilateral $(Z <)$	TT + IT - I	-	1)	
Quadrilateral $(Z <)$, ν< / I> / φ		,	P
Functions 3 Auto-reclosure (ANSI 79)	Synchro- check (ANSI 25)	Breaker failure pro- tection (ANSI 50BF)	Over/undervoltage protection V>, V< (ANSI 27, 59) Over/underfrequency protection (ANSI 81)	
				A B
				С
				D
				Ε
				F
				G
				Н
				J
				K
				1
				M
				N
	-			D
	-		-	0
	-	-		R
Functions 4	-	-	-	n
Directional earth- fault protection, earthed networks (ANSI 50N, 51N, 67N)	Earth-fault detection compensated/ isolated networks	Measured values extended Min, max, mean		
		-		(
	2)	-		
	2)	-		
-		-		-
-		-		4
	2)	-		
-	2)	-		(
	— ⁻ /	-		

 Only with position 7 of Order No. = 1 or 5.
 Only with position 7 of Order No. = 2 or 6.

6/34

6

1) Only with position 7 of Order No. = 2 or 6.

2) Only with position 7 of Order No. = 1 or 5.

Accessories	Description	Order No.
	DIGSI 4	
	Software for configuration and operation of Siemens protection units	
	running under MS Windows 2000/XP Professional	
	device templates, Comtrade Viewer, electronic manual included	
	as well as "Getting started" manual on paper, connecting cables (copper)	
	Basis	
	Full version with license for 10 computers, on CD-ROM	
	(authorization by serial number)	7XS5400-0AA00
	Professional	
	DIGSI 4 Basis and additionally SIGRA (fault record analysis),	
	CFC Editor (logic editor), Display Editor (editor for default	
	and control displays) and DIGSI 4 Remote (remote operation)	7XS5402-0AA00
	Professional + IEC 61850	
	DIGSI 4 Basis and additionally SIGRA (fault record analysis),	
	CFC Editor (logic editor), Display Editor (editor for default	
	and control displays) and DIGSI 4 Remote (remote operation)	
	+ IEC 61850 system configurator	7XS5403-0AA00
	IEC 61850 System configurator	
	Software for configuration of stations with IEC 61850 communication under	
	DIGSI, running under MS Windows 2000 or XP Professional Edition	
	Optional package for DIGSI 4 Basis or Professional	
	License for 10 PCs. Authorization by serial number. On CD-ROM	7XS5460-0AA00
	SIGPA A	
	(generally contained in DIGSI Professional, but can be ordered additionally)	
	Software for graphic visualization, analysis and evaluation of fault records.	
	Can also be used for fault records of devices of other manufacturers	
	(Comtrade format). Running under MS Windows 2000/XP Professional.	
	Incl. templates, electronic manual with license for 10 PCs.	
	Authorization by serial number. On CD-ROM.	7XS5410-0AA00
	Connectina cable (copper)	
	Cable between PC/notebook (9-pin connector) and protection unit (9-pin connector)	
	(contained in DIGSI 4, but can be ordered additionally)	7XV5100-4
	Voltage transformer miniature circuit-breaker	
	Rated current 1.6 A; thermal overload release 1.6 A;	
	overcurrent trip 6 A	3RV1611-1AG14
	Manual for 7SA6	
	English, V4.61 and higher	C53000-G1176-C156-5

ies	Description	Order No.
	Opto-electric communication converters	
	Optical to X21/RS422 or G703.1	7XV5662-0AA00
	Optical to pilot wires	7XV5662-0AC00
	Additional interface modules	
	Protection data interface FO 5, OMA1, 820 nm, multi-mode FO cable,	
	ST connector, 1.5 km	C53207-A351-D651-1
	Protection data interface FO 6, OMA2, 820 nm, multi-mode FO cable,	
	ST connector, 3.5 km	C53207-A351-D652-1
	Protection data interface FO 17, 1300 nm, mono-mode FO cable,	
	LC-Duplex connector, 24 km	C53207-A322-B115-3
	Protection data interface FO 18, 1300 nm, mono-mode FO cable,	
	LC-Duplex connector, 60 km	C53207-A322-B116-3
	Protection data interface FO 19, 1550 nm, mono-mode FO cable,	
	LC-Duplex connector, 100 km	C53207-A322-B117-3
	Optical repeaters	
	Serial repeater (2-channel), opt. 1300 nm, mono-mode FO cable,	
	LC-Duplex connector, 24 km	7XV5461-0BG00
	Serial repeater (2-channel), opt. 1300 nm, mono-mode FO cable,	
	LC-Duplex connector, 60 km	7XV5461-0BH00
	Serial repeater (2-channel), opt. 1550 nm, mono-mode FO cable,	
	LC-Duplex connector, 100 km	7XV5461-0BJ00

		Description		Order No.	Size of package	Supplier	Fig.
Barrissource	Boost Contraction	Connector	2-pin 3-pin	C73334-A1-C35-1 C73334-A1-C36-1	1 1	Siemens Siemens	6/35 6/36
Fig. 6/34 Mount	ing rail for 19" rack	Crimp connector	CI2 0.5 to 1 mm ²	0-827039-1 0-827396-1	4000 1	AMP ¹⁾ AMP ¹⁾	
st.	st.		CI2 1 to 2.5 mm ²	0-827040-1 0-827397-1	4000 1	AMP ¹⁾ AMP ¹⁾	
2090-afpen.e	2091-afpen.e		Type III+ 0.75 to 1.5 mm ²	0-163083-7 0-163084-2	4000 1	AMP ¹⁾ AMP ¹⁾	
LSP LSP		Crimping	For Type III+ and matching female	0-539635-1	1	AMP^{1}	
Fig. 6/35 2-pin connector	3-pin connector	1001	for CI2 and matching female	0-339000-2 0-734372-1 1-734387-1	1	$ \begin{array}{l} \text{AMP}^{1} \\ \text{AMP}^{1} \\ \end{array} $	
sda	sda	19"-mounting rai	1	C73165-A63-D200-1	1	Siemens	6/34
C03-afpen.e	2092-afpen.e	Short-circuit links	s For current terminals For other terminals	C73334-A1-C33-1 C73334-A1-C34-1	1 1	Siemens Siemens	6/37 6/38
ia 6/37	Fig. 6/38	Safety cover for te	erminals large small	C73334-A1-C31-1 C73334-A1-C32-1	1 1	Siemens Siemens	6/4 6/4
Short-circuit link	Short-circuit link						

- 1) Your local Siemens representative can inform you on local suppliers.

Fig. 6/37 Short-circuit link

for current con-

tacts

Fig. 6/35 2-pin connector

for voltage contacts/ indications contacts

Fig. 6/39 Connection diagram

Fig. 6/40 Serial interfaces

1) Starting from unit version/EE.

6/38

Fig. 6/41 Connection diagram

Fig. 6/42 Connection diagram

1) Starting from unit version .../EE.

2) High-speed trip outputs in versions 7SA6*1*-*M, 7SA*1*-*N, 7SA*1*-*P. Time advantage of high-speed relays over fast relays: approx. 5 ms

3) Time advantage with fast relay approx. 3 ms.

4) Version with 3-pole tripping.

5) Version with 1/3-pole tripping.

Note: For serial interfaces see Fig. 6/40.

Fig. 6/43 Connection diagram

1) Version with 3-pole tripping.

2) Each pair of contacts is mechanically interlocked to prevent simultaneous closure.

3) Version with 1/3-pole tripping.

Note: For serial interfaces see Fig. 6/40.

Note: For serial interfaces see Fig. 6/40.

		Surface-mounting housi	ng				-	
		Flush-mou	inting housing					
	50		 ¬_/ 7\$∆6	*2*-*R BI1		E5	108	Reset LED
	100			5*2*-*F BI2			107	Manual close
	49		7SA6	5*2*-*K		F7	106	Fail: Feeder \/T
	99		7SA6	5*2*-*Q ви			105	
LSA2546-agpen.eps	48		75A6	5*2*-*S			103	
	98						150	Свтеацу
	47			DIO			75	Trip aircuit augan iaian
	97	08	4	BI6			75	Inp circuit supervision
	45	R15	$\neg V_{11}$	דוס			74	
	44	R17		BI7			24	
	94	<u>B18</u>	• V.	RIQ			73	CP position 2 polo open
	95		L3	BIO			22	CB position 3-pole open
	46		¬ V.	DIJ .			23	CB position 3-pole closed
	96		*4	DIIU			22	
Polov piekup	149		- BO1 (fast ¹⁾)	DI44			71	
Relay TRIP	199		BO2 (fast ¹⁾)	BILL			21	
Helay Hill	148	R3		DI10			70	
	198			DIIZ			20	
General supervision alarm	147			BI13			- 69	
ľ	197	R5		DIIS			19	
	196			BI14			- 90	
	146		B06	5111			40	
	195	R9 P O	- BO7 ¹⁾	BI15			- 89	
	145	<u>R10</u>		ыно			- 39	
	194	R11		B I 16			86	
	144	<u>R12</u>	BU0 '	BI17 •			- 36	
	174	<u> </u>	- BO9 ²⁾	RI10			- 35	
	124			DIIO		N5	85	
Carrier send	123		BO10 (fast) ^s	, RI19 I			- 84	
	172		BO11 (fast)				- 34	
AR CLOSE command	122		[−] → BO12 (fast) ³	, BI20 (- 83	
	1/3) 3)			- 33	
			BUI3 (fast)	BI21			82	
	121		 	131		N12	- 32	
Relay TRIP*/TRIP LT*	100		BO14 (fast) ²	BI22		H17	- 68	
	120			131		H18	- 18	
TRIP L2*	169		BO15 (fast) ²	BI23		G1	- 67	
	119			131		G2	17	
TRIP L3*	168		BO16 (fast) ²	BI24		G3	66	
	118			BI25 •	← ∕∕──	G4	- 16	
	190		─ BO17	BI26	⊢ ∠──	G6	- 15	
	120		 				65	
	100		- BO10	BI27	$\neg \Box \rightarrow $	G7	- 64	
	120		- BOIS			<u></u>	14	
	120			B l 28		G9	- 63	
	187		- BO21	l		<u>G10</u>	13	
	137	P10		BI29			62	
	186	P11	- B022			<u>G12</u>	- 12	
	136	P12	0022	Live status contact			101	Live status contact
	185	P13	- B023	Davisa			27	
1) Starting from unit version	135	P14	0023	Power	(~)		- 3/	
/EE.	184	P15	- BO24	Supply			- 38	
2) High-speed trip outputs in	134	P16	B024	BO29	\sim	H9	163	
versions 7SA6*2*-*N,	166			5000		H10	113	
7SA6*2*-*Q, 7SA6*2*-*S.	116		BO25	BO30	\sim		162	
3) Time advantage with fast	115		- BO26		<u> </u>		112	
relay approx. 3 ms.	164		-→ B027	BO31	Γ ~		1161	
4) Version with 3-nole trinning	114		-→ BO28	DU00			1111	
-, version with 3-pole unppling.	165	H5		в032			110	
5) Version with 1/3-pole					·		0	l
tripping.				C.	ria		n.ep.	
Time advantage of high-	<u> 51</u>		Earth at rear	inte	erfaces		adbo	
speed relays over fast relays:		(÷)	of housing			١	19.	
approx. 5 ms.							SA2(
Note: For serial interfaces	1						<u>ن</u>	
see Fig. 6/40.		Fig. 6/45 Connection	diagram					

- mechanically interlocked to prevent simultaneous closure.

3) Version with 1/3-pole tripping.

Note: For serial interfaces see Fig. 6/40.

6

SIPROTEC 4 7SA522 Distance Protection Relay for Transmission Lines

Description

The SIPROTEC 4 7SA522 relay provides full-scheme distance protection and incorporates all functions usually required for the protection of a power line. The relay is designed to provide fast and selective fault clearance on transmission and subtransmission cables and overhead lines with or without series capacitor compensation. The power system star point can be solid or resistance grounded (earthed), resonant-earthed via Peterson coil or isolated. The 7SA522 is suitable for single-pole and three-pole tripping applications with and without tele (pilot) protection schemes.

The 7SA522 incorporates several protective functions usually required for transmission line protection.

- High-speed tripping time
- Suitable for cables and overhead lines with or without series capacitor compensation
- Self-setting power swing detection for power swing frequencies upt to 7 Hz
- Digital relay-to-relay communication for two and three terminal topologies
- Adaptive auto-reclosure (ADT)

Function overview

Protection functions

- Non-switched distance protection with 6 measuring systems (21/21N)
- High resistance ground (earth)-fault protection for single- and three-pole tripping (50N/51N/67N)
- Tele (pilot) protection (85)
- Fault locator (FL)
- Power swing detection/tripping (68/68T)
- Phase-overcurrent protection (50/51/67)
- STUB bus overcurrent protection (50 STUB)
- Switch-onto-fault protection (50HS)
- Over/undervoltage protection (59/27)
- Over/underfrequency protection (81O/U)
- Auto-reclosure (79)
- Synchro-check (25)
- Breaker failure protection (50BF)

Control functions

• Commands f. control of CB and isolators

Monitoring functions

- Trip circuit supervision (74TC)
- Self-supervision of the relay
- Measured-value supervision
- Event logging/fault logging
- Oscillographic fault recording
- Switching statistics

Front design

- User-friendly local operation with numeric keys
- LEDs for local alarm
- PC front port for convenient relay setting
- Function keys

Communication interfaces

- Front interface for connecting a PC
- System interface for connecting to a control system via various protocols
 - IEC 61850 Ethernet
 - IEC 60870-5-103 protocol
 - PROFIBUS-FMS/-DP
- DNP 3.0
- 2 serial protection data interfaces for tele (pilot) protection
- Rear-side service/modem interface
- Time synchronization via IRIG B or DCF77 or system interface

Hardware

- Binary inputs: 8/16/24
- Output relays: 16/24/32
- High-speed trip outputs: 5 (optional)

Applicatior

The 7SA522 relay provides full-scheme distance protection and incorporates all functions usually required for the protection of a power line. The relay is designed to provide fast and selective fault clearance on transmission and subtransmission cables and overhead lines with or without series capacitor compensation. This contributes towards improved stability and availability of your electrical power transmission system. The power system star point can be solid or impedance grounded (earthed), resonant-earthed via Peterson coil or isolated. The 7SA522 is suitable for single and three-pole tripping applications with and without tele (pilot) protection schemes.

The effect of apparent impedances in unfaulted fault loops is eliminated by a sophisticated and improved method which uses pattern recognition with symmetrical components and load compensation. The correct phase selection is essential for selective tripping and reliable fault location.

During network power swings, an improved power swing blocking feature prevents the distance protection from unwanted tripping and optionally provides controlled tripping in the event of loss of synchronism (out of step). This function guarantees power transmission even under critical network operating conditions.

Cost-effective power system management

The SIPROTEC 4 units are numerical relays which also provide control and monitoring functions and therefore support the user in view of a cost-effective power system management. The security and reliability of power supply is increased as a result of minimizing the use of hardware.

The local operation has been designed according to ergonomic criteria. Large, easy-to-read backlit displays are provided.

The SIPROTEC 4 units have a uniform design and a degree of functionality which represents a benchmark-level of performance in protection and control. If the requirements for protection, control and interlocking change, it is possible in the majority of the cases to implement such changes by means of parameterization using DIGSI 4 without having to change the hardware.

The use of powerful microcontrollers and the application of digital measured-value conditioning and processing largely suppresses the influence of higher-frequency transients, harmonics and DC components.

Features

- High speed tripping time
- Suitable for cables and overhead lines with or without series capacitor compensation
- Self setting power swing detection fo frequencies up to 7 Hz
- Digital relay-to-relay communication for two and three terminal topologies
- Adaptive auto-reclosure (ADT)

<u>الم</u>	52 21 21N FL 32 52 52 52 52 52 52 52 52 52 5	50N 67N 5151N-2 67N 5050N-2 50STUB 5050TUB
	Local/Tele ctrl. commands CB indications	Measured/
	Teleprotection schemes can use conventional signalling or serial data exchance	metered values Cr-C Logic end Supervision Serial communication Interfaces end

Fig. 6/48

Single-line diagram

ANSI	Protection function
21/21N	Distance protection
FL	Fault locator
50N/51N	Directional earth(ground)-fault
67N)	protection
50/51/67	Backup overcurrent protection
50 STUB	STUB-bus overcurrent stage
68/68T	Power swing detection/tripping
85/21	Teleprotection for distance protec- tion
27WI)	Weak-infeed protection
85/67N	Teleprotection for earth(ground)- fault protection
50HS	Switch-onto-fault protection
50BF	Breaker failure protection
59/27	Overvoltage/undervoltage protec- tion
810/U	Over/underfrequency protection
25	Synchro-check
79	Auto-reclosure
74TC	Trip circuit supervision
86	Lockout (CLOSE command interlocking)

Construction

Connection techniques and housing with many advantages

1/2 and 1/1-rack sizes

These are the available housing widths of the SIPROTEC 4 7SA522 relays, referred to a 19" module frame system. This means that previous models can always be replaced. The height is a uniform 245 mm for flush-mounting housings and 266 mm for surface-mounting housings for all housing widths. All cables can be connected with or without ring lugs. Plug-in terminals are available as an option.

It is thus possible to employ prefabricated cable harnesses. In the case of surface mounting on a panel, the connection terminals are located above and below in the form of screw-type terminals. The communication interfaces are located in a sloped case at the top and bottom of the housing.

Fig. 6/49 Housing widths 1/2 x 19" and 1/1 x 19"

Fig. 6/50 Rear view with screw-type terminals and serial interfaces

Fig. 6/51 Rear view with terminal covers and wiring

Distance protection (ANSI 21, 21N)

The main function of the 7SA522 is a full-scheme distance protection. By parallel calculation and monitoring of all six impedance loops, a high degree of sensitivity and selectivity is achieved for all types of faults. The shortest tripping time is less than one cycle. Single-pole and three-pole tripping is possible. The distance protection is suitable for cables and overhead lines with or without series capacitor compensation.

Mho and quadrilateral characteristics

The 7SA522 relay provides quadrilateral as well as mho zone characteristics. Both characteristics can be used separately for phase and ground (earth) faults. Resistance ground (earth) faults can, for instance, be covered with the quadrilateral characteristic and phase faults with the mho characteristic.

Load zone

In order to guarantee a reliable discrimination between load operation and short-circuit - especially on long high loaded lines the relay is equipped with a selectable load encroachment characteristic. Impedances within this load encroachment characteristic prevent the distance zones from unwanted tripping.

Absolute phase-selectivity

The 7SA522 distance protection incorporates a well-proven, highly sophisticated phase selection algorithm. The pickup of unfaulted loops is reliably eliminated to prevent the adverse influence of currents and voltages in the fault-free loops. This phase selection algorithm achieves singlepole tripping and correct distance measurement in a wide application range.

Parallel line compensation

The influence of wrong distance measurement due to parallel lines can be compensated by feeding the neutral current of the parallel line to the relay. Parallel line compensation can be used for distance protection as well as for the fault locator.

7 distance zones

Six independant distance zones and one separate overreach zone are available. Each distance zone has dedicated time stages, partly separate for single-phase or multi-phase faults. Ground (earth) faults are detected by monitoring the neutral current $3I_0$ and the zero-sequence voltage $3V_0$.

The quadrilateral tripping characteristic permits separate setting of the reactance X and the resistance R. The resistance section R can be set separately for faults with and without earth involvement. This characteristic has therefore an optimal performance in case of faults with fault resistance. The distance zones can be set forward, reverse or non-directional. Sound phase polarization and voltage memory provides a dynamically unlimited directional sensitivity.

Mho

The mho tripping characteristic provides sound phase respectively memory polarization for all distance zones. The diagram shows characteristic without the expansion due to polarizing. During a forward fault the polarizing expands the mho circle towards the source so that the origin is included. This mho circle expansion guarantees safe and selective operation for all types of faults, even for close-in faults.

Elimination of interference signals

Digital filters render the unit immune to interference signals contained in the measured values. In particular, the influence of DC components, capacitive voltage transformers and frequency changes is considerably reduced. A special measuring method is employed in order to assure protection selectivity during saturation of the current transformers.

Measuring voltage monitoring

Tripping of the distance protection is blocked automatically in the event of failure of the measuring voltage, thus preventing spurious tripping.

The measuring voltage is monitored by the integrated fuse failure monitor. Distance protection is blocked if either the fuse failure monitor or the auxiliary contact of the voltage transformer protection switch operates and, in this case, the EMERGENCY definite-time overcurrent protection can be activated.

Fault locator

The integrated fault locator calculates the fault impedance and the distance-to-fault. The result is displayed in ohms, miles, kilometers or in percent of the line length. Parallel line and load current compensation is also available.

Power swing detection (ANSI 68, 68T)

Dynamic transient reactions, for instance short-circuits, load fluctuations, auto-reclosures or switching operations can cause power swings in the transmission network. During power swings, large currents along with small voltages can cause unwanted tripping of distance protection relays. To avoid uncontrolled tripping of the distance protection and to achieve controlled tripping in the event of loss of synchronism, the 7SA522 relay is equipped with an efficient power swing detection function. Power swings can be detected under symmetrical load conditions as well as during single-pole auto-reclosures.

Tele (pilot) protection for distance protection (ANSI 85-21)

A teleprotection function is available for fast clearance of faults up to 100 % of the line length. The following operating modes may be selected:

Fig. 6/54

Power swing current and voltage wave forms

- PUTT, permissive underreaching zone transfer trip
- POTT, permissive overreaching zone transfer trip
- UNBLOCKING
- BLOCKING
- DUTT, direct underreaching zone transfer trip (together with Direct Transfer Trip function)

The carrier send and receive signals are available as binary inputs and outputs and can be freely assigned to each physical relay input or output. At least one channel is required for each direction.

Common transmission channels are power-line carrier, microwave radio and fiber-optic links. A serial protection data interface for direct connection to a digital communication network or fiber-optic link is available as well. 7SA522 also permits the transfer of phase-selective signals. This feature is particularly advantageous as it ensures reliable single-pole tripping, if two single-pole faults occur on different lines. The transmission methods are suitable also for lines with three ends (three-terminal lines).

Phase-selective transmission is also possible with multi-end applications, if some user-specific linkages are implemented by way of the integrated CFC logic. During disturbances in the transmission receiver or on the transmission circuit, the teleprotection function can be blocked by a binary input signal without losing the zone selectivity. The control of the overreach zone Z1B (zone extension) can be switched over to the auto-reclosure function. A transient blocking function (Current reversal guard) is provided in order to suppress interference signals during tripping of parallel lines.

Direct transfer tripping

Under certain conditions on the power system it is necessary to execute remote tripping of the circuit-breaker. The 7SA522 relay is equipped with phase-selective "external trip inputs" that can be assigned to the received inter-trip signal for this purpose.

Weak-infeed protection: echo and/or trip (ANSI 27 WI)

To prevent delayed tripping of permissive schemes during weak or zero infeed situations, an echo function is provided. If no fault detector is picked up at the weak-infeed end of the line, the signal received here is returned as echo to allow accelerated tripping at the strong infeed end of the line. It is also possible to initiate tripping at the weak-infeed end. A phaseselective 1-pole or 3-pole trip is issued if a permissive trip signal (POTT or Unblocking) is received and if the phase-earth voltage drops correspondingly. As an option, the weak infeed logic can be equipped according to a French specification.

Directional ground(earth)-fault protection for high-resistance faults (ANSI 50N, 51N, 67N)

In grounded (earthed) networks, it may happen that the distance protection sensitivity is not sufficient to detect high-resistance ground (earth) faults. The 7SA522 protection relay therefore has protection functions for faults of this nature.

The ground (earth)-fault overcurrent protection can be used with 3 definite-time stages and one inverse-time stage (IDMT). A 4th definite-time stage can be applied instead of the one inverse-time stage.

Inverse-time characteristics according to IEC 60255-3 and ANSI/IEEE are provided (see "Technical data"). An additional logarithmic inverse-time characteristic is also available.

The direction decision can be determined by the neutral current and the zerosequence voltage or by the negativesequence components V_2 and I_2 . In addition or as an alternative to the directional determination with zero-sequence voltage, the star-point current of an grounded (earthed) power transformer may also be used for polarization. Dual polarization applications can therefore be fulfilled. Alternatively, the direction can be determined by evaluation of zero-sequence power. Each overcurrent stage can be set in forward or reverse direction or for both directions (non-directional).

As an option, the 7SA522 relay can be provided with a sensitive neutral (residual) current transformer. This feature provides a measuring range for the neutral (residual) current from 5 mA to 100 A with a nominal relay current of 1 A and from 5 mA to 500 A with a nominal relay current of 5 A. Thus the ground(earth)fault overcurrent protection can be applied with extreme sensitivity.

The function is equipped with special digital filter algorithms, providing the elimination of higher harmonics. This feature is particularly important for low zerosequence fault currents which usually have a high content of 3rd and 5th harmonics. Inrush stabilization and instantaneous switch-onto-fault trip can be activated separately for each stage as well.

Different operating modes can be selected. The ground(earth)-fault protection is suitable for three-phase and, optionally, for single-phase tripping by means of a sophisticated phase selector. It may be blocked during the dead time of single-pole autoreclose cycles or during pickup of the distance protection.

Tele (pilot) protection for directional ground(earth)-fault protection (ANSI 85-67N)

The directional ground(earth)-fault overcurrent protection can be combined with one of the following teleprotection schemes:

- Directional comparison
- BLOCKING
- UNBLOCKING

The transient blocking function (current reversal guard) is also provided in order to suppress interference signals during tripping of parallel lines.

The pilot functions for distance protection and for ground(earth)-fault protection can use the same signaling channel or two separate and redundant channels.

Backup overcurrent protection (ANSI 50, 50N, 51, 51N, 67)

The 7SA522 provides a backup overcurrent protection. Two definite-time stages and one inverse-time stage (IDMTL) are available, separately for phase currents and for the neutral (residual) current.

$\left(I/I_{\rm p}\right)^{0.02} - 1$

Fig. 6/56 Normal inverse

The application can be extended to a directional overcurrent protection (ANSI 67) by taking into account the decision of the available direction detection elements.

Two operating modes are selectable. The function can run in parallel to the distance protection or only during failure of the voltage in the VT secondary circuit (emergency operation).

The secondary voltage failure can be detected by the integrated fuse failure monitor or via a binary input from a VT miniature circuit-breaker (VT m.c.b. trip).

Inverse-time characteristics according to IEC 60255-3 and ANSI/IEEE are provided (see "Technical data").

STUB bus overcurrent protection (ANSI 50(N)-STUB)

The STUB bus overcurrent protection is a separate definite-time overcurrent stage. It can be activated from a binary input signalling that the line isolator (disconnector) is open. Settings are available for phase and ground(earth)-faults.

Instantaneous high-speed switch-ontofault overcurrent protection (ANSI 50HS)

Instantaneous tripping is possible when energizing a faulty line. In the event of large fault currents, the high-speed switch-onto-fault overcurrent stage can initiate very fast 3-pole tripping.

With lower fault currents, instantaneous tripping after switch-onto-fault is also possible with the overreach distance zone Z1B or just with pickup in any zone.

The switch-onto-fault initiation can be detected via the binary input "manual close" or automatically via measurement.

Overvoltage protection, undervoltage protection (ANSI 59, 27)

A voltage rise can occur on long lines that are operating at no-load or that are only lightly loaded. The 7SA522 contains a number of overvoltage measuring elements. Each measuring element is of two-stage design. The following measuring elements are available:

- Phase-to-earth overvoltage
- Phase-to-phase overvoltage
- Zero-sequence overvoltage The zero-sequence voltage can be connected to the 4th voltage input or be derived from the phase voltages.
- Positive-sequence overvoltage of the local end or calculated for the remote end of the line (compounding).
- Negative-sequence overvoltage

Tripping by the overvoltage measuring elements can be effected either at the local circuit-breaker or at the remote station by means of a transmitted signal.

The 7SA522 is fitted, in addition, with three two-stage undervoltage measuring elements:

- Phase-to-earth undervoltage
- Phase-to-phase undervoltage
- Positive-sequence undervoltage

The undervoltage measuring elements can be blocked by means of a minimum current criterion and by means of binary inputs.

Frequency protection (ANSI 810/U)

Frequency protection can be used for overfrequency and underfrequency protection. Unwanted frequency changes in the network can be detected and the load can be removed at a specified frequency setting. Frequency protection can be used over a wide frequency range (45 to 55, 55 to 65 Hz). There are four elements (selectable as overfrequency or underfrequency) and each element can be delayed separately.

Breaker failure protection (ANSI 50BF)

The 7SA522 relay incorporates a two-stage circuit-breaker failure protection to detect failures of tripping command execution, for example due to a defective circuitbreaker. The current detection logic is phase-segregated and can therefore also be used in single-pole tripping schemes.

If the fault current is not interrupted after a time delay has expired, a retrip command or the busbar trip command will be generated. The breaker failure protection can be initiated by all integrated protection functions as well as by external devices via binary input signals.

Auto-reclosure (ANSI 79)

The 7SA522 relay is equipped with an auto-reclose function (AR). The function includes several operating modes:

- 3-pole auto-reclosure for all types of faults; different dead times are available depending the type of fault
- 1-pole auto-reclosure for 1-phase faults, no reclosing for multi-phase faults
- 1-pole auto-reclosure for 1-phase faults and for 2-phase faults without earth, no reclosing for multi-phase faults
- 1-pole auto-reclosure for 1-phase and 3-pole auto-reclosing for multi-phase faults
- 1-pole auto-reclosure for 1-phase faults and 2-phase faults without earth and 3-pole auto-reclosure for other faults
- Multiple-shot auto-reclosure
- Interaction with an external device for auto-reclosure via binary inputs and outputs
- Control of the integrated AR function by external protection
- Interaction with the internal or an external synchro-check
- Monitoring of the circuit-breaker auxiliary contacts

In addition to the above-mentioned operating modes, several other operating principles can be employed by means of the integrated programmable logic (CFC).

Integration of auto-reclosure in the feeder protection allows evaluation of the lineside voltages. A number of voltagedependent supplementary functions are thus available:

• DLC

By means of <u>d</u>ead-<u>l</u>ine <u>c</u>heck, reclosure is effected only when the line is deenergized (prevention of asynchronous breaker closure).

• ADT

The <u>a</u>daptive <u>d</u>ead <u>time</u> is employed only if auto-reclosure at the remote station was successful (reduction of stress on equipment).

• RDT

<u>Reduced dead time is employed in con-</u> junction with auto-reclosure where no tele-protection method is employed: When faults within the zone extension, but external to the protected line, are switched off for rapid auto-reclosure (RAR), the RDT function decides on the basis of measurement of the return voltage from the remote station which has not tripped whether or not to reduce the dead time.

Synchronism check (ANSI 25)

Where two network sections are switched in by control command or following a 3-pole, it must be ensured that both network sections are mutually synchronous. For this purpose, a synchronism-check function is provided. After verification of the network synchronism the function releases the CLOSE command. Alternatively, reclosing can be enabled for different criteria, e.g., checking that the busbar or line is not carrying a voltage (dead line or dead bus).

Fuse failure monitoring and other supervision functions

The 7SA522 relay provides comprehensive monitoring functions covering both hardware and software. Furthermore, the measured values are continuously checked for plausibility. Therefore the current and voltage transformers are also included in this monitoring system.

If any measured voltage is not present due to short-circuit or open circuit in the voltage transformer secondary circuit, the distance protection would respond with an unwanted trip due to this loss of voltage. This secondary voltage interruption can be detected by means of the integrated fuse failure monitor. Immediate blocking of distance protection and switching to the backup-emergency protection is provided for all types of secondary voltage failures.

Additional measurement supervision functions are

- Symmetry of voltages and currents
- Broken-conductor supervision
- · Summation of currents and voltages
- Phase-sequence supervision

Directional power protection

The 7SA522 has a function for detecting the power direction by measuring the phase angle of the positive-sequence system's power. Fig. 6/57 shows an application example displaying negative active power. An indication is issued in the case when the measured angle φ (S1) of the positive-sequence system power is within the P - Q - level sector. This sector is between angles φ A and φ B. Via CFC the output signal of the directional monitoring can be linked to the "Direct Transfer Trip (DTT)" function and thus, as reverse power protection, initiate tripping of the CB.

Fig.6/58 shows another application displaying capacitive reactive power. In the case of overvoltage being detected due to long lines under no-load conditions it is possible to select the lines where capacitive reactive power is measured.

Fig. 6/57 Monitoring of active power direction

Fig. 6/58 Monitoring of reactive power

Trip circuit supervision (ANSI 74TC)

One or two binary inputs for each circuit breaker pole can be used for monitoring the circuit-breaker trip coils including the connecting cables. An alarm signal is issued whenever the circuit is interrupted.

Lockout (ANSI 86)

Under certain operating conditions, it is advisable to block CLOSE commands after a TRIP command of the relay has been issued. Only a manual "Reset" command unblocks the CLOSE command. The 7SA522 is equipped with such an interlocking logic.

Commissioning and fault event analyzing

Special attention has been paid to commissioning. All binary inputs and outputs can be displayed and activated directly. This can simplify the wiring check significantly for the user. The operational and fault events and the fault records are clearly arranged. For applications with serial protection data interface, all currents, voltages and phases are available via communication link at each local unit, displayed at the front of the unit with DIGSI 4 or with WEB Monitor.

A common time tagging facilitates the comparison of events and fault records.

WEB Monitor – Internet technology simplifies visualization

In addition to the universal DIGSI 4 operating program, the relay contains a WEB server that can be accessed via a telecommunication link using a browser (e.g. Internet Explorer). The advantage of this solution is to operate the unit with standard software tools and at the same time make use of the Intranet/Internet infrastructure. Apart from numeric values, graphical displays in particular provide clear information and a high degree of operating reliability. Of course, it is also possible to call up detailed measured value displays and annunciation buffers. By emulation of the integrated unit operation on the PC it is also possible to adjust selected settings for commissioning purposes.

Fig. 6/59 Web Monitor: Display of the protection direction

Fig. 6/60 Web monitor: Supported commissioning by phasor diagram

Communication

With respect to communication, particular emphasis is placed on the customer requirements in energy automation:

- Every data item is time-stamped at the source, i.e. where it originates.
- The communication system automatically handles the transfer of large data blocks (e.g. fault recordings or parameter data files). The user has access to these features without any additional programming effort.
- For the safe execution of a control command the corresponding data telegram is initially acknowledged by the device which will execute the command. After the release and execution of the command a feedback signal is generated. At every stage of the control command execution particular conditions are checked. If these are not satisfied, command execution may be terminated in a controlled manner.

The units offer a high degree of flexibility by supporting different standards for connection to industrial and power automation systems. By means of the communication modules, on which the protocols run, exchange and retrofit is possible. Therefore, the units will also in future allow for optimal adaptation to changing communication infrastructure such as the application of Ethernet networks which are already widely applied in the power supply sector.

Local PC interface

The serial RS232 PC interface accessible from the front of the unit permits quick access to all parameters and fault event data. The use of the DIGSI 4 operating program is particularly advantageous during commissioning.

Service/modem interface

By means of the RS 485/RS 232 interface, it is possible to efficiently operate a number of protection units centrally via DIGSI 4. Remote operation is possible on connection of a modem. This offers the advantage of rapid fault clarification, especially in the case of unmanned power plants. With the optical version, centralized operation can be implemented by means of a star coupler.

Time synchronization

The time synchronization interface is a standard feature in all units. The supported formats are IRIG-B and DCF77.

Reliable bus architecture

• RS485 bus

With this data transmission via copper conductors, electromagnetic fault influences are largely eliminated by the use of twisted-pair conductors. Upon failure of a unit, the remaining system continues to operate without any problems.

Fiber-optic double ring circuit
 The fiber-optic double ring circuit is immune to electromagnetic interference.
 Upon failure of a section between two units, the communication system continues to operate without disturbance.
 It is usually impossible to communicate with a unit that has failed. Should the unit fail, there is no effect on the communication with the rest of the system.

Retrofitting: Modules for every type of communication

Communication modules for retrofitting are available for the entire SIPROTEC 4 unit range. These ensure that, where different communcation protocols (IEC 61850, IEC 60870-5-103, PROFIBUS, DNP, etc) are required, such demands can be met. For fiber-optic communication, no external converter is required for SIPROTEC 4.

IEC 61850 protocol

The Ethernet-based IEC 61850 protocol is the worldwide standard for protection and control systems used by power supply corporations. Siemens was the first manufacturer to support this standard. By means of this protocol, information can also be exchanged directly between bay units so as to set up simple masterless systems for bay and system interlocking. Access to the units via the Ethernet but is also possible with DIGSI. It is also possible to retrieve operating and fault records as well as fault recordings via a browser. This Web monitor will also provide a few items of unit-specific information in browser windows.

Fig. 6/61

IEC 60870-5-103 star type RS232 copper conductor connection or fiber-optic connection

Fig. 6/62

Bus structure for station bus with Ethernet and IEC 61850

Communication

IEC 60870-5-103 protocol

IEC 60870-5-103 is an internationally standardized protocol for efficient communication with protection relays.

IEC 60870-5-103 is supported by a number of protection relay manufacturers and is used worldwide. Supplements for control functions are defined in the manufacturerspecific part of this standard.

PROFIBUS-DP

PROFIBUS-DP is an industrial communication standard and is supported by a number of PLC and protection relay manufacturers.

DNP 3.0

DNP 3.0 (Distributed Network Protocol, Version 3) is an internationally recognized protection and bay unit communication protocol. SIPROTEC 4 units are Level 1 and Level 2 compatible.

System solutions for protection and station control

Together with the SICAM power automation system, SIPROTEC 4 can be used with PROFIBUS-FMS. Over the low-cost electrical RS485 bus, or interference-free via the optical double ring, the units exchange information with the control system. Units equipped with IEC 60870-5-103 interfaces can be connected to SICAM in parallel via the RS485 bus or connected in star by fiber-optic link.

Through this interface, the system is open for the connection of units of other manufacturers (see Fig. 6/67).

Fig. 6/63 820 nm fiber-optic communication module

Fig. 6/64 PROFIBUS fiber-optic double ring communication module

Fig. 6/65

RS232/RS485 electrical communication module

Fig. 6/66 Fiber-optic Ethernet communication module for IEC 61850 with integrated Ethernet switch

Fig. 6/67 Communication

Communicatior

Because of the standardized interfaces, SIPROTEC units can also be integrated into systems of other manufacturers or in SIMATIC. Electrical RS485 or optical interfaces are available. The optimum physical data transfer medium can be chosen thanks to opto-electrical converters. Thus, the RS485 bus allows low-cost wiring in the cubicles and an interference-free optical connection to the master can be established.

For IEC 61850, an interoperable system solution is offered with SICAM PAS. Via the 100 Mbits/s Ethernet bus, the units are linked with PAS electrically or optically to the station PC. The interface is standardized, thus also enabling direct connection of units of other manufacturers to the Ethernet bus. With IEC 61850, however, the units can also be used in other manufacturers' systems. Units with an IEC 60870-5-103 interface are connected with PAS via the Ethernet station bus by means of serial/Ethernet converters. DIGSI and the Web monitor can also be used via the same station bus.

Serial protection data interface

The tele (pilot) protection schemes can be implemented using digital serial communication. The 7SA522 is capable of remote relay communication via direct links or multiplexed digital communication networks. The serial protection data interface has the following features:

- Fast phase-selective teleprotection signaling for distance protection, optionally with POTT or PUTT schemes
- Signaling for directional ground(earth)fault protection – directional comparison for high-resistance faults in solidly earthed systems.
- Echo-function
- Two and three-terminal line applications can be implemented without additional logic
- Interclose command transfer with the auto-reclosure "Adaptive dead time" (ADT) mode
- Redundant communication path switchover is possible with the 7SA522 when 2 serial protection data interfaces are installed
- 1) For flush-mounting housing.
- 2) For surface-mounting housing.
- For surface-mounting housing the internal fiber-optic module (OMA1) will be delivered together with an external repeater.

- 28 remote signals for fast transfer of binary signals
- Flexible utilization of the communication channels by means of the programmable CFC logic
- Display of the operational measured values of the opposite terminal(s) with phase-angle information relative to a common reference vector
- Clock synchronization: the clock in only one of the relays must be synchronized from an external so called "Absolute Master" when using the serial protection data interface. This relay will then synchronize the clock of the other (or the two other relays in 3 terminal applications) via the protection data interface.
- 7SA522 and 7SA6 can be combined via the protection data interface.

The communication possibilities are identical to those for the line differential protection relays 7SD5 and 7SD610. The following options are available:

- FO5¹⁾, OMA1²⁾ module: Optical 820 nm, 2 ST connectors, FO cable length up to 1.5 km for link to communication networks via communication converters or for direct FO cable connection
- FO6¹, OMA2² module: Optical 820 nm, 2 ST connectors, FO cable length up to 3.5 km, for direct connection via multimode FO cable
- FO17¹): for direct connection up to 24 km³, 1300 nm, for mono-mode fiber 9/125 μm, LC-Duplex connector
- FO18¹: for direct connection up to 60 km³, 1300 nm, for mono-mode fiber 9/125 μm, LC-Duplex connector
- FO19¹⁾: for direct connection up to 100 km³⁾, 1550 nm, for mono-mode fiber 9/125 μm, LC-Duplex connector
- FO30¹: for transmission with the IEEE C37.94 standard

The link to a multiplexed communication network is made by separate communication converters (7XV5662). These have a fiber-optic interface with 820 nm and 2 ST connectors to the protection relay. The link to the communication network is optionally an electrical X21 or a G703.1 interface. If the connection to the multiplexor supports IEEE C37.94 a direct fibre optic connection to the relay is possible using the FO30 module. For operation via copper wire communication (pilot wires), a modern communication converter for copper cables is available. This operates with both the two-wire and three-wire copper connections which were used by conventional differential protection systems before. The communication converter for copper cables is designed for 5 kV insulation voltage. An additional 20 kV isolation transformer can extend the field of applications of this technique into ranges with higher insulation voltage requirements. With SIPROTEC 4 and the communication converter for copper cables a digital follow-up technique is available for two-wire protection systems (typical 15 km) and all three-wire protection systems using existing copper communication links.

Communication data:

- Supported network interfaces G703.1 with 64 kbit/s; X21/RS422 with 64 or 128 or 512 kbit/s; IEEE C37.94
- Max. channel delay time 0.1 ms to 30 ms (in steps of 0.1 ms)
- Protocol HDLC
- 32-bit CRC-check according to CCITT and ITU
- Each protection relay possesses a unique relay address
- Continuous communication link supervision: Individual faulty data telegrams do not constitute an immediate danger, if they occur only sporadically. The statistical availability, per minute and hour, of the serial protection data interface can be displayed.

Figure 6/68 shows four applications for the serial protection data interface on a two-terminal line.

Communication

Communication topologies for the serial protection data interface on a two-terminal line

6

Communication

Three-terminal lines can also be protected with a tele (pilot) protection scheme by using SIPROTEC 4 distance protection relays. The communication topology may then be a ring or a chain topology, see Fig. 6/69. In a ring topology a loss of one data connection is tolerated by the system. The topology is re-routed to become a chain topology within less than 100 ms. To reduce communication links and to save money for communications, a chain topology may be generally applied.

Fig. 6/69

Ring or chain communication topology

Typical connection

Connection for current and voltage transformers

3 phase current transformers with neutral point in the line direction, I_4 connected as summation current transformer (=3 I_0): Holmgreen circuit

3 voltage transformers, without connection of the broken (open) delta winding on the line side; the $3V_0$ voltage is derived internally.

Fig. 6/70 Example of connection for current and voltage transformers

Alternative current measurement

The 3 phase current transformers are connected in the usual manner. The neutral point is in line direction. I_4 is connected to a separate neutral core-balance CT, thus permitting a high sensitive $3I_0$ measurement.

Note: Terminal Q7 of the I_4 transformer must be connected to the terminal of the core-balance CT pointing in the same direction as the neutral point of the phase current transformers (in this case in line direction). The voltage connection is effected in accordance with Fig. 6/70, 6/74 or 6/75.

Fig. 6/71 Alternative connection of current transformers for sensitive ground(earth)-current measuring with core-balance current transformers

Typical connection

Alternative current connection

3 phase current transformers with neutral point in the line direction, I_4 connected to a current transformer in the neutral point of a grounded (earthed) transformer for directional ground(earth)-fault protection. The voltage connection is effected in accordance with Fig. 6/70, 6/74 or 6/75.

Fig. 6/72 Alternative connection of current transformers for measuring neutral current of a grounded (earthed) power transformer

Alternative current connection

3 phase current transformers with neutral point in the line direction, I_4 connected to the summation current of the parallel line for parallel line compensation on overhead lines. The voltage connection is effected in accordance with Fig. 6/70, 6/74 or 6/75.

Fig. 6/73 Alternative connection of current transformers for measuring the ground (earth) current of a parallel line

6

Typical connection

Alternative voltage connection

3 phase voltage transformers, V_4 connected to broken (open) delta winding (V_{en}) for additional summation voltage monitoring and ground(earth)-fault directional protection. The current connection is effected in accordance with Fig. 6/70, 6/71, 6/72 and 6/73.

Fig. 6/74 Alternative connection of voltage transformers for measuring the displacement voltage (e-n voltage)

Alternative voltage connection

3 phase voltage transformers, V_4 connected to busbar voltage transformer for synchrocheck.

Note: Any phase-to-phase or phase-toground(earth) voltage may be employed as the busbar voltage. Parameterization is carried out on the unit. The current connection is effected in accordance with Fig. 6/70, 6/71, 6/72 and 6/73.

Fig. 6/75 Alternative connection of voltage transformers for measuring the busbar voltage

Technical data

General unit data	
Analog input	
Rated frequency	50 or 60 Hz (selectable)
Rated current Inom	1 or 5 A (selectable)
Rated voltage	80 to 125 V (selectable)
Power consumption In CT circuits with <i>I</i> _{nom} = 1 A In CT circuits with <i>I</i> _{nom} = 5 A In the CT circuit for high sensitive ground(earth)-fault protection (refer to ordering code) at 1 A In VT circuits	Approx. 0.05 VA Approx. 0.30 VA Approx. 0.05 VA Approx. 0.10 VA
Thermal overload capacity In CT circuits In the CT circuit for high sensitive ground(earth)-fault protection (refer to ordering code)	500 A for 1 s 150 A for 10 s 20 A continuous 300 A for 1 s 100 A for 10 s 15 A continuous
In VT circuits	230 V continuous per phase
Dynamic overload capacity In CT circuits In the CT circuit for high sensitive ground(earth)-fault protection (refer to ordering code)	1250 A (one half cycle) 750 A (one half cycle)
Auxiliary voltage	
Rated auxiliary voltage	24 to 48 V DC 60 to 125 V DC 110 to 250 V DC and 115 V AC with 50/60 Hz
Permissible tolerance of the rated auxiliary voltage	-20 % to +20 %
Max. superimposed AC voltage (peak-to-peak)	≤ 15 %
Power consumption During normal operation During pickup with all inputs and outputs activated	Approx. 8 W Approx. 18 W
Bridging time during auxiliary voltage failure $V_{aux} = 48 \text{ V and } V_{aux} \ge 110 \text{ V}$	≥ 50 ms
Binary inputs	
Quantity Functions are freely assignable	8 or 16 or 24 (refer to ordering code)
Pickup/Reset voltage thresholds Ranges are settable by means of jumpers for each binary input	19 V DC/10 V DC or 88 V DC/44 V DC or 176 V DC/88 V DC, bipolar (3 nominal ranges 17/73/154 V DC)
Maximum permissible voltage	300 V DC
Current consumption, energized	Approx. 1.8 mA
Input impulse suppression	220 nF coupling capacitance at 220 V with a recovery time > 60 ms.

Output contacts	
Quantity Function can be assigned	8 or 16 or 24 (refer to ordering code)
Switching capacity Make Break, high-speed trip outputs Break, contacts Break, contacts (for resistive load)	1000 W/VA 1000 W/VA 30 VA 40 W
Break, contacts (for $\tau = L/R \le 50 \text{ ms}$)	25 VA
Switching voltage	250 V
Permissible current	30 A for 0.5 s 5 A continuous
Operating time, approx. NO contact NO/NC contact (selectable) Fast NO contact High-speed NO trip outputs	8 ms 8 ms 5 ms < 1 ms
LEDs	
RUN (green) ERROR (red) Indication (red), function can be assigned	Quantity 1 1 14
Unit design	
Housing	7XP20
Dimension	1/2 x 19" or 1/1 x 19" Refer to ordering code, and see dimension drawings, part 15
Degree of protection acc. to EN 6052	9
Surface-mounting housing Flush-mounting housing Front Rear For the terminals	IP 51 IP 51 IP 50 IP 20 with terminal cover put on
Weight Flush-mounting housing 1/2 x 19" 1/1 x 19" Surface-mounting housing 1/2 x 19" 1/1 x 19"	6 kg 10 kg 11 kg 19 kg
Serial interfaces	
Operating interface front of unit for	DIGSLA

Connection	Non-isolated, RS232, 9-pin subminiature connector (SUB-D)
Baud rate	4800 to 115200 baud setting as supplied: 38400 baud; parity 8E1
Time synchronization	
DCF77/IRIG-B signal(Format IRIG-	B000)
Connection	9-pin subminiature connector (SUB-D) (terminal with surface-mounting housing)
Voltage levels	5 V, 12 V or 24 V (optional)

lec	111	1 00	110

Service/modem interface (operating interface 2)

(refer to ordering code) Isolated RS232/RS485 Dielectric test Distance for RS232 Distance for RS485

Fiber-optic Optical wavelength Permissible attenuation Distance max.

System interface

(refer to ordering code)

Isolated RS232/RS485 Baud rate Dielectric test Distance for RS232 Distance for RS485

PROFIBUS RS485 Dielectric test Baud rate Distance

PROFIBUS fiber-optic²⁾ Only for flush-mounting housing ST connector For surface-mounting housing Baud rate Optical wavelength Permissible attenuation Distance

Protection data relay interfaces

Quantity

FO5¹⁾, OMA1²⁾: Fiber-optic interface For multi-mode fiber 62.5/125 µm, with clock recovery for direct connection up to 1.5 km or for connection to a communication converter, 820 nm

for direct connection up to 3.5 km, ST connectors 820 nm FO30¹): for direct fibre-optic

connection to a multiplexor using IEEE C37.94 standard

FO17¹⁾: for direct connection up to 24 km³⁾, 1300 nm FO18¹): for direct connection up to

60 km³⁾, 1300 nm FO19¹): for direct connection up to 100 km³⁾, 1550 nm

- 1) For flush-mouting housing.
- 2) For surface-mounting housing.
- 3) For surface-mounting housing the internal fiber-optic module (OMA1) will be delivered together with an external repeater.

4) Conversion with external OLM

For fiber-optic interface please complete order number at 11th position with 4 (FMS RS485) or 9 and Order Code LOA (DP RS485) or 9 and Order Code LOG (DNP 3.0) and additionally a suitable external repeater.

Max. 8 dB for 62.5/125 µm fiber 1.5 km IEC 61850 Ethernet IEC 60870-5-103 PROFIBUS-FMS PROFIBUS-DP **DNP 3 0** 9-pin subminiature connector 4800 to 38400 baud 500 V/50 Hz Max. 15 m Max. 1000 m 500 V/50 Hz Max. 12 Mbaud

For DIGSI 4 / modem / service

9-pin subminiature connector

Integrated ST connector

500 V/ 50 Hz

Max. 1000 m

 $\lambda = 820 \text{ nm}$

Max. 15 m

1000 m at 93.75 kbaud; 100 m at 12 Mbaud

Optical interface with OLM⁴⁾ Max. 1.5 Mbaud $\lambda = 820 \text{ nm}$ Max. 8 dB for 62.5/125 µm fiber 500 kbit/s 1.6 km 1500 kbit/s 530 m

Max. 2 (refer to ordering code)

ST connectors

FO6¹⁾, OMA2²⁾: Fiber-optic interface For multi-mode fiber 62.5/125 μ m,

For multi-mode fiber $62.5/125 \,\mu m$, ST connectors

For mono-mode fiber 9/125 µm, LC-Duplex connector

For mono-mode fiber 9/125 µm, LC-Duplex connector

For mono-mode fiber 9/125 µm, LC-Duplex connector

External communication converter 7XV5662-0AA00 with X21/RS422 or G703 1 interface External communication converter Electrical X21/RS422 or G703.1 for linking the optical 820 nm interinterface settable by jumper face of the unit (FO5/OMA1 with Baud rate settable by jumper clock recovery) to the X21/RS422/G703.1 interface of the communication network FO interface with 820 nm with clock Max. 1.5 km with 62.5/125 µm multirecovery mode fiber to protection relay Electrical X21/RS422 interface 64/128/512 kbit (settable by jumper) max. 800 m, 15-pin connector to the communication network Electrical G703.1 interface 64 kbit/s max. 800 m, screw-type terminal to the communication network External communication converter 7XV5662-0AC00 for pilot wires External communication converter Typical distance: 15 km for linking the optical 820 nm interface of the unit (FO5/OMA1 option w. clock recovery) to pilot wires. FO interface for 820 nm Max. 1.5 km with 62.5/125 µm multiwith clock recovery mode fiber to protection relay, 128 kbit Electrical interface to pilot wires 5 kV-isolated Electrical tests Specifications Standards IEC 60255 (product standards) IEEE Std C37.90.0/.1/.2; UL 508 VDE 0435 Further standards see "Individual functions' Insulation tests Standards IEC 60255-5 and 60870-2-1 High-voltage test (routine test) All circuits except for power 2.5 kV (r.m.s.), 50 Hz supply, binary inputs, high-speed outputs, communication and time synchronization interfaces Auxiliary voltage, binary 3.5 kV DC inputs and high-speed outputs (routine test) only isolated communication 500 V (r.m.s.), 50 Hz interfaces and time synchronization interface (routine test) Impulse voltage test (type test) All circuits except for communi-5 kV (peak); 1.2/50 µs; 0.5 Ws, cation interfaces and time 3 positive and 3 negative impulses in synchronization interface, class III intervals of 5 s

Relay communication equipment

Technical data

Electrical tests (cont'd)

EMC tasts for poise immunity type test

Livic tests for noise initiality, type to	2313
Standards	IEC 60255-6/-22 (product standard) EN 61000-6-2 (generic standard), VDE 0435 part 301 DIN VDE 0435-110
High-frequency test IEC 60255-22-1 class III and VDE 0435 Section 303, class III	2.5 kV (peak); 1 MHz; $\tau = 15 \mu$ s; 400 surges per s; test duration 2 s, $R_i = 200 \Omega$
Electrostatic discharge IEC 60255-22-2 class IV and IEC 61000-4-2, class IV	8 kV contact discharge; 15 kV air discharge; both polarities; 150 pF; $R_i = 330 \ \Omega$
Irradiation with HF field, frequency sweep IEC 60255-22-3 (report) class III	10 V/m; 80 to 1000 MHz; 80 % AM; 1 kHz 10 V/m; 800 to 960 MHz; 80 % AM; 1 kHz
IEC 61000-4-3, class III	10 V/m; 1.4 to 2 GHz: 80 % AM; 1 kHz
Irradiation with HF field, single fre- quencies IEC 60255-22-31, IEC 61000-4-3, class III amplitude/pulse modulated	10 V/m; 80, 160, 450. 900 MHz; 80 % AM; 1 kHz; duty cycle > 10 s 900 MHz; 50 % PM, repetition fre- quency 200 Hz
Fast transient disturbance/bursts IEC 60255-22-4 and IEC 61000-4-4, class IV	4 kV; 5/50 ns; 5 kHz; burst length = 15 ms; repetition rate 300 ms; both polarities; $R_i = 50 \Omega$; test duration 1 min
High-energy surge voltages (SURGE), IEC 61000-4-5 installation class III Auxiliary supply	Impulse: 1.2/50 μs Common mode: 2 kV; 12 Ω; 9 μF Differential mode:1 kV; 2 Ω; 18 μF
Analog measurement inputs, binary inputs, relays output	Common mode: 2 kV; 42 Ω ; 0.5 μ F Differential mode: 1 kV; 42 Ω ; 0.5 μ F
Line-conducted HF, amplitude- modulated, IEC 61000-4-6, class III	10 V; 150 kHz to 80 MHz; 80 % AM; 1 kHz
Power system frequency magnetic field IEC 61000-4-8, class IV; IEC 60255-6	30 A/m continuous; 300 A/m for 3 s; 50 Hz 0.5 mT; 50 Hz
Oscillatory surge withstand capabil- ity, IEEE Std C37.90.1	$ \begin{array}{l} 2.5 \ kV \ (peak); \ 1 \ MHz \\ \tau = 50 \ \mu s; \ 400 \ surges \ per \ second, \\ test \ duration \ 2 \ s, \ R_i = 200 \ \Omega \end{array} $
Fast transient surge withstand capa- bility, IEEE Std C37.90.1	$\label{eq:kv} \begin{array}{l} 4 \ kV; 5/50 \ ns; 5 \ kHz; burst length = 15 \ ns \\ repition \ rate \ 300 \ ms, ; both \ polarities; \\ test \ duration \ 1 \ min; \ R_i = 50 \ \Omega \end{array}$
Radiated electromagnetic interfer- ence IEEE Std C37.90.2	35 V/m; 25 to 1000 MHz, amplitude and pulse-modulated
Damped oscillations IEC 60694, IEC 61000-4-12	2.5 kV (peak value); polarity alternating 100 kHz; 1 MHz; 10 and 50 MHz; $R_i = 200 \Omega$
EMC tests for noise emission; type te	st
Standard	EN 61000-6-3 (generic standard)
Radio noise voltage to lines, only auxiliary voltage IEC-CISPR 22	150 kHz to 30 MHz Limit class B
Radio interference field strength IEC-CISPR 22	30 to 1000 MHz Limit class B
Harmonic currents on the network lead at 230 V AC, IEC 61000-3-2	Class A limits are observed
Voltage fluctuations and flicker on the network incoming feeder at 230 V AC JEC 61000-3-3	Limits are observed

Mechanical stress test

Vibration, shock stress and seismic vibration

IEC 60255-21 and IEC 60068-2

60 to 150 Hz: 1 g acceleration frequency sweep 1 octave/min 20 cycles in 3 orthogonal axes

Acceleration 5 g, duration 11 ms,

1 to 8 Hz: ± 3.5 mm amplitude

1 to 8 Hz: \pm 1.5 mm amplitude

8 to 35 Hz: 1 g acceleration

8 to 35 Hz: 0.5 g acceleration

Frequency sweep 1 octave/min 1 cycle in 3 orthogonal axes

IEC 60255-21 and IEC 60068-2

5 to 8 Hz: \pm 7.5 mm amplitude;

8 to 150 Hz: 2 g acceleration Frequency sweep 1 octave/min

20 cycles in 3 orthogonal axes

Acceleration 15 g, duration 11 ms,

Acceleration 10 g, duration 16 ms,

1000 shocks on each of the 3 axes in

3 shocks on each of the 3 axes in both

3 shocks on each of the 3 axes in both

10 to 60 Hz: ± 0.075 mm amplitude;

Sinusoidal

Semi-sinusoidal

(horizontal axis)

(horizontal axis)

(vertical axis)

(vertical axis)

Sinusoidal

Semi-sinusoidal

Semi-sinusoidal

both directions

directions

directions

Sinusoidal

During operation Standards Vibration IEC 60255-21-1, class 2 IEC 60068-2-6

Shock IEC 60255-21-2, class 1 IEC 60068-2-27

Seismic vibration IEC 60255-21-2, class 1 IEC 60068-3-3

During transport

Standards Vibration IEC 60255-21-1, class 2 IEC 60068-2-6

Shock IEC 60255-21-2, class 1 IEC 60068-2-27

Continuous shock IEC 60255-21-2, class 1 IEC 60068-2-29

Climatic stress tests

Standard	IEC 60255-6	
Temperatures		
Type-tested acc. to IEC 60068-2-1 and -2, test Bd	-25 °C to +85 °C / -13 °F to +185 °F	
Temporarily permissible operating temperature, tested for 96 h (Legibility of display may be impaired above +55 $^{\circ}$ C / +131 $^{\circ}$ F)	-20 °C to +70 °C / -4 °F to +158 °F	
Recommended permanent operat- ing temperature acc. to IEC 60255-6	-5 °C to +55 °C / +23 °F to +131 °F	
 Limiting temperature during permanent storage Limiting temperature during transport 	-25 °C to +55 °C / -13 °F to 131 °F -25 °C to +70 °C / -13 °F to +158 °F	

Humidity

Permissible humidity stress: It is recommended to arrange the exposed to direct sunlight or pronounced temperature changes that could cause condensation.

Annual average on \leq 75 % relative humidity; on 56 days per year up to 93 % units in such a way that they are not relative humidity; condensation is not permitted.

Technical data			
Certifications		Tolerances	For sinusoidal quantities
UL listing Models with threaded terminals	7SA522*-*A* 7SA522*-*C* 7SA522*-*D*		$\left \frac{\Delta X}{X}\right \le 5\% \text{ for } 30^\circ \le \varphi_{\text{ SC}} \le 90^\circ$
UL recognition Models with plug-in terminals	7SA522*_*J* 7SA522*_*L* 7SA522*_*M*		$\frac{ \Delta R }{ R } \le 5\% \text{ for } 0^\circ \le \varphi_{\text{SC}} \le 60^\circ$
			$\left \frac{\Delta Z}{Z}\right \le 5\% \text{ for } -30^\circ \le (\varphi_{SC} - \varphi_{\text{line}}) \le +30^\circ$
Functions		Timer tolerance	+ 1 % of set value or 10 ms
Distance protection (ANSI 21, 21N)		Operating times	
Distance protection zones	7, 1 of which as controlled zone, all zones can be set forward or/and reverse	Minimum trip time with fast relays Minimum trip time	Approx. 17 ms at 50 Hz Approx. 15 ms at 60 Hz Approx. 12 ms at 50 Hz
Time stages for tripping delay Setting range 0 to 30 s or deactivated (steps 0.01 s)	7 for multi-phase faults 3 for single-phase faults	with high-speed relays Reset time	Approx. 10 ms at 60 Hz Approx. 30 ms
Characteristic	(refer to ordering code)		
Selectable separately for phase and ground (earth) faults	quadrilateral and/or MHO	Output of the distance to fault	X, R (secondary) in Ω X, R (primary) in Ω Distance in kilometers or miles
Time range	0.00 to 30 s (step 0.01 s) or deactivated		Distance in % of line length
Line angle φ L	10 ° to 89 ° (step 1 °)	Start of calculation	With trip, with pickup reset
Inclination angle for quadrilateral characteristic	30° to 90° (step 1°)	Reactance per unit length	0.005 to 6.5 Ω / km _(1A) / 0.001 to 1.3 Ω / km _(5A) or 0.005 to 10 Ω / mile (1a)/
Quadrilateral resistance reach R	(step 0.001 Ω)		0.001 to 2 Ω / mile (sA) (step 0.001 Ω / unit)
for phase-to-phase faults and phase-to-ground(earth) faults	0.05 to 600 $\Omega_{\rm (1A)}$ / 0.01 to 120 $\Omega_{\rm (5A)}$ (step 0.001 $\Omega)$	Tolerance	For sinusoidal quantities $\leq 2.5 \%$ line length for $30 \degree \leq m_{\odot} \leq 90 \degree$ and $V_{\odot}/V_{\rm M} > 0.10$
MHO impedance reach ZR	0.05 to 200 $\Omega_{(1A)}$ / 0.01 to 40 $\Omega_{(5A)}$ (step 0.01 Ω)	BCD-coded output of fault location	
Minimum phase current I	0.05 to 4 A (1A) / 0.25 to 20 A (5A)	Indicated value	Fault location in % of the line length
Ground(earth)-fault pickup Neutral (residual) current 3 I ₀	(step 0.01 A) 0.05 to 4 A (1A) / 0.25 to 20 A (5A)	Output signals	Max. 10: d[1 %], d[2 %], d[4 %], d[8 %], d[10 %], d[20 %], d[401 %], d[80 %],
(Ground current)	(step 0.01 A)	Indication names	d[100 %], d[release]
Zero-sequence voltage $3V_0$	1 to 100 V (step 1V) or deactivated	Reversiving detection (ANSI 68, 68)	0 % to 195 %
Zero-sequence compensation selectable input formats	$R_{\rm E}/R_{\rm I}$ and $X_{\rm E}/X_{\rm I}$	Power swing detection (ANSI 66, 68)	//
Separately selectable for zones	k_0 and $\phi(k_0)$ Z1	rower swing detection principle	vector change and monitoring of the vector path
	higher zones (Z1B, Z2 to Z5)	Max. detectable power swing fre-	Approx. 7 Hz
$R_{\rm E}/R_{\rm L}$ and $X_{\rm E}/X_{\rm L}$	-0.33 to 7 (step 0.01)	quency	D
$k_0 \ \phi(k_0)$	0 to 4 (step 0.001) -135 to 135 ° (steps 0.01 °)	Operating modes	swing tripping (out-of-step tripping)
Parallel line mutual compensation $R_{\rm M}/R_{\rm L}$ and $X_{\rm M}/X_{\rm L}$	(refer to ordering code) 0.00 to 8 (step 0.01)	Power swing blocking programs	All zones blocked Z1/Z1B blocked Z2 to Z6 blocked
Minimum load resistance	0.10 to 600 $\Omega_{(1A)}/$ 0.02 to 120 $\Omega_{(5A)}$ (step 0.001 $\Omega)$ or deactivated	Detection of faults during power	Z1, Z1B, Z2 blocked Reset of power swing blocking for all types of faults
Maximum load angle	20 to 60 ° (step 1 °)	swing blocking	types of faults
Directional decision for all types of faults	With sound phase polarization and/or voltage memory		
Directional sensitivity	Dynamically unlimited		

I = I = I = I = I = I = I = I = I = I =	Tele (pilot)	ot) protection fo	r distance	protection	(ANSI 85-
---	--------------	-------------------	------------	------------	-----------

rotection (ANSI 85-21)	Inverse-
POTT	Current
PUTT, DUTT Directional comparison: Blocking Directional comparison: Unblocking Directional comparison hybrid (POTT and echo with weak-infeed protection)	inverse-
For overreaching schemes	Charact
Suitable for 2- and 3- terminal lines, phase-segregated signals for selective single-phase tripping selectable	to IEC 6 Time m
single phase dispining selectable	Pickup t
Alternatively with or without auto-reclosure	Reset th
0.00 to 30 s (step 0.01 s) or deactivated	Operati
\pm 1 % of setting value or 10 ms	Charact
current protection (ANSI 50N, 51N, 67N)	to ANSI
3 definite-time stages / 1 inverse-time	
stage or 4 definite-time stages	Time di
Permits 1-pole tripping for single-	Pickup (
phase faults or 3-pole tripping for multi-phase faults selectable for every	Reset th
stage	Toleran
Selectable for every stage	Character
Selectable for every stage	logarith
3 rd and higher harmonics are com- pletely suppressed by digital filtering 2 nd and higher harmonics are com-	Pickup t Charact sated zer
pletely suppressed by digital filtering	Polarizi
0.05 / 05 / /0.05 / 105 /	decision
(step 0.01 A)	
0.05 to 25 A(1A) / 0.25 to 125 A(5A) (step 0.01 A)	
$\begin{array}{l} 0.05 \ to \ 25 \ A_{(1A)} / \ 0.25 \ to \ 125 \ A_{(5A)} \\ (step \ 0.01 \ A) \\ With \ normal \ neutral \ (residual) \ current \ CT \ (refer \ to \ ordering \ code) \\ 0.003 \ to \ 25 \ A_{(1A)} / \ 0.015 \ to \ 125 \ A_{(5A)} \\ (step \ 0.01 \ A) \\ With \ high \ sensitive \ neutral \ (residual) \\ current \ CT \ (refer \ to \ ordering \ code) \end{array}$	Min. zer Ground grounde former Min. ne
0.05 to 4 $A_{(1A)}$ / 0.25 to 20 $A_{(5A)}$ (step 0.01 A) With normal neutral (residual) cur- rent CT (refer to ordering code) 0.003 to 4 $A_{(1A)}$ / 0.015 to 20 $A_{(5A)}$ (step 0.01 A) With high sensitive neutral (residual) current CT (refer to ordering code)	Min. ne 2 nd harn for inru Maximu rush res
0.00 to 30 s (step 0.01 s) or deactivated	Tele (pil
	protecti
\leq 3 % of setting value or 1 % of <i>I</i> _{nom} ± 1 % of setting value or 10 ms	Operatio
Approx. 30 ms Approx. 40 ms	Transier Send an
	Potection (ANSI 85-21)POTTPUTT, DUTTDirectional comparison: BlockingDirectional comparison hybrid(POTT and echo with weak-infeedprotection)For overreaching schemesSuitable for 2- and 3- terminal lines, phase-segregated signals for selectivealternatively with or withoutauto-reclosure0.00 to 30 s (step 0.01 s) or deactivated $\pm 1 %$ of setting value or 10 msautrent protection (ANSI 50N, 51N, 67N)3 definite-time stages / 1 inverse-timestage or 4 definite-time stagesPermits 1-pole tripping for single- phase faults selectable for everyphase faults or 3-pole tripping for multi-phase faults selectable for everystageSelectable for every stageSelectable for every stageSelectable for every stageSelectable for every stageSuppressed by digital filtering 2^{nd} and higher harmonics are com- pletely suppressed by digital filtering 2^{nd} and higher harmonics are com- pletely suppressed by digital filtering 2^{nd} and higher harmonics are com- pletely suppressed by digital filtering 2^{nd} and higher harmonics are com- pletely suppressed by digital filtering 2^{nd} and higher harmonics are com- pletely suppressed by digital filtering 2^{nd} and higher harmonics are com- pletely suppressed by digital filtering 2^{nd} and higher harmonics are com- pletely suppressed by digital filtering 2^{nd} and higher harmonics are com- pletely suppressed by digital filtering 2^{nd} and higher harmonics are com- pletely suppressed by digital filtering 2^{nd} and higher harmonics are com- pletely suppressed

Inverse-time stage	
Current starting inverse-time stage 3Io	$\begin{array}{l} 0.05 \ to \ 4 \ A_{(1A)} / \ 0.25 \ to \ 20 \ A_{(5A)} \\ (step \ 0.01 \ A) \\ With normal neutral (residual) \\ current \ CT \ (refer \ to \ ordering \ code) \\ 0.003 \ to \ 4 \ A_{(1A)} / \ 0.015 \ to \ 20 \ A_{(5A)} \\ (step \ 0.001 \ A) \\ With \ high \ sensitive \ neutral \ (residual) \\ current \ CT \ (refer \ to \ ordering \ code) \end{array}$
Characteristics according to IEC 60255-3	Normal inverse, very inverse, extremely inverse, long time inverse,
Time multiplier for IEC <i>T</i> characteristics	$T_{\rm p}$ = 0.05 to 3 s (step 0.01s) or deactivity vated
Pickup threshold	Approx. 1.1 x <i>I</i> / <i>I</i> _p
Reset threshold	Approx. 1.05 x <i>I</i> / <i>I</i> _p
Tolerances Operating time for $2 \le I / I_P \le 20$	\leq 5 % of setpoint ± 15 ms
Characteristics according to ANSI/IEEE	Inverse, short inverse, long inverse, moderately inverse, very inverse, extremely inverse, definite inverse
Time dial	0.50 to 15 s (step 0.01) or deactivated
Pickup threshold	Approx. 1.1 x M
Reset threshold	Approx. 1.05 x M
Tolerances Operating time for $2 \le M \le 20$	\leq 5 % of setpoint ± 15 ms
Characteristic according to logarithmic inverse characteristic	$t = T_{3I_{0p}\max} - T_{3I_{0p}}\ln\frac{3I_0}{3I_{0p}}$
Pickup threshold	1.1 to 4.0 x $I/I_{\rm p}$ (step 0.1)
Characteristic according to compen- sated zero-sequence power	$S_{\rm r} = 3I_0 \cdot 3V_0 \cdot \cos\left(\phi - \phi_{\rm comp.}\right)$
Polarizing quantities for directional decision	$3I_0$ and $3V_0$ or $3I_0$ and $3V_0$ and I_E (grounded (earthed) power transformer) or $3I_2$ and $3V_2$ (negative sequence) or zero-sequence power S_r or automati- selection of zero-sequence or nega- tive-sequence quantities dependent on the magnitude of the component voltages
Min. zero-sequence voltage $3V_0$	0.5 to 10 V (step 0.1 V)
Ground (earth) current <i>I</i> _E of grounded (earthed) power transformer	0.05 to 1 $A_{\rm (1A)}/$ 0.25 to 5 $A_{\rm (5A)}$ (step 0.01 A)
Min. negative-sequence voltage $3V_2$	0.5 to 10 V (step 0.1 V)
Min. negative-sequence current 3 <i>I</i> ₂	$\begin{array}{l} 0.05 \ to \ 1 \ A_{\rm (1A)} \ / \ 0.25 \ to \ 5 \ A_{\rm (5A)} \\ (step \ 0.01 \ A) \end{array}$
2 nd harmonic ratio for inrush restraint	10 to 45 % of fundamental (step 1 %
Maximum current, overriding in- rush restraint	0.5 to 25 $A_{\rm (1A)}$ / 2.5 to 125 $A_{\rm (5A)}$ (step 0.01 A)
Tele (pilot) protection for directional protection (ANSI 85-67N)	l ground(earth)-fault overcurrent
Operating modes	Directional comparison: Pickup Directional comparison: Blocking Directional comparison: Unblocking
Transient blocking logic	For schemes with parallel lines
Send and receive signals	Suitable for 2- and 3- terminal lines

Siemens SIP · Edition No. 6

Technical data

Weak-infeed protection with undervoltage (ANSI 27WI)

Operating modes with carrier (signal) reception	Echo Echo and trip with undervoltage
Undervoltage phase – ground (earth)	2 to 70 V (step 1 V)
Time delay	0.00 to 30 s (step 0.01 s)
Echo impulse	0.00 to 30 s (step 0.01 s)
Tolerances Voltage threshold Timer	\leq 5 % of setting value or 0.5 V ± 1 % of setting value or 10 ms

Backup overcurrent protection (ANSI 50N, 51N, 67)

Operating modes	Active only with loss of VT secondary circuit or always active
Characteristic	2 definite-time stages /
	1 definite-time Stub-protection stage

Instantaneous trip after switch-onto- Selectable for every stage fault

Definite-time stage . . .

D' 1

current	(step 0.01 A)
Pickup definite-time stage 1, neutral (residual) current	0.05 to 25 A _(1A) / 0.25 to 125 A _(5A) (step 0.01A)
Pickup definite-time stage 2, phase current	0.1 to 25 A _(1A) / 0.5 to 125 A _(5A) (step 0.01A)
Pickup definite-time stage 2, neutral (residual) current	0.05 to 25 A _(1A) / 0.25 to 125 A _(5A) (step 0.01 A)
Time delay for definite-time stages	0.0 to 30 s (step 0.01 s) or deactivated
Tolerances Current starting Delay times	\leq 3 % of setting value or 1 % of I_{nom} ± 1 % of setting value or 10 ms
Operating time	Approx. 25 ms
Inverse-time stage	
Phase current starting for inverse-time stage	0.1 to 4 $A_{\rm (1A)}$ / 0.5 to 20 $A_{\rm (5A)}$ (step 0.01 A)
Neutral (residual) current starting for inverse-time stage	0.05 to 4 $A_{\rm (1A)}$ / 0.25 to 20 $A_{\rm (5A)}$ (step 0.01 A)
Characteristic according to IEC 60255-3	Normal inverse, very inverse, extremely inverse, long time inverse
Time multiplier	$T_{\rm p}$ = 0.05 to 3 s (step 0.01 s) or deactivated
Pickup threshold	Approx. 1.1 x <i>I</i> / <i>I</i> _p
Reset threshold	Approx. 1.05 x <i>I</i> / <i>I</i> _p
Tolerances Operating time for $2 < I/I_{\rm p} < 20$	< 5% of setupint $+ 15$ ms
Characteristics according	Inverse short inverse long inverse
to ANSI/IEEE	moderately inverse, very inverse, extremely inverse, definite inverse
Time dial	$D_{IP}0.50$ to 15 s (step 0.01) or deactivated
Pickup threshold	Approx. 1.1 x M (M = I/I_p)
Reset threshold	Approx. 1.05 x M
Tolerances Operating time for $2 \le M \le 20$	\leq 5 % of setpoint ± 15 ms

STUB bus overcurrent protection (ANSI 50(N)STUB) Active only with open isolator posi-Operating modes tion (signaled via binary input) Characteristic 1 definite-time stage Instantaneous trip after switch-onto- Selectable fault Pickup phase current 0.1 to 25 A(1A) / 0.5 to 125 A(5A) (step 0.01 A) 0.05 to 25 $A_{\rm (1A)}$ / 0.25 to 125 $A_{\rm (5A)}$ Pickup neutral (residual) current (step 0.01 A) 0.00 to 30 s (step 0.01 s) Time delay, separate for phase and ground (earth) stage Reset ratio

Pickup values V2>>, V2>

Reset ratio (settable)

(negative-sequence overvoltage)

or deactivated Approx. 0.95 Tolerances Current starting \leq 3 % of setting value or 1 % of I_{nom} Delay times \pm 1 % of setting value or 10 ms Instantaneous high-speed switch-onto-fault overcurrent protection (ANSI 50HS) Operating mode Active only after CB closing; instantaneous trip after pickup Pickup current 1 to 25 $A_{(1A)}\,/$ 5 to 125 $A_{(5A)}$ (step 0.01 A) Reset ratio Approx. 0.95 Tolerances Current starting \leq 3 % of setting value or 1 % of I_{nom} Operating time With fast relays Approx. 13 ms With high-speed trip outputs Approx. 8 ms Voltage protection (ANSI 59, 27) Operating modes Local tripping and/or carrier trip impulse for remote end, only indication Overvoltage protection Pickup values V_{PH-Gnd}>>, V_{PH-Gnd}> 1 to 170 V (step 0.1 V) (phase-earth overvoltage) Pickup values V_{PH-PH}>>, V_{PH-PH}> 2 to 220 V (step 0.1 V) (phase-phase overvoltage) Pickup values $3V_0 >>$, $3V_0 >$ 1 to 220 V (step 0.1 V) $(3V_0 \text{ can be measured via V4 trans-}$ formers or calculated by the relay) (zero-sequence overvoltage) Pickup values $V_1 >>$, $V_1 >$ 2 to 220 V (step 0.1 V) (positive-sequence overvoltage) Measured voltage Local positive-sequence voltage or calculated remote positive-sequence voltage (compounding)

2 to 220 V (step 0.1 V)

0.5 to 0.98 (step 0.01)

Technical data

Undervoltage protection	
Pickup values <i>V</i> _{PH-E} <<, <i>V</i> _{PH-E} < (phase-earth undervoltage)	1 to 100 V (step 0.1 V)
Pickup values V _{PH-PH} <<, V _{PH-PH} < (phase-phase undervoltage)	1 to 170 V (step 0.1 V)
Pickup values V1<<, V1< (positive-sequence undervoltage)	1 to 100 V (step 0.1 V)
Blocking of undervoltage protection stages	Minimum current; binary input
Reset ratio (settable)	1.01 to 1.20 (step 0.01)
Time delays	
Time delay for 3 V ₀ stages Time delay for all other over- and undervoltage stages	0 to 100 s (step 0.01 s)or deactivated 0 to 30 s (steps 0.01 s) or deactivated
Command / pickup time	Approx. 30 ms
Command/pickup time for 3V ₀ stages	Approx. 30 ms or 65 ms (settable)
Tolerances Voltage limit values Time stages	\leq 3 % of setting value or 0.5 V 1 % of setting value or 10 ms
Frequency protection (ANSI 81)	
Number of frequency elements	4
Setting range	45.5 to 54.5 Hz (in steps of 0.01) at $f_{nom} = 50$ Hz 55.5 to 64.5 Hz (in steps of 0.01) at $f_{nom} = 60$ Hz
Delay times	0 to 600 s or ∞ (in steps of 0.01 s)
Operating voltage range	6 to 230 V (phase-to-earth)
Pickup times	Approx. 80 ms
Dropout times Hysteresis Dropout condition	Approx. 80 ms Approx. 20 mHz Voltage = 0 V and current = 0 A
Tolerances Frequency Delay times	15 mHz for $V_{\rm PH-PH}$: 50 to 230 V 1 % of the setting value or 10 ms
Breaker failure protection (ANSI 50Bl	5)
Number of stages	2
Pickup of current element	0.05 to 20 $A_{\rm (1A)}$ / 0.25 to 100 $A_{\rm (5A)}$ (step 0.01 A)
Time delays T1 _{1phase} , T1 _{3phase} , T2	0 to 30 s (steps 0.01 s) or deactivated
Additional functions	End-fault protection

Reset time

Tolerances Current limit value Time stages

Т Sj In 0 and control commands networks Tolerances CB pole discrepancy monitoring

 \leq 5 % of setting value or 1 % I_{nom} 1 % of setting value or 10 ms

12 ms, typical; 25 ms max.

Auto-reclosure (ANSI 79)	
Number of auto-reclosures	Up to 8
Operating mode	Only 1-pole; only 3-pole, 1- or 3-pole
Operating modes with line voltage check	DLC – dead-line check ADT – adaptive dead time RDT – reduced dead time
Dead times $T_{1-\text{PH}}$, $T_{3-\text{PH}}$, T_{Seq}	0 to 1800 s (step 0.01 s) or deactivated
Action times	0.01 to 300 s (step 0.01 s) or deactivated
Reclaim times	0.5 to 300 s (step 0.01 s)
Start-signal monitoring time	0.01 to 300 s (step 0.01 s)
Additional functions	Synchro-check request 3-phase intertripping InterCLOSE command to the remote end Check of CB ready state Blocking with manual CLOSE
Voltage limit values for DLC, ADT, RDT	
Healthy line voltage Dead line	30 to 90 V (step 1 V) 2 to 70 V (step 1 V)
Tolerances Time stages Voltage limit values	1 % of setting value or 10 ms ≤ 3 % of setting value or 0.5 V
Synchro-check (ANSI 25)	
Initiate options	Auto-reclosure; Manual CLOSE control Control commands
Operating modes with auto-reclosure	Synchro-check Line dead/busbar live Line live/busbar dead Line and busbar dead Bypassing
For manual closure	As far auto recleauro
and control commands	As for auto-reclosure

Permissible voltage difference 1 to 60 V (step 0.1 V) Permissible frequency difference 0.03 to 2 Hz (step 0.01 Hz) Permissible angle difference 2 to 80 ° (step 1 °) Max. duration of synchronization 0.01 to 600 s (step 0.01 s) or deactivated Release delay with synchronous 0 to 30 s (step 0.01 s) 1 % of setting value or 10 ms Time stages Voltage limit values \leq 2 % of setting value or 2 V Trip circuit supervision (ANSI 74TC) Number of supervisable trip circuits Up to 3 Number of required binary inputs 1 or 2

per trip circuit Indication relay 1 to 30 s (step 1 s)
Additional functions		Control	
Operational measured values		Number of switching units	Depends on the number of binary /
Representation	Primary, secondary and percentage referred to rated value	U	indication inputs and indication / command outputs
Currents	3 x I _{Phase} ; 3 <i>I</i> ₀ ; <i>I</i> _{Gnd sensitve} ; <i>I</i> ₁ ; <i>I</i> ₂ ; <i>I</i> _Y ; 3 _{<i>I</i>0PAR}	Control commands	Single command / double command 1, 1 plus 1 common or 2 pole
Tolerances	Typical 0.3 % of indicated measured value or 0.5 % <i>I</i> _{nom}	Feed back	CLOSE, TRIP, intermediate position
Voltages	3 x V _{Phase-Ground} ; 3 x V _{Phase-Phase} ; 3V ₀ ,	Interlocking	Freely configurable
Tolerances	Typical 0.25 % of indicated measured value or 0.01 V_{nom}	Remote control	Control protection, DIGSI, pilot wires
Power with direction indication	P, Q, S	Further additional functions	
Tolerances <i>P</i> : for $ \cos \varphi = 0.7$ to 1 and V/V_{nom} , $I/I_{nom} = 50$ to 120 % <i>Q</i> : for $ \sin \varphi = 0.7$ to 1 and V/V_{nom} , $I/I_{nom} = 50$ to 120 % <i>S</i> : for V/V_{nom} , $I/I_{nom} = 50$ to 120 %	Typical ≤ 1 % Typical ≤ 1 % Typical ≤ 1 %	Measurement supervision	Current sum Current symmetry Voltage sum Voltage symmetry Voltage phase sequence Fuse failure monitor Power direction
Frequency	f	Annunciations	
Tolerance	≤ 20 mHz	Event logging	Buffer size 200
Power factor	p.f. (cos φ)	Fault logging	Storage of signals of the last 8 faults,
Tolerance for $ \cos \varphi = 0.7$ to 1	Typical \leq 3 %	Switching statistics	Number of breaking operations per
Load impedances with directional indication	3 x R _{Phase-Ground} , X _{Phase-Ground} 3 x R _{Phase-Phase} , X _{Phase-Phase}	Switching statistics	CB pole Sum of breaking current per phase
Long-term mean values			Breaking current of last trip operation
Interval for derivation of mean value	15 min / 1 min; 15 min / 3 min; 15 min / 15 min	Circuit-breaker test	Max. breaking current per phase TRIP/CLOSE cycle 3-phase
Synchronization instant	Every ¼ hour; every ½ hour; every hour	Setting range	TRIP/CLOSE cycle per phase
Values	3 x I _{Phase} ; I ₁ ; P; P+; P-; Q; Q+; Q-; S	Dead time for c.b. TRIP/CLOSE cycle	0.00 to 30 s (step 0.01 s)
Minimum/maximum memory		Commissioning support	Operational measured values, CB.
Indication Resetting	Measured values with date and time	0 11	test, status display of binary indica- tion inputs, setting of output relays,
Resetting	Via binary input Via the keyboard		generation of indications for testing serial interfaces
	Via serial interface	Phase rotation adjustment	Clockwise or anti-clockwise
Values			
Min./max. of measured values	$3 \times I_{\text{Phase}}; I_1; 3 \times V_{\text{Phase-Ground}};$	CE conformity	
	P; P -; Q +; Q -; S ; f ; power factor (+); power factor (-)	This product complies with the direc Communities on the approximation	ctive of the Council of the European of the laws of the Member States relat-
Min./max. of mean values	3 x I _{Phase} ; I ₁ ; P; Q; S	ing to electromagnetic compatibility	(EMC Council Directive 89/336/EEC)
Energy meters		(Low-voltage directive 73/23/EEC).	for use within specified voltage limits
Four-quadrant meters	$W_{P+}; W_{P-}; W_{Q+}; W_{Q-}$	This conformity is proved by tests co	onducted by Siemens AG in accordance
Tolerance for $ \cos \varphi > 0.7$ and $V > 50 \%$ V_{nom} and $I > 50 \% I_{\text{nom}}$	5 %	with Article 10 of the Council Direct standards EN 61000-6-2 and EN 610 the standard EN 60255-6 for the low	ive in agreement with the generic 000-6-4 for the EMC directive and with -voltage directive.
Oscillographic fault recording		This device is designed and produced	d for industrial use.
Analog channels	3 x I _{Phase} , 3I ₀ , 3I _{0 PAR} 3 x V _{Phase} , 3V ₀ , V _{SYNC} , V _{en}	The product conforms with the inter IEC 60255 and the German standard	rnational standard of the series l VDE 0435.
Max. number of available recordings	8, backed-up by battery if auxiliary voltage supply fails		
Sampling intervals	20 samplings per cycle		
Total storage time	> 15 s		
Binary channels	Pickup and trip information; number and contents can be freely configured by the user		
Max. number of displayed binary	100		

channels

Selection and ordering data

7SA522 distance protection relay for transmission lines

Current transformer

Description

$I_{\rm PH} = 1 \text{ A}^{1}$, $I_{\rm Gnd} = 1 \text{ A} (\min = 0.05 \text{ A})$
$I_{\text{PH}} = 1 \text{ A}^{1}$, $I_{\text{Gnd}} = \text{high sensitive} (\text{min.} = 0.003 \text{ A})$
$I_{\rm PH} = 5 {\rm A}^{1}$, $I_{\rm Gnd} = 5 {\rm A} ({\rm min.} = 0.25 {\rm A})$
$I_{\text{PH}} = 5 \text{ A}^{1}$, $I_{\text{Gnd}} = \text{high sensitive} (\text{min.} = 0.003 \text{ A})$
(Order code position $7 = 2$ or 6 pot available

with position 14 = K, M, N, Q)

Rated auxiliary voltage (power supply, binary inputs) 24 to 48 V DC, binary input threshold 17 V DC³⁾ 60 to 125 V DC^{2} , binary input threshold 17 V DC^{3} 110 to 250 V DC²⁾, 115 V AC, binary input threshold 73 V DC³⁾ 220 to 250 V DC²⁾, 115 V AC, binary input threshold 154 V DC³⁾

Order No.

see following pages

2 5 6

4

5

6

		OUT IL			100	nour converting the set	
/	Dary . onal	and	id id		317.0	21, 12 x x x x x x x x x x x x x x x x x x	
<u>~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 500	5/ 20	<u>/ </u>	/ 🌾	/ 🌣	<u> </u>	
8	4	12	-	1/2			A
8	4	12	-	1/2			E
8	4	12	-	1/2			J
16	12	12	_	1/1			С
16	12	12	-	1/1			G
16	12	12	_	1/1			L
16	4	15	5	1/1			N
16	4	15	5	1/1			Q
16	4	15	5	1/1		 • 	S
24	20	12	_	1/1			D
24	20	12	-	1/1			Н
24	20	12	-	1/1			М
24	12	15	5	1/1			Р
24	12	15	5	1/1			R
24	24	3	5	1/1			Т
22	32	12	_	1/1			U
24	4	18	10	1/1			W

Region-specific default settings/language settings (language selectable)

Region DE, language: German	Α
Region World, language: English (GB)	В
Region US, language: English (US)	С
Region FR, language: French	D
Region World, language: Spanish	Ε
Region World, language: Italian	F
Region World, language: Russian	G
Region World Janguage: Polish	Н

Regulation on region-specific presettings and function versions:

Region DE:	prese	t to j	f = 50	Hz and	line	length	ı in km, only	/ IEC,
			-					-

	directional ground-(earth) fault protection: no logarithmic inverse characteristic,
	no direction decision with zero-sequence power S _r
Region US:	preset to $f = 60$ Hz and line length in miles, ANSI inverse characteristic only,
	directional ground-(earth) fault protection: no logarithmic inverse characteristic,
	no direction decision with zero-sequence power S_r , no U_0 inverse characteristic
Region World:	preset to $f = 50$ Hz and line length in km, directional ground-(earth) fault protection:
	no direction decision with zero-sequence S_r , no U_0 inverse characteristic
Region FR:	preset to $f = 50$ Hz and line length in km, directional ground-(earth) fault protection:
	no U_0 inverse characteristic, no logarithmic inverse characteristic,
	weak infeed logic selectable between French specification and World specification.

- 1) Rated current can be selected by means of jumpers.
- 2) Transition between the three auxiliary voltage ranges can be selected by means of jumpers.

3) The binary input thresholds can be selected by means of jumpers.

and ordering data	Description	Order No.	Order Cod					
	7SA522 distance protection relay							
	for transmission lines	7SA522□-□□□□-□						
	Port B	$\blacksquare \blacksquare $	see AA					
	Empty	0 fol	lowing					
	System interface, IEC 60870-5-103 protocol, electrical RS232 1							
	System interface, IEC 60870-5-103 protocol, electri	cal RS485 2						
	System interface, IEC 60870-5-103 protocol, optical 820 nm, ST connector 3							
	System interface, PROFIBUS-FMS Slave, electrical RS485 ¹⁾ 4							
	System interface, PROFIBUS-FMS Slave, optical, double ring, ST connector ¹⁾²⁾ 6 System interface, PROFIBUS-DP Slave, RS485 9 L 0 A							
	System interface, PROFIBUS-DP Slave, 820 nm op	tical, double ring, ST connector ²⁾ 9	L 0 E					
	System interface, DNP 3.0, RS485	9	L 0 C					
	System interface, DNP 3.0, 820 nm optical, ST con	nector ²⁾ 9	L 0 F					
	System interface, IEC 61850, 100 Mbit/s Ethernet, e RJ45 plug connector	electrical, duplicate,	LOF					
	System interface, IEC 61850, 100 Mbit/s Ethernet, o	optical, double, LC connector ⁵⁾ 9	L 0 5					
	Port C and/or Port D							
	Empty	0						
	Port C: DIGSI/modem, electrical RS232; Port D: en	npty 1						
	Port C: DIGSI/modem, electrical RS485; Port D: en	npty 2						
	Port C: DIGSI/modem, optical 820 nm, ST connect	tor; Port D: empty 3						
	With Port D	9	МП					
	Port C		▲ ,					
	Empty		0					
	DIGSI/modem, electrical RS232							
	DIGSI/modem, electrical RS485							
	DIGSI/modem, optical 820 nm, ST connector 3							
	Port D							
	Protection data interface: optical 820 nm, two ST co	onnectors, FO cable length up to 1.5 km						
	For direct connection via multi-mode FO cable or communication networks ³⁾							
	Protection data interface: optical 820 nm, two ST connectors, FO cable length up to 3.5 km For direct connection via multi-mode FO cable B							
	Protection data interface: optical 1300 nm, LC-Duplex connector							
	FO cable length up to 24 km for direct connection via mono-mode FO cable ⁴⁾							
	Protection data interface: optical 1300 nm, LC-Duplex connector							
	FO cable length up to 60 km for direct connection via mono-mode FO cable ⁴⁾⁶⁾ H							
	Protection data interface: optical 1550 nm, LC-Duplex connector							
	FO cable length up to 100 km for direct connection via mono-mode FO cable ⁴⁾⁷⁾							
	FO30 optical 820 nm, 2-ST-connector, length of op for communication networks with IEEE C37.94 int	ptical fibre up to 1.5 km for multimode fibre, erface or direct optical fibre connection (not	t available for					
	surface mounted housing)		-					

1) For SICAM energy automation system.

- Optical double ring interfaces are not available with surface-mounting housings. Please, order the version with RS485 interface and a separate electrical/ optical converter.
- Suitable communication converters 7XV5662 (optical to G703.1/X21/ RS422 or optical to pilot wire or optical to ISDN) see "Accessories".
- 4) For surface-mounting housing applications an internal fiber-optic module 820 nm will be delivered in combination with an external repeater.
- 5) For surface-mounting housing applications please order the relay with electrical Ethernet interface and use a separate fiber-optic switch.
- 6) For distances less than 25 km, two optical attenuators 7XV5107-0AA00 are required to avoid optical saturation of the receiver element.
- 7) For distances less than 50 km, two optical attenuators 7XV5107-0AA00 are required to avoid optical saturation of the receiver element.

oct	lon.	and	ord	OFU	$\mathbf{a} \mathbf{a}$	ata

Description	Order No.	0	rder Code
7SA522 distance protection relay			
for transmission lines	<i>7SA522</i> □-□□□		
Functions 1 and Port F		see next	
Trip mode 3-pole: Port E: empty		0 page	
Trip mode 3-pole: BCD-coded output for fault location. Po	ort E: empty	1	
Trip mode 1 and 3-pole: Port E: empty	it is empty	4	
Trip mode 1 and 3-pole; BCD-coded output for fault location	on, Port E: empty	5	
With Port E		9	
Functions 1			ΤT
Trip mode 3-pole			0
Trip mode 3-pole; BCD-coded output for fault location			1
Trip mode 1 and 3-pole			4
Trip mode 1 and 3-pole; BCD-coded output for fault location	on		5
^			
Port E			
Protection data interface:			
FO5: Optical 820 nm, 2 ST connectors, FO cable length up t	to 1.5 km		
for communication networks ¹⁾ or direct connection via mu	lti-mode FO cable		A
FO6: Optical 820 nm, 2 ST connectors, FO cable length up	to 3.5 km		
for direct connection via multi-mode FO cable			В
FO17: Optical 1300 nm, LC-Duplex connector			
FO cable length up to 24 km for direct connection via mono	o-mode FO cable ²⁾		G
FO18: Optical 1300 nm, LC-Duplex connector			
FO cable length up to 60 km for direct connection via mono	o-mode FO cable ²⁾³⁾		Н
FO19: Optical 1550 nm, LC-Duplex connector	2) ()		
FO cable length up to 100 km for direct connection via mor	no-mode FO cable ²⁾⁴⁾		J
FO30: Optical 820 nm, 2-ST-connector, length of optical fil	bre up to 1.5 km for mult	imode fibre,	
for communication networks with IEEE C37.94 interface on	r direct optical fibre conn	ection (not available	e for
surface mounted housing)			S

6

 For surface -mounting housing applications an internal fiber-optic module 820 nm will be delivered in combination with an external repeater.

- 3) For distances less than 25 km, two optical attenuators 7XV5107-0AA00 are required to avoid optical saturation of the receiver element.
- 4) For distances less than 50 km, two optical attenuators 7XV5107-0AA00 are required to avoid optical saturation of the receiver element.

Selection and ordering data

Description Order No. 7SA522 distance protection relay for transmission lines Functions 2 Distance protection characteristic Power swing detection Parallel line (ANSI 21, 21N) (ANSI 68, 68T) compensation Quadrilateral С Quadrilateral and/or MHO Ε F Quadrilateral Quadrilateral and/or MHO Н 1) Κ Quadrilateral 1) М Quadrilateral and/or MHO 1) Ν Quadrilateral 1) Q Quadrilateral and/or MHO Functions 3 Auto-reclosure Synchro-check Breaker failure protection Over-/undervoltage protection (ANSI 27, 59) (ANSI 79) (ANSI 25) (ANSI 50BF) Over-/underfrequency protection (ANSI 81) A В С D Ε F G Н Κ L М Ν Р Ξ Q R Functions 4 Direction ground(earth)-fault Measured values, extended protection, grounded (earthed) Min, max, mean networks (ANSI 50N, 51N, 67N)

0 1 4 5

1) Only with position 7 of Order No. = 1 or 5.

60	2.21		101
	-	10/	

Description	Order No.
DIGSI 4	
Software for configuration and operation of Siemens protection units running under MS Windows 2000/XP Professional	
device templates, Comtrade Viewer, electronic manual included	
as well as "Getting started" manual on paper, connecting cables (copper)	
Basis Full version with license for 10 computers, on CD-ROM	
(authorization by serial number)	7XS5400-0AA00
Professional	
DIGSI 4 Basis and additionally SIGRA (fault record analysis),	
CFC Editor (logic editor), Display Editor (editor for default and control displays) and DIGSI 4 Remote (remote operation)	7X\$5402-0AA00
Professional + IFC 61850	
DIGSI 4 Basis and additionally SIGRA (fault record analysis),	
CFC Editor (logic editor), Display Editor (editor for default	
+ IFC61850 system configurator	7X\$5403-0AA00
IEC 61850 System configuration of stations with IEC 61850 communication under	
DIGSI, running under MS Windows 2000 or XP Professional Edition	
Optional package for DIGSI 4 Basis or Professional	
License for 10 PCs. Authorization by serial number. On CD-ROM	7XS5460-0AA00
SIGRA 4	
(generally contained in DIGSI Professional, but can be ordered additionally)	
Can also be used for fault records of devices of other manufacturers	
(Comtrade format). Running under MS Windows 2000/XP Professional.	
Incl. templates, electronic manual with license for 10 PCs.	7/55410 04400
Authorization by serial number. On CD-ROM.	7X55410-0AA00
Connecting cable (copper)	
(able between PC/notebook (9-pin connector) and protection limit (9-pin connector)	
(contained in DIGSI 4, but can be ordered additionally)	7XV5100-4
(contained in DIGSI 4, but can be ordered additionally)	7XV5100-4
(contained in DIGSI 4, but can be ordered additionally) <i>Voltage transformer miniature circuit-breaker</i> Rated current 1.6 A; thermal overload release 1.6 A;	7XV5100-4
(contained in DIGSI 4, but can be ordered additionally) Voltage transformer miniature circuit-breaker Rated current 1.6 A; thermal overload release 1.6 A; overcurrent trip 6 A	7XV5100-4 3RV1611-1AG14
(contained in DIGSI 4, but can be ordered additionally) Voltage transformer miniature circuit-breaker Rated current 1.6 A; thermal overload release 1.6 A; overcurrent trip 6 A Manual for 75A522 Particular difference of the second secon	7XV5100-4 3RV1611-1AG14
(contained in DIGSI 4, but can be ordered additionally) Voltage transformer miniature circuit-breaker Rated current 1.6 A; thermal overload release 1.6 A; overcurrent trip 6 A Manual for 7SA522 English, V4.61 and higher	7XV5100-4 3RV1611-1AG14 C53000-G1176-C155-5
(contained in DIGSI 4, but can be ordered additionally) Voltage transformer miniature circuit-breaker Rated current 1.6 A; thermal overload release 1.6 A; overcurrent trip 6 A Manual for 75A522 English, V4.61 and higher Opto-electric communication converters Optical to X21/PS422 or C703 1	7XV5100-4 3RV1611-1AG14 C53000-G1176-C155-5
(contained in DIGSI 4, but can be ordered additionally) Voltage transformer miniature circuit-breaker Rated current 1.6 A; thermal overload release 1.6 A; overcurrent trip 6 A Manual for 75A522 English, V4.61 and higher Opto-electric communication converters Optical to X21/RS422 or G703.1 Optical to pilot wires	7XV5100-4 3RV1611-1AG14 C53000-G1176-C155-5 7XV5662-0AA00 7XV5662-0AC00
(contained in DIGSI 4, but can be ordered additionally) Voltage transformer miniature circuit-breaker Rated current 1.6 A; thermal overload release 1.6 A; overcurrent trip 6 A Manual for 7SA522 English, V4.61 and higher Opto-electric communication converters Optical to X21/RS422 or G703.1 Optical to pilot wires Additional interface modules	7XV5100-4 3RV1611-1AG14 C53000-G1176-C155-5 7XV5662-0AA00 7XV5662-0AC00
(contained in DIGSI 4, but can be ordered additionally) Voltage transformer miniature circuit-breaker Rated current 1.6 A; thermal overload release 1.6 A; overcurrent trip 6 A Manual for 75A522 English, V4.61 and higher Opto-electric communication converters Optical to X21/RS422 or G703.1 Optical to pilot wires Additional interface modules Protection data interface FO 5, OMA1, 820 nm, multi-mode FO cable,	7XV5100-4 3RV1611-1AG14 C53000-G1176-C155-5 7XV5662-0AA00 7XV5662-0AC00
(contained in DIGSI 4, but can be ordered additionally) Voltage transformer miniature circuit-breaker Rated current 1.6 A; thermal overload release 1.6 A; overcurrent trip 6 A Manual for 7SA522 English, V4.61 and higher Opto-electric communication converters Optical to X21/RS422 or G703.1 Optical to pilot wires Additional interface modules Protection data interface FO 5, OMA1, 820 nm, multi-mode FO cable, ST connector, 1.5 km Protection data interface FO 6, OMA2, 820 nm, multi-mode FO cable,	7XV5100-4 3RV1611-1AG14 C53000-G1176-C155-5 7XV5662-0AA00 7XV5662-0AC00 C53207-A351-D651-1
(contained in DIGSI 4, but can be ordered additionally) Voltage transformer miniature circuit-breaker Rated current 1.6 A; thermal overload release 1.6 A; overcurrent trip 6 A Manual for 7SA522 English, V4.61 and higher Opto-electric communication converters Optical to X21/RS422 or G703.1 Optical to pilot wires Additional interface modules Protection data interface FO 5, OMA1, 820 nm, multi-mode FO cable, ST connector, 1.5 km Protection data interface FO 6, OMA2, 820 nm, multi-mode FO cable, ST connector, 3.5 km	7XV5100-4 3RV1611-1AG14 C53000-G1176-C155-5 7XV5662-0AA00 7XV5662-0AC00 C53207-A351-D651-1 C53207-A351-D652-1
(contained in DIGSI 4, but can be ordered additionally) Voltage transformer miniature circuit-breaker Rated current 1.6 A; thermal overload release 1.6 A; overcurrent trip 6 A Manual for 75A522 English, V4.61 and higher Opto-electric communication converters Optical to X21/RS422 or G703.1 Optical to pilot wires Additional interface modules Protection data interface FO 5, OMA1, 820 nm, multi-mode FO cable, ST connector, 1.5 km Protection data interface FO 6, OMA2, 820 nm, multi-mode FO cable, ST connector, 3.5 km Protection data interface FO 17, 1300 nm, mono-mode FO cable, LC-Dunlex connector, 2.5 km	7XV5100-4 3RV1611-1AG14 C53000-G1176-C155-5 7XV5662-0AA00 7XV5662-0AC00 C53207-A351-D651-1 C53207-A351-D652-1 (53207-A322-R115-3
(contained in DIGSI 4, but can be ordered additionally) Voltage transformer miniature circuit-breaker Rated current 1.6 A; thermal overload release 1.6 A; overcurrent trip 6 A Manual for 7SA522 English, V4.61 and higher Opto-electric communication converters Optical to X21/RS422 or G703.1 Optical to pilot wires Additional interface modules Protection data interface FO 5, OMA1, 820 nm, multi-mode FO cable, ST connector, 1.5 km Protection data interface FO 17, 1300 nm, mono-mode FO cable, LC-Duplex connector, 25 km Protection data interface FO 18, 1300 nm, mono-mode FO cable,	7XV5100-4 3RV1611-1AG14 C53000-G1176-C155-5 7XV5662-0AA00 7XV5662-0AC00 C53207-A351-D651-1 C53207-A351-D652-1 C53207-A351-D652-1
(contained in DIGSI 4, but can be ordered additionally) Voltage transformer miniature circuit-breaker Rated current 1.6 A; thermal overload release 1.6 A; overcurrent trip 6 A Manual for 75A522 English, V4.61 and higher Opto-electric communication converters Optical to X21/RS422 or G703.1 Optical to pilot wires Additional interface modules Protection data interface FO 5, OMA1, 820 nm, multi-mode FO cable, ST connector, 1.5 km Protection data interface FO 6, OMA2, 820 nm, multi-mode FO cable, ST connector, 3.5 km Protection data interface FO 17, 1300 nm, mono-mode FO cable, LC-Duplex connector, 25 km Protection data interface FO 18, 1300 nm, mono-mode FO cable, LC-Duplex connector, 60 km Protection data interface FO 10, 1550 nm, mono-mode FO cable, LC-Duplex connector, 60 km	7XV5100-4 3RV1611-1AG14 C53000-G1176-C155-5 7XV5662-0AA00 7XV5662-0AA00 7XV5662-0AA00 C53207-A351-D651-1 C53207-A351-D652-1 C53207-A351-D652-1 C53207-A352-B115-3 C53207-A322-B116-3
(contained in DIGSI 4, but can be ordered additionally) Voltage transformer miniature circuit-breaker Rated current 1.6 A; thermal overload release 1.6 A; overcurrent trip 6 A Manual for 7SA522 English, V4.61 and higher Opto-electric communication converters Optical to X21/RS422 or G703.1 Optical to pilot wires Additional interface modules Protection data interface FO 5, OMA1, 820 nm, multi-mode FO cable, ST connector, 1.5 km Protection data interface FO 6, OMA2, 820 nm, multi-mode FO cable, ST connector, 3.5 km Protection data interface FO 17, 1300 nm, mono-mode FO cable, LC-Duplex connector, 25 km Protection data interface FO 18, 1300 nm, mono-mode FO cable, LC-Duplex connector, 60 km Protection data interface FO 19, 1550 nm, mono-mode FO cable, LC-Duplex connector, 100 km	7XV5100-4 3RV1611-1AG14 C53000-G1176-C155-5 7XV5662-0AA00 7XV5662-0AC00 C53207-A351-D651-1 C53207-A351-D652-1 C53207-A352-B115-3 C53207-A322-B116-3 C53207-A322-B117-3
(contained in DIGSI 4, but can be ordered additionally) Voltage transformer miniature circuit-breaker Rated current 1.6 A; thermal overload release 1.6 A; overcurrent trip 6 A Manual for 7SA522 English, V4.61 and higher Opto-electric communication converters Optical to X21/RS422 or G703.1 Optical to pilot wires Additional interface modules Protection data interface FO 5, OMA1, 820 nm, multi-mode FO cable, ST connector, 1.5 km Protection data interface FO 6, OMA2, 820 nm, multi-mode FO cable, ST connector, 3.5 km Protection data interface FO 17, 1300 nm, mono-mode FO cable, LC-Duplex connector, 25 km Protection data interface FO 18, 1300 nm, mono-mode FO cable, LC-Duplex connector, 60 km Protection data interface FO 19, 1550 nm, mono-mode FO cable, LC-Duplex connector, 100 km Ontical repeaters	7XV5100-4 3RV1611-1AG14 C53000-G1176-C155-5 7XV5662-0AA00 7XV5662-0AC00 C53207-A351-D651-1 C53207-A351-D652-1 C53207-A351-D652-1 C53207-A351-D652-1 C53207-A352-B115-3 C53207-A322-B116-3 C53207-A322-B117-3
(contained in DIGSI 4, but can be ordered additionally) Voltage transformer miniature circuit-breaker Rated current 1.6 A; thermal overload release 1.6 A; overcurrent trip 6 A Manual for 75A522 English, V4.61 and higher Opto-electric communication converters Optical to X21/RS422 or G703.1 Optical to pilot wires Additional interface modules Protection data interface FO 5, OMA1, 820 nm, multi-mode FO cable, ST connector, 1.5 km Protection data interface FO 6, OMA2, 820 nm, multi-mode FO cable, ST connector, 3.5 km Protection data interface FO 17, 1300 nm, mono-mode FO cable, LC-Duplex connector, 25 km Protection data interface FO 18, 1300 nm, mono-mode FO cable, LC-Duplex connector, 60 km Protection data interface FO 19, 1550 nm, mono-mode FO cable, LC-Duplex connector, 100 km Optical repeaters Serial repeater (2-channel), opt. 1300 nm, mono-mode FO cable,	7XV5100-4 3RV1611-1AG14 C53000-G1176-C155-5 7XV5662-0AA00 7XV5662-0AC00 C53207-A351-D651-1 C53207-A351-D652-1 C53207-A352-B115-3 C53207-A322-B116-3 C53207-A322-B117-3
(contained in DIGSI 4, but can be ordered additionally) Voltage transformer miniature circuit-breaker Rated current 1.6 A; thermal overload release 1.6 A; overcurrent trip 6 A Manual for 7SA522 English, V4.61 and higher Opto-electric communication converters Optical to X21/RS422 or G703.1 Optical to pilot wires Additional interface modules Protection data interface FO 5, OMA1, 820 nm, multi-mode FO cable, ST connector, 1.5 km Protection data interface FO 6, OMA2, 820 nm, multi-mode FO cable, ST connector, 3.5 km Protection data interface FO 17, 1300 nm, mono-mode FO cable, LC-Duplex connector, 25 km Protection data interface FO 19, 1550 nm, mono-mode FO cable, LC-Duplex connector, 100 km Optical repeaters Serial repeater (2-channel), opt. 1300 nm, mono-mode FO cable, LC-Duplex connector, 25 km	7XV5100-4 3RV1611-1AG14 C53000-G1176-C155-5 7XV5662-0AA00 7XV5662-0AC00 C53207-A351-D651-1 C53207-A351-D652-1 C53207-A322-B115-3 C53207-A322-B116-3 C53207-A322-B117-3
Contained in DIGSI 4, but can be ordered additionally) Voltage transformer miniature circuit-breaker Rated current 1.6 A; thermal overload release 1.6 A; overcurrent trip 6 A Manual for 75A522 English, V4.61 and higher Opto-electric communication converters Optical to X21/RS422 or G703.1 Optical to pilot wires Additional interface modules Protection data interface FO 5, OMA1, 820 nm, multi-mode FO cable, ST connector, 1.5 km Protection data interface FO 6, OMA2, 820 nm, multi-mode FO cable, ST connector, 3.5 km Protection data interface FO 17, 1300 nm, mono-mode FO cable, LC-Duplex connector, 25 km Protection data interface FO 18, 1300 nm, mono-mode FO cable, LC-Duplex connector, 60 km Protection data interface FO 19, 1550 nm, mono-mode FO cable, LC-Duplex connector, 100 km Optical repeaters Serial repeater (2-channel), opt. 1300 nm, mono-mode FO cable, LC-Duplex connector, 25 km Serial repeater (2-channel), opt. 1300 nm, mono-mode FO cable, LC-Duplex connector, 26 km	7XV5100-4 3RV1611-1AG14 C53000-G1176-C155-5 7XV5662-0AA00 7XV5662-0AC00 C53207-A351-D651-1 C53207-A351-D652-1 C53207-A352-B115-3 C53207-A322-B116-3 C53207-A322-B117-3 C53207-A322-B117-3 7XV5461-0BG00 7XV5461-0BH00
Contained in DIGSI 4, but can be ordered additionally) Voltage transformer miniature circuit-breaker Rated current 1.6 A; thermal overload release 1.6 A; overcurrent trip 6 A Manual for 75A522 English, V4.61 and higher Opto-electric communication converters Optical to X21/RS422 or G703.1 Optical to pilot wires Additional interface modules Protection data interface FO 5, OMA1, 820 nm, multi-mode FO cable, ST connector, 1.5 km Protection data interface FO 6, OMA2, 820 nm, multi-mode FO cable, ST connector, 3.5 km Protection data interface FO 17, 1300 nm, mono-mode FO cable, LC-Duplex connector, 25 km Protection data interface FO 18, 1300 nm, mono-mode FO cable, LC-Duplex connector, 60 km Protection data interface FO 19, 1550 nm, mono-mode FO cable, LC-Duplex connector, 100 km Optical repeaters Serial repeater (2-channel), opt. 1300 nm, mono-mode FO cable, LC-Duplex connector, 25 km Serial repeater (2-channel), opt. 1300 nm, mono-mode FO cable, LC-Duplex connector, 26 km Serial repeater (2-channel), opt. 1300 nm, mono-mode FO cable, LC-Duplex connector, 26 km Serial repeater (2-chann	7XV5100-4 3RV1611-1AG14 C53000-G1176-C155-5 7XV5662-0AA00 7XV5662-0AC00 C53207-A351-D651-1 C53207-A351-D652-1 C53207-A352-B115-3 C53207-A322-B115-3 C53207-A322-B116-3 C53207-A322-B117-3 C53207-A322-B117-3 7XV5461-0BG00 7XV5461-0BH00

Accessories

Fig. 6/76 Mounting rail for 19" rack

Fig. 6/78

3-pin connector

eps

Fig. 6/77 2-pin connector

Fig. 6/79 Short-circuit link for current contacts

Fig. 6/80 Short-circuit link for voltage con-

tacts

Description		Order No.	Size of package	Supplier	Fig.
Connector	2-pin	C73334-A1-C35-1	1	Siemens	6/77
	3-pin	C73334-A1-C36-1	1	Siemens	6/78
Crimp	CI2 0.5 to 1 mm^2	0-827039-1	4000	AMP ¹⁾	
connector		0-827396-1	1	AMP ¹⁾	
	CI2 1 to 2.5 mm^2	0-827040-1	4000	AMP ¹⁾	
		0-827397-1	1	AMP ¹⁾	
	Type III+ 0.75 to 1.5 mm^2	0-163083-7	4000	AMP ¹⁾	
	71	0-163084-2	1	AMP ¹⁾	
Crimping	For Type III+	0-539635-1	1	AMP ¹⁾	
tool	and matching female	0-539668-2		AMP ¹⁾	
	For CI2	0-734372-1	1	AMP ¹⁾	
	and matching female	1-734387-1		AMP ¹⁾	
19"-mounting rail		C73165-A63-D200-1	1	Siemens	6/76
Short-circuit links	For current terminals	C73334-A1-C33-1	1	Siemens	6/79
	For other terminals	C73334-A1-C34-1	1	Siemens	6/80
Safety cover for	Large	C73334-A1-C31-1	1	Siemens	6/51
terminals	Small	C73334-A1-C32-1	1	Siemens	6/51

1) Your local Siemens representative can inform you on local suppliers.

Connection diagram, IEC

Fig. 6/81

Housing 1/2 x 19", basic version 7SA522x-xA, 7SA522x-xE and 7SA522x-xJ with 8 binary inputs and 16 binary outputs, hardware version .../FF

Fig. 6/81a

Additional setting by jumpers: Separation of common circuit of BO8 to BO12 with jumpers X80, X81, X82. Switching of BO13, BO14, BO15 as NO contact or NC contact with jumpers.

Fig. 6/82

Serial interfaces

Connection diagram, IEC

Fig. 6/83a

Additional setting by jumpers: Separation of common circuit of BO8 to BO12 with jumpers X80, X81, X82. Switching of BO13, BO14, BO15 as NO contact or NC contact with jumpers.

Fig. 6/83

Housing 1/1 x 19", medium version 7SA522x-xC, 7SA522x-xG, 7SA522x-xL, 7SA522x-xN, 7SA522x-xQ and 7SA522x-xS with 16 binary inputs and 24 binary outputs, hardware version .../FF

 High-speed trip outputs in versions 7SA522x-xN, 7SA522x-xQ, 7SA522x-xS.
 Note: For serial interfaces see Figure 6/82.

Connection diagram, IEC

Fig. 6/84a

Additional setting by jumpers: Separation of common circuit of BO8 to BO12 with jumpers X80, X81, X82. Switching of BO13, BO14, BO15 as NO contact or NC contact with jumpers.

 High-speed trip outputs in versions 7SA522x-xP, 7SA522x-xR, 7SA522x-xT.
 Note: For serial interfaces see Figure 6/82.

Fig. 6/84

Housing 1/1 x 19", maximum version 7SA522x-xD, 7SA522x-xH, 7SA522x-xM, 7SA522x-xP, 7SA522x-xR and 7SA522x-xT with 24 binary inputs and 32 binary outputs, hardware version .../FF

Connection diagram, ANSI

Fig. 6/85a

Additional setting by jumpers: Separation of common circuit of BO8 to BO12 with jumpers X80, X81, X82. Switching of BO13, BO14, BO15 as NO contact or NC contact with jumpers.

Fig. 6/85

Housing 1/2 x 19", basic version 7SA522x-xA, 7SA522x-xE and 7SA522x-xJ with 8 binary inputs and 16 binary outputs, hardware version .../FF

Connection diagram, ANSI

Fig. 6/86a

Additional setting by jumpers: Separation of common circuit of BO8 to BO12 with jumpers X80, X81, X82. Switching of BO13, BO14, BO15 as NO contact or NC contact with jumpers.

Fig. 6/86

Housing 1/1 x 19", medium version 7SA522x-xC, 7SA522x-xG, 7SA522x-xL, 7SA522x-xN, 7SA522x-xQ and 7SA522x-xS with 16 binary inputs and 24 binary outputs, hardware version .../FF

 High-speed trip outputs in versions 7SA522x-xN, 7SA522x-xQ, 7SA522x-xS.
 Note: For serial interfaces see Figure 6/82.

6

Connection diagram, ANSI

Fig. 6/87a

Additional setting by jumpers: Separation of common circuit of BO8 to BO12 with jumpers X80, X81, X82. Switching of BO13, BO14, BO15 as NO contact or NC contact with jumpers.

 High-speed trip outputs in versions 7SA522x-xP, 7SA522x-xR, 7SA522x-xT.
 Note: For serial interfaces see Figure 6/82.

Fig. 6/87

Housing 1/1 x 19", maximum version 7SA522x-xD, 7SA522x-xH and 7SA522x-xM with 24 binary inputs and 32 binary outputs, hardware version ./FF

6 Distance Protection / 7SA522

Line Differential Protection

Numerical Pilot-Wire Current Differential Protection Relay	7 /3
SIPROTEC 4 7SD61 Differential Protection Relay for Two Line Ends	7 /17
SIPROTEC 4 7SD52/53 Multi-End Differential Protection Relay for Two to Six Line Ends	7/43

CAR !

珊瑚相間

111

4 100

Ē

Page

SIPROTEC 7SD60 Numerical Pilot-Wire Current Differential Protection Relay

Description

The 7SD600 relay is a numerical current differential protection relay, simple to set, operating in conjunction with the remote station via a two pilot-wire link. It is connected to the primary current transformers via an external summation current transformer. The primary field of application of the relay is protection of short overhead lines and cables with two line ends. However, transformers and reactors may be located within the protection zone. Features like inrush restraint, lockout, modern PCM-intertrip facilities, full self-monitoring facilities, local and remote interrogation are integrated in the unit.

Function overview

Differential protection relay for overhead lines and cables

- Current differential protection with external summation current transformer 4AM49 (87L)
- Suitable for use for distances of approx. 12 km max. via two pilot wires (1200 Ω loop resistance)
- Differential protection can be combined with an overcurrent release
- Pilot-wire monitoring function
- Bidirectional remote tripping
- Circuit-breaker intertripping at the remote station
- Seal-in of the TRIP command until manual reset (Lockout function)
- Minimal current transformer requirements due to integrated saturation detector
- Restraint against inrush/undelayed trip for high differential fault currents
- Emergency overcurrent protection

Operational measured values

- Local and remote current
- Differential current
- Restraint current

Monitoring functions

- Hardware
- Firmware
- Spill current supervision

Hardware

- Local operation by means of integrated keyboard
- LCD display for settings and analysis
- Housing
- Flush-mounting housing 1/6 19" 7XP20
- Surface-mounting housing 1/6 19" 7XP20

Communication

- Via personal computer and DIGSI 3
- Via RS232↔RS485 converter
- With modem
- With substation control system via IEC 60870-5-103 protocol
- 2 kV isolated RS485 interface, bus connection possible

Application

The 7SD60 relay is a numerical current differential protection relay, simple to set, and is operated in conjunction with the remote station via a two pilot-wire link.

It is connected to the primary current transformers via an external summation current transformer. The unit operates internally on the summated current taken from the secondary side of the summation current transformer. The link to the remote station is realized by means of a pair of symmetrical pilot wires allowing distances of up to approximately 12 km. Adaptation to the pilot-wire resistance is effected by means of software within the unit. Therefore, matching is not necessary.

The primary field of application of the unit is protection of short overhead lines and cables with two line ends. However, transformers and reactors may be located within the protection zone. The unit can be fitted with inrush restraint in such cases. A differential protection instantaneous tripping stage is also provided in this case. Vector group adaptation is not effected inside the unit and must, if necessary, be effected by means of a matching current transformer.

The 7SD60 can be fitted with a pilot-wire monitoring function. In addition to monitoring the pilot-wire link to the remote station, this also includes bidirectional circuitbreaker intertripping and a remote tripping command.

If the differential protection becomes inactive due to a pilot-wire failure, the relay has an emergency overcurrent function as an option. It includes one definite-time overcurrent stage and can be delayed.

This unit substitutes the 7SD24 steadystate differential protection. However, direct interoperation with the 7SD24 is not possible. On replacement of a 7SD24, its external summation current transformer can be used as the input transformer for the 7SD60.

ANSI (87L, 87T) ΔI for lines/cables, transformers (85) Intertrip, remote trip (86) Lockout function (50) Single-stage, definite-time emergency overcurrent protection

Construction

The compact 7SD60 protection relay contains all the components for:

- Measured-value acquisition and evaluation
- Operation and LCD indications
- Alarm and command contacts
- Input and evaluation of binary signals
- Data transmission via the RS485 bus interface to DIGSI or a substation control system
- Auxiliary voltage supply

The primary current transformers are connected to the 4AM49 summation current transformer. At the rated current value of either 1 A or 5 A, the latter outputs a current of 20 mA which is measured by the 7SD60 unit. The summation current transformer is supplied together with the protection unit, if so ordered.

The unit can be supplied in two different housings. The one for flush mounting in a panel or cubicle has connection terminals at the rear.

The version for panel surface mounting is supplied with terminals accessible from the front. Alternatively, the unit can be supplied with two-tier terminals arranged above and below the unit.

Fig. 7/2 Rear view flush-mountig housing

Protection functions

Mode of operation of the differential protection relay

An external summation current transformer 4AM49, which can be supplied as an accessory either in a 1 A or a 5 A version, allows any secondary currents of the primary current transformers (see Fig. 7/3) to be connected. The standard ratios of the three primary windings of the summation current transformer are IL1:IL2:IL3 = 5:3:4 (IL1:IL3:IL0 = 2:1:3) (see Fig. 7/6). In consequence, the sensitivity of the tripping characteristic for single-phase faults is appreciably higher compared to that for two-phase and three-phase faults. Since the current on such faults is often weak, an amplification factor of 1.7 to 2.8 referred to the symmetrical response value is achieved.

Other sensitivity values can, however, be obtained by altering the connections at the summation CT.

With a symmetrical three-phase current of $1 \times I_N$, the secondary current of the summation current transformer is 20 mA.

The 7SD60 measures and digitalizes the current I_{M1} of the local relay by means of a sensitive current input (see Fig. 7/6). A voltage drop occurs across a fixed-value resistor *R*_b installed in the unit. With a throughflowing load or a through- flowing shortcircuit current, the voltage drop at both ends of the line is approximately equal but of opposite polarity, so that no current flows through the pilot wire. On occurrence of an internal fault, different values are obtained for the voltage drop across R_b at both ends. In consequence, a current I_a flows through the pilot wire, which is measured by means of the current transformer. In conjunction with the pilot- wire resistance (available as a parameter in the unit) and the internal resistor R_a , it is possible to calculate the differential current from the measured current flowing through the pilot wire. As soon as an adjustable value is reached, the protection relay trips the line at both ends.

Matching of the sensitivity of the unit for different values of pilot-wire resistance is effected by the firmware of the unit during parameter setting, so that time-consuming matching of the pilot-wire resistance is unnecessary.

Fig. 7/3 7SD60 line differential protection for operation with two pilot wires

Fig. 7/4

Trip characteristic of differential protection

Trip characteristic of the differential protection relay

The main function of the unit is current comparison protection. The trip characteristic is fixed and takes into account both the linear and the non-linear errors of the current transformers. It is only necessary to set the tripping value $I_{\text{Diff}>}$, although the standard setting is suitable for most applications. It should be parameterized according to the rated current of the line; sensitive setting is possible even when the current transformer rated currents and the line rated currents differ by as much as a factor of 2. Differences in the current transformation ratios at the ends of the line must, however, be compensated for by means of external matching current transformers.

In some cases, this can be realized by the summation current transformer.

Protection functions

Overcurrent release / differential current monitoring

The differential protection function can be combined with an additional overcurrent release. To this end, the criteria "overcurrent" and "differential current" are linked logically so that a TRIP command is given out by the differential function only when a differential current and an overcurrent coexist.

By this means it is often possible to avoid malfunctioning due to pilot-wire shortcircuit or wire-break of a connection between a current transformer and the summation current transformer. For this purpose, the 7SD60 is fitted with an additional differential current monitoring function, which can effectively block the differential protection after a delay of some seconds on reaching of an adjustable value of differential current in conjunction with simultaneous operational current $I_{\rm MI}$ within the load range.

Saturation detector

Improved stability on single-ended saturation of the primary current transformers is ensured by means of an integrated saturation detector. It provides additional stability during external faults. 5 ms are enough time to measure an external fault due to a high restraint and small differential current. Indication is done within the additional restraint area (see Fig. 7/4). If – due to CT saturation – the differential current flows into the trip area, the differential trip is blocked for a certain time. Transient saturation of current transformers caused by decaying DC components in the shortcircuit current can thus be recognized.

As a result, the requirements on the current transformers are reduced so that they are only required to conduct the steadystate through-flowing short-circuit current without saturation.

Pilot-wire link / pilot-wire monitoring

The link to the remote station comprises a symmetrical pair of wires (e.g. telephone lines). The maximum permissible distance between two stations is approximately 12 km. 7XR9513 (20 kV) or 7XR9515 (5 kV) isolation transformers can be employed for potential isolation against interference induced by longitudinal voltages where the pilot wires run parallel to power cables over long distances.

Since the pilot wires form an integral part of the differential protection, these are normally monitored continuously. This function is available as an option. To achieve this, 2 kHz pulses with a defined pulse width ratio are transmitted to the remote relay via the pilot wires. Detection of a fault in the pilot-wire link results in blocking of the differential protection.

Emergency overcurrent protection

If the differential protection becomes inactive due to a pilot-wire failure or an internal or external blocking of the differential function, the relay offers a single-stage, definite-time overcurrent function. It works with the local flowing operational current $I_{\rm MI}$. The pickup value and the delay time are settable via parameters in the device.

Circuit-breaker intertripping / remote tripping

Normally, tripping is effected at both stations as a result of current comparison. Tripping at one end only can occur when an overcurrent release is used or with short-circuit currents only slightly above the tripping value. Circuit-breaker intertripping can be parameterized in the unit with integral pilot-wire monitor, so that definite tripping at both ends of the line is assured.

In addition, it is possible by means of a binary input to output a remote tripping command for both directions. The command transmission time is approximately 80 ms.

Lockout of the TRIP command with manual reset

The TRIP command can be locked-out after tripping. In particular, in the case of transformers within the protection zone, reclosure of the line is normally effected only after the cause of the fault has been ascertained by the user. Manual reset is possible either via the operator panel (with password) or via a binary input. As a result, premature reclosure of the circuit-breaker is prevented. The logic state of the TRIP command remains stored even during failure of the auxiliary supply voltage, so that it is still present on restoration of the auxiliary supply voltage.

Inrush restraint / instantaneous tripping stage

Where transformers or reactors are located within the protection zone, inrush restraint can be supplied as an option. This inrush restraint evaluates the second harmonic of the differential current, which is typical for inrush phenomena. If the second harmonic value of the differential current referred to the fundamental frequency exceeds a preset value, tripping by the differential protection is blocked. In the case of high-current internal faults, whose amplitude exceeds the inrush current peak, tripping can be carried out instantaneously.

Vector group adaptation is not effected inside the unit and must, where necessary, be brought about by means of an external matching transformer scheme.

Feature

Serial data transmission

As standard, the unit is fitted with an RS485 interface. This is suitable for connection to a bus and allows up to 32 devices to be connected via a two-wire serial interface (use of a third core for earth is recommended). A PC is connected via this interface using an RS232↔RS485 converter, thus allowing the DIGSI operator program to be used, by means of which PC-aided planning, parameter setting and evaluation can be performed. By this readout, it is also possible to output the fault recordings stored by the unit on occurrence of faults.

Using an RS485↔820 nm optical converter as an accessory (7XV5650, 7XV5651), it is possible to provide an interference-free and isolated link to a central control system or a remote control system employing DIGSI, thus allowing economically viable configurations to be used, e.g. for remote diagnostics.

The serial interface can also be set to the IEC 60870-5-103 protocol (VDEW - Association of German Utilities - interface), thus allowing the unit to be integrated in a substation control system. However, only 2 messages (ready for operation and the trip signal) and the fault recording are available.

For this reason, it is recommended to use the 7SD610 unit combined with an external communication converter for pilot wires in those cases in which integration in the substation control system is a prime consideration.

Bus communication via RS485 interface For convenient wiring of RS485 bus, use bus cable system 7XV5103 (see part 13 of this catalog).

PWM Pilot-wire monitoring

Fig. 7/7 Protection configuration with main (7SD60) and backup overcurrent (7SJ60) protection

Fig. 7/8 Typical circuit for auxiliary voltage supply

General unit data	
Input circuits	
Rated current $I_{ m N}$	20 mA without summation current transformer 1 or 5 A with summation current transformer
Rated frequency <i>f</i> _N	50/60 Hz parameterizable
Thermal overload capability current path Continuous For 10 s For 1 s	$2 \ge I_{\rm N}$ $30 \ge I_{\rm N}$ $100 \ge I_{\rm N}$
Auxiliary voltage	
Auxiliary voltage via integrated DC/DC converter	
Rated auxiliary DC voltage/ permissible variations	24/48 V DC /19 to 58 V DC 60/110/125 V DC /48 to 150 V DC 220/250 V DC /176 to 300 V DC
Superimposed AC voltage V _{aux} Peak-to-peak	\leq 12 % at rated voltage \leq 6 % at limits of admissible voltage
Power consumption Quiescent Energized	Approx. 2 W Approx. 4 W
Bridging time during failure/ short-circuit of auxiliary voltage	$\geq 50 \text{ ms (at } V_{aux} \geq 100 \text{ V AC/DC})$ $\geq 20 \text{ ms (at } V_{aux} \geq 24 \text{ V DC})$
Rated auxiliary voltage AC V _{aux} / permissible variations	115 V AC / 88 to 133 V AC
Command contacts	
Number of relays	2 (marshallable)
Contacts per relay	2 NO or 1 NO
Switching capacity Make Break	1000 W/VA 30 W/VA
Switching voltage	250 V
Permissible current Continuous For 0.5 s	5 A 30 A
Signal contacts	
Number of relays	3 (2 marshallable)
Contacts per relay	1 CO
Switching capacity Make Break	1000 W/VA 30 W/VA
Switching voltage	250 V AC/DC
Permissible current	5 A

binary inputs	
Number	3 (marshallable)
Operating voltage	24 to 250 V DC
Current consumption, energized	Approx. 2.5 mA independent of operating voltage
Pick-up threshold reconnectable Rated aux. voltages 24/48/60 V DC V _{pick-up} Vdrop-off	By solder bridges ≥ 17 V DC < 8 V DC
Rated aux. voltages 110/125/220/250 V DC V _{pick-up} V _{drop-off}	≥ 74 V DC < 45 V DC
Unit design	
Housing	7XP20
Dimensions	For dimensions, see dimension drawings, part 15
Weight With housing for surface mounting With housing for flush mounting/cubicle mounting Degree of protection acc. to EN 60529 Housing	Approx. 4.5 kg Approx. 4 kg IP 51
Terminals	IP 21
Serial interface (Isolated)	
Standard	RS485
Test voltage	2.8 kV DC for 1 min
Connection	Via wire to housing terminals, 2 data transmission lines, 1 earthing cable for connection to a RS485↔RS232 converter, cables ha to be shielded, screen has to be earthed Setting at supply: 9600 bau
	0 11 /

Electrical tests		High-frequency test	2.5 kV (peak, alternating polarity)
Specification		Document 17C (SEC) 102	100 kHz, 1 MHz, 10 and 50 MHz, decaying oscillation: $R_{\rm i} = 50 \ \Omega$
Standards	IEC 60255-5 ANSI/IEEE C37.90.0	FMC tests for interference emission:	type tests
nsulation tests		Standard	FN 50081- (generic standard)
Voltage test (routine test) All circuits except DC voltage supply and RS485 Only DC voltage supply and	2 kV (r.m.s.), 50 Hz 2.8 kV DC	Conducted interference voltage on lines, auxiliary voltage only, EN 55022, VDE 0878 Part 22, CISPR 22, limit value, limit class B	150 kHz to 30 MHz
RS485 mpulse voltage test (type test) All circuits, class III	5 kV (peak), 1.2/50 μs, 0.5 J; 3 positive and 3 negative impulses at intervals of 5 s	Interference field strength EN 55011, VDE 0875 Part 11, IEC CISPR 11, limit value, limit class A	30 to 1000 MHz
Fest crosswise:		Mechanical dynamic tests	
Measurement circuits, pilot		Vibration, shock stress and seismic	vibration
wire connections, power sup-		During operation	
(no tests crosswise over open		Standards	IEC 60255-21; IEC 60068-2
contacts, RS458 interface ter-		Vibration	Sinusoidal
minals)		IEC 60255-21-1, class I	10 to 60 Hz; \pm 0.035 mm amplitude;
EMC tests for noise immunity; type te	255	IEC 60068-2-6	60 to 150 Hz; 0.5 g acceleration;
Standards	IEC 60255-6; IEC 60255-22 (international product standard) EN 50082-2 (generic standard) VDE 0435, Part 303 (German product standard)	Shock IEC 60255-21-2, class I	sweep rate 1 octave/min; 20 cycles in 3 orthogonal axes Half-sine 5 g acceleration, duration 11 ms, 3 shocks in each direction of 3
High-frequency test EC 60255-22-1, VDE 0435 Part 303: class III	2.5 kV (peak); 1 MHz; $\tau = 15 \ \mu s$; 400 surges; duration 2 s	Seismic vibration	orthogonal axes Sinusoidal
Electrostatic discharge EC 60255-22-2, EN 61000-4-2; class III	4/6 kV contact discharge; 8 kV air discharge; both polarities; 150 pF; <i>R</i> _i = 330 Ω	IEC 600255-21-3, class I IEC 60068-2-6	1 to 8 Hz; ± 3.5 mm amplitude (horizontal axis) 1 to 8 Hz; ± 1.5 mm amplitude (vertical axis)
rradiation with RF field, non-modulated EC 60255-22-3 class III	10 V/m 27 to 500 MHz		8 to 35 Hz; 1 g acceleration (horizontal axis) 8 to 35 Hz; 0.5 g acceleration (vertical axis)
rradiation with RF field, amplitude-modulated EC 61000-4-3; class III	10 V/m 80 to 1000 MHz; AM 80 %; 1 kHz	During transport	Sweep rate 1 octave/min 1 cycle in 3 orthogonal axes
rradiation with RF field,	10 V/m, 900 MHz; repetition rate	Standards	IEC 60255 21, IEC 60068 2
pulse-modulated EC 61000-4-3/ENV 50204; class III	200 Hz, duty cycle 50 %	Vibration IEC 60255-21-1, class II	Sinusoidal 5 Hz to 8 Hz: ±7.5 mm amplitude
² ast transients/bursts EC 60255-22-3, IEC 61000-4-4, :lass IV	2 kV; 5/50 ns; 5 kHz; burst length = 15 ms; repetition rate 300 ms; both polar- ities; $R_i = 50 \Omega$; duration 1 min	IEC 60068-2-6	8 Hz to 150 Hz: 2 g acceleration Sweep rate 1 octave/min 20 cycles in 3 orthogonal axes
Line-conducted RF umplitude-modulated EC 61000-4-6, class III	10 V; 150 kHz to 80 MHz; AM 80 %; 1 kHz	Shock IEC 60255-21-2, class I	Half-sine Acceleration 15 g, duration 11 ms, 3 shocks
Power frequency magnetic field EC 61000-4-8; class IV; EN 60255-6	30 A/m; 50 Hz, continuous 300 A/m for 3 s; 50 Hz; 0.5 mT, 50 Hz	Continuous shock	thogonal axes Half-sine
Oscillatory surge withstand capabil- ty ANSI/IEEE C37.90.1 (common node)	2.5 to 3 kV (peak), 1 MHz to 1.5 MHz decaying oscillation; 50 shots per s; duration 2 s; $R_i = 150 \Omega$ to 200 Ω	IEC 60255-21-2, class I IEC 60068-2-29	Acceleration 10 g, duration 16 ms, 1000 shocks in each direction of 3 orthogonal axes
Fast transient surge withstand capa- bility ANSI/IEEE C37.90.1 (common node)	4 to 5 kV; 10/150 ns; 50 shots per s both polarities; duration 2 s; $R_i = 80 \Omega$		
Radiated electromagnetic interfer- ence ANSI/IEEE C37.90.2	10 to 20 V/m; 25 to 1000 MHz; amplitude and pulse-modulated		

Climatic stress test

Temperatures		in
Standards	EN 60255-6, IEC 60255-6 DIN VDE 0435 Part 303	
Recommended temperature	-5 to +55 °C (>55 °C/131 °F decreased display contrast)	
Limit temperature During service During storage During transport (Storage and transport with standard works packing!)	-20 to +70 °C - 4 to +158 °F -25 to +55 °C -13 to +131 °F -25 to +70 °C -13 to +158 °F	Er Se
Humidity		
It is recommended to arrange the units in such a way that they are not exposed to direct sunlight or pro- nounced temperature changes that could cause condensation	Mean value per year \leq 75 % relative humidity, on 30 days a year up to 95 % relative humidity, condensation not permissible!	Re N
Functions		
Functions		
Note	All current values refer to the symmetrical current using standard connection	T
Setting ranges Current threshold <i>I</i> ₁ (release by local station current) Differential current Delay time <i>t</i>	<i>I</i> / <i>I</i> _{N Line} : 0 to 1.5 (step 0.01) <i>I</i> / <i>I</i> _{N Line} : 0.5 to 2.5 (step 0.01) 0 to 60 s (step 0.01 s)	In
Restraint by 2 nd harmonic (see Fig. 7/4) 2f _N /f _N Reset ratio	10 to 80 % Approx. $0.7 - \text{drop-off ratio}$ $(I_{\text{Restraint}} = 0)$	Lo
Inherent delays TRIP time for two-end supply at 4 x set value	Approx. 20 to 28 ms without restraint by 2 nd harmonic Approx. 32 to 42 ms with restraint by 2 nd harmonic	A a O <u>:</u>
Drop-off time	Approx. 35 ms	
Tolerances at preset values under reference conditions Local station current threshold Differential current	\pm 3 % of setpoint, min. 0.02 x $I_{\rm N}$ \pm 5 % of setpoint, min. 0.02 x $I_{\rm N}$	Fa
Influence parameters Auxiliary supply voltage $0.8 \le V = (V = x \le x \le 1.15)$	≤ 1 %	Ti
Temperature in range $0 ^{\circ}\text{C} \le \Theta_{\text{amb}} \le 40 ^{\circ}\text{C}$ Frequency in range $0.9 \le f/f_{\text{N}} \le 1.1$	≤ 1 %/10 K ≤ 4 %	Fa
Pilot wires Number	2 Symmetric telephone pairs are recom- mended with loop resistance 73 Ω/km and capacitance 60 nF/km	
Core-to-core asymmetry at 800 Hz	Max. 10 ⁻³	
Maximum loop resistance Permissible induced longitudinal voltages On direct connection of the	1200 Ω \leq 1.2 kV however may 60 % of the	Ci
pilot wires For connection via isolating transformer	test voltage of the pilot wires $\geq 1.2 \text{ kV}$, however, max. 60 % of the test voltage of the pilot wires and max. 60 % of the test voltage of the isolat-	

ing transformers

Pilot-wire monitoring and intertripping (optional)	2000 Hz, pulse code modulation
	2000 Hz, pulse-code modulation
In harmst delegations of	1 to oo s (step 1 s)
intertripping	Approx. 65 ms
Extension of the intertripping signal	0 to 5 s (step 0.01 s)
Emergency overcurrent protection	
Setting ranges Overcurrent pickup value I _{M1} / I _{Nline} Delay time	0.1 to 15 (step 0.1) 0.0 to 60 s (step 0.01 s)
Remote trip	
Note	Tripping of the remote end circuit-breaker for units with pilot-wire monitoring only
Setting ranges Prolongation time for transmission to remote station Delay time for reception from the remote station Prolongation time for reception from the remote station	0 to 60 s (step 0.01 s) 0 to 60 s (step 0.01 s) 0 to 60 s (step 0.01 s)
Tolerances Delay time/release delay	1 % and 10 ms respectively
Inherent delay Transmission time without delay	Approx. 80 ms
Lockout function	
Lockout seal-in of trip command	For differential protection and remote trip until reset
Lockout reset	By means of binary input and/or local operator panel/DIGSI
Additional functions	

perational measured values	
Operational currents	I ₁ , I ₂ , I _{Diff} , I _{restraint}
Measurement range	0 to 240 % <i>I</i> _N
Tolerance (I_1)	3 % of rated value or of measured value
ault event recording	Storage of the events relating to the last 8 faults
ime-tagging	
Resolution for operational events	1 s
for fault events	1 ms
ault recording (max. 8 faults) Storage time (from response or trip command) Maximum length per recording T_{max} Pre-trigger time T_{pre}	Total of 5 s max., pre-trigger and post-fault time settable 0.30 to 5.00 s (step 0.01 s) 0.05 to 0.50 s (step 0.01 s)
Post-fault time T_{post}	0.05 to 0.50 s (step 0.01 s)
Time resolution at 50 Hz Time resolution at 60 Hz	1 instantaneous value per 1.66 ms 1 instantaneous value per 1.38 ms
ircuit-breaker test	Using test circuit

4AM4930 summation current transformer

Power consumption in the circuit with standard connection L1-L3-E (Fig. 7/6) referred to the through-flowing rated current (7SD600 unit in operation).

		in phase (approx. VA)		
$I_{\rm N}$		L1	L2	L3
1 A	Single-phase	2.2	1.3	1.7
	Symmetrical three-phase	0.6	0.2	0.35
5 A	Single-phase	3.5	1.5	2.2
	Symmetrical three-phase	0.7	0.2	0.5

	Connections	4AM4930-7DB	4AM4930-6DB
CT rated current		$I_{\rm N} = 1 {\rm A}$	$I_{\rm N} = 5 \text{ A}$
Number of turns Primary windings	A to B C to D E to F G to H	5 10 15 30	1 2 3 6
	I to K K to L L to M	30 30 60	6 6 12
Secondary windings	Y to Z	1736	1736
Thermal rating Continuous cur- rent in Amperes	A to B C to D E to F G to H I to K K to L L to M Y to Z	4.5 4.5 4.5 4.5 1.2 1.2 1.2 0.2	20 20 20 6.5 6.5 6.5 0.2
Secondary rated cur- rent with standard con- nection (see Fig. 7/6) and symmetrical 3-phase current	Y to Z	20 mA	20 mA
Requirements for the current transformers (CT)	$K'ssc \ge \frac{I_{scc \max(ext.})}{I_{pn}}$ and:	<u>fault)</u>	
	$\frac{3}{4} \leq \frac{(\mathrm{K}_{\mathrm{ssc}} \cdot I_{\mathrm{pn}})_{\mathrm{end}}}{(\mathrm{K}'_{\mathrm{ssc}} \cdot I_{\mathrm{pn}})_{\mathrm{end}}}$	$\frac{d_1}{d_2} \leq \frac{4}{3}$	
	$K'_{ssc1} = effectivecurrentK'_{ssc2} = effectivecurrentI_{sccmax} = maximeI_{pn} = CT rations = CT rational constraints of the second sec$	ve symmetrical sh it factor end 1 ve symmetrical sh it factor end 2 ium symmetrical sh red primary curre	oort-circuit oort-circuit oort-circuit curren nt
A V			

SA2369-agpen.eps

CE conformity

This product is in conformity with the Directives of the European Communities on the harmonization of the laws of the Member States relating to electromagnetic compatibility (EMC Council Directive 89/336/EEC) and electrical equipment designed for use within certain voltage limits (Council Directive 73/23/EEC).

This unit conforms to the international standard IEC 60255, and the German standard DIN 57435/Part 303 (corresponding to VDE 0435/Part 303).

Further applicable standards: ANSI/IEEE C37.90.0 and C37.90.1.

This conformity is the result of a test that was performed by Siemens AG in accordance with Article 10 of the Council Directive complying with the generic standards EN 50081-2 and EN 50082-2 for the EMC Directive and standard EN 60255-6 for the "low-voltage Directive".

G

Μ

Selection and ordering data

Description	Order No.
7SD60 numerical pilot-wire current comparison protection relay	7SD600□-□□A□0-□DA
Rated current; rated frequency	
20 mA, 50/60 Hz; without external summation current transformer	0
1 A, 50/60 Hz; with external summation CT 4AM4930-7DB00-0AN2	1
5 A, 50/60 Hz; with external summation CT 4AM4930-6DB00-0AN2	5
Rated auxiliary voltage	
24, 48 V DC	2
60, 110, 125 V DC	4
220, 250 V DC, 115 V AC, 50/60 Hz	5
Unit design	
For panel surface mounting with terminals at the side	В
with terminals on top and bottom	D
For panel flush mounting or cubicle mounting	E
Operating language	
English – alternatively either German or Spanish can be selected	0
Scope of functions	
Differential protection	0
Differential protection, inrush restraint	1
Differential protection, pilot-wire monitoring, remote trip	2
Differential protection, pilot-wire monitoring, remote trip, inrush restraint	3

Accessories

DIGSI 4

Software for configuration and operation of Siemens protection units running under MS Windows (Windows 2000 or XP Professional) device templates, Comtrade Viewer, electronic manual included as well as "Getting started" manual on paper, connecting cables (copper)	
Basis	
Full version with license for 10 computers, on CD-ROM	
(authorization by serial number)	7XS5400-0AA00
Professional	
DIGSI 4 Basis and additionally SIGRA (fault record analysis), CFC Editor (logic editor), Display Editor (editor for default	
and control displays) and DIGSI 4 Remote (remote operation)	7XS5402-0AA00
SIGRA 4 (generally contained in DIGSI Professional, but can be ordered additionally) Software for graphic visualization, analysis and evaluation of fault records. Can also be used for fault records of devices of other manufacturers (Comtrade format). Running under MS Windows (Windows 2000 and XP Professional). Incl. templates, electronic manual with license for 10 PCs. Authorization by serial number. On CD-ROM.	7XS5410-0AA00
Connecting cable	
Cable between PC/notebook (9-pin connector)	
and protection unit (9-pin connector)	
(contained in DIGSI 4, but can be ordered additionally)	7XV5100-4

Accessories

Description	Order No.
Converter R232 (V.24) - RS485*	
With connecting cable 1 m, PC adapter,	
with plug-in power supply unit 230 V AC	<i>7XV5700-0</i> □□00 ¹⁾
With plug-in power supply unit 110 V AC	<i>7XV5700-1</i> □0 <i>0</i> ¹⁾
Converter RS485-FO	
Rated auxiliary voltage 24 to 250 V DC and 250 V AC	
Single optical interface	7XV5650-0BA00
Double optical interface (cascadable)	7XV5651-0BA00
Summation current transformer	
1 A, 50/60 Hz, for 7SD600	4AM4930-7DB00-0AN2
5 A, 50/60 Hz, for 7SD600	4AM4930-6DB00-0AN2
Isolating transformer	
Up to 20 kV	7XR9513
Up to 5 kV	7XR9515
Manual for 7SD60	
English	E50417-G1176-C069-A3

 Possible versions see part 13.
 * RS485 bus system up to 115 kbaud RS485 bus cable and adaptor 7XV5103-□AA□□; see part 13.

Fig. 7/9 Connection diagram of the 7SD60 current differential protection

7 Line Differential Protection / 7SD60

SIPROTEC 4 7SD61 Differential Protection Relay for Two Line Ends

Description

The 7SD610 relay is a differential protection relay suitable for all types of applications and incorporating all those functions required for differential protection of lines, cables and transformers. Transformers and compensation coils within the differential protection zone are protected by means of integrated functions, which were previously to be found only in transformer differential protection. It is also well-suited for complex applications such as series and parallel compensation of lines and cables.

It is designed to provide differential and directional back-up protection for all voltage levels and types of networks. The relay features high speed and phase-selective shortcircuit measurement. The unit is thus suitable for single-phase and three-phase fault clearance. Digital data communication for differential current measurement is effected via fiberoptic cables, networks or pilot wires connections, so that the line ends can be quite far apart. The serial protection data interface (R2R interface) of the relay can flexibly be adapted to the requirements of all existing communication media. If the communication method is changed, flexible retrofitting of communication modules to the existing configuration is possible.

Apart from the main protection function, i.e. the differential protection, the 7SD610 has a full range of configurable emergency and / or back-up protection functions such as phase and earth overcurrent protection with directional elements if voltage transformers are connected. Overload, underand over-voltage/frequency and breakerfailure protection round off the functional scope of the 7SD610.

Function overview

Protection functions

- Differential protection for universal use with power lines and cables on all voltage levels with phase-segregated measurement (87L)
- Two line ends capability
- Suitable for transformers in protected zones (87T)
- Restricted earth-fault protection (87N) if a transformer is within the protection zone
- Well-suited for serial compensated lines
- Two independent differential stages: one stage for sensitive measuring for highresistance faults and one stage for highcurrent faults and fast fault clearance
- Breaker-failure protection (50BF)
- Phase and earth overcurrent protection with directional element (50, 50N, 51, 51N, 67, 67N)
- Phase-selective intertripping (85)
- Overload protection (49)
- Over/undervoltage protection (59/27)
- Over/underfrequency protection (81O/U)
- Auto-reclosure single/three-pole (79)

Control functions

• Command and inputs for ctrl. of CB and disconnectors (isolators)

Monitoring functions

- Self-supervision of the relay
- Trip circuit supervision (74TC)
- 8 oscillographic fault records
- CT-secondary current supervision
- Event logging / fault logging
- Switching statistics

Front design

- User-friendly local operation
- PC front port for convenient relay setting
- Function keys and 8 LEDs f. local alarm

Communication interfaces

- 1 serial protection data (R2R) interface
- Front interface for PC connection
- System interface
 - IEC 61850 Ethernet
 - IEC 60870-5-103 protocol
 - PROFIBUS-DP, DNP 3.0 and MODBUS
- Service / modem interface (rear)
- Time synchronization via IRIG-B, DCF77 or system interface

Features

- Browser-based commissioning tool
- Direct connection to digital communication networks

Application

The 7SD610 relay is a differential protection relay suitable for all types of applications and incorporating all those functions required for differential protection of lines, cables and transformers.

Transformers and compensation coils within the differential protection zone are protected by means of integrated functions, which were previously to be found only in transformer differential protection. It is also well-suited for complex applications such as series and parallel compensation of lines and cables.

It is designed to provide protection for all voltage levels and types of networks; two line ends may lie within the protection zone. The relay features very high-speed and phase-selective short-circuit measurement. The unit is thus suitable for single and three-phase fault clearance. The necessary restraint current for secure operation is calculated from the current transformer data by the differential protection unit itself.

Digital data communication for differential current measurement is effected via fiberoptic cables, digital communication networks or pilot wires, so that the line ends can be quite far apart. Thanks to special product characteristics, the relay is particularly suitable for use in conjunction with digital communication networks. The units measure the delay time in the communication network and adaptively match their measurements accordingly. The units can be operated through pilot wires or twisted telephone pairs at typical distances of 8 km by means of special converters.

The serial communication interfaces for data transmission between the ends are replaceable by virtue of plug-in modules and can easily be adapted to multi-mode and mono-mode fiber-optic cables and to leased lines within the communication networks. Secure, selective and sensitive protection of two-end lines can now be provided by means of these relays.

ANSI	
(87L)	ΔI for lines/cables
(87T)	ΔI for lines / cables with transformers
(87N)	Restricted earth-fault protection
85	Phase-selective intertrip, remote trip
86	Lockout function
50 50N 51 51N 67 67N	Three-stage overcurrent protection with directional elements
(50HS)	Instantaneous high-current tripping (switch-onto-fault)
79	Single or three-pole auto-reclosure with new adaptive technology
49	Overload protection
(50BF)	Breaker failure protection
5927	Over/undervoltage protection
(810/U)	Over/underfrequency protection
(74TC)	Trip circuit supervision

Fig. 7/11

Application

Typical applications employing fiberoptic cables or communication networks

Four applications are shown in Fig. 7/12. The 7SD610 differential protection relay is connected to the current transformers and to the voltage transformers at one end of the cable, although only the currents are required for the differential protection function. The voltage connection improves, among other things, the frequency measurement and allows the measured values and the fault records to be extended. Direct connection to the other units is effected via mono-mode fiber-optic cables and is thus immune to interference.

Five different modules are available. In the case of direct connection via fiber-optic cables, data communication is effected at 512 kbit/s and the command time of the protection unit is reduced to 15 ms. Parallel compensation (for the load currents) is provided within the protection zone of the cable. By means of the integrated inrush restraint, the differential protection relay can tolerate the surge on switching-on of the cable and the compensation reactors, and thus allows sensitive settings to be used under load conditions.

7SD610 offers many features to reliably and safely handle data exchange via communication networks.

Depending on the bandwidth available a communication converter for G703-64 kbit/s or X21-64/128/512 kbit/s can be selected. For higher communication speed a communication converter with G703-E1 (2,048 kbit/s) or G703-T1 (1,554 kbit/s) is available. Furthermore the 7SD610 supports the IEEE C37.94 interface with 1/2/4 and 8 timeslots.

The connection to the communication converter is effected via a cost-effective 820 nm interface with multi-mode fiber. This communication converter converts the optical input to electrical signals in accordance to the specified telecommunication interface.

The fourth example shows the relays being connected via a twisted pilot pair. Data exchange and transmission is effected via pilot wires of a typical length of 15 km. Here a transformer is in the protected zone. In this application, 7SD610 is set like a transformer differential relay. Vector group matching and inrush restraint is provided by the relay.

Typical applications

Construction

The 7SD610 is available in a housing width of 1/3, referred to a 19" module frame system. The height is a uniform 245 mm for flush-mounting housings and 266 mm for surface-mounting housings.

All cables can be connected with or without cable ring lugs. Plug-in terminals are available as an option, it is thus possible to employ prefabricated cable harnesses. In the case of surface mounting on a panel, the connection terminals are located above and below in the form of screw-type terminals. The communication interfaces are located on the same sides of the housing. For dimensions, please refer to "Dimension drawings".

Fig. 7/13

Protection functions

Differential protection (ANSI 87L, 87T, 87N)

The differential protection function has the following features:

- Measurements are performed separately for each phase; thus the trip sensitivity is independent of the fault type.
- An adaptive measurement method with high sensitivity for differential fault currents below the rated current offers the detection of highly resistive faults. This trip element uses special filters, which offer high security even with high level DC components in the short-circuit current. The trip time of this stage is about 35 ms, the pickup value is about 10 % of the rated current.
- A high-set differential trip stage which clears differential fault currents higher than the rated current within 15 ms offers fast tripping time and high-speed fault clearance time. A high-speed charging comparison method is employed for this function.
- When a long line or cable is switched on at one end, transient peaks of the charge current load the line. To avoid a higher setting of the sensitive differential trip stage, this setpoint may be increased for a settable time. This offers greater sensitivity under normal load conditions.
- A special feature of the unit is parameterization of the current transformer data. The unit automatically calculates the necessary restraint current by means of the previously entered current transformer error. The unit thus adaptively matches the working point on the tripping characteristic so that it is no longer necessary for the user to enter characteristic settings.
- Different current-transformer ratios may be employed at the ends of the line. A mismatch of 1:8 is permissible.
- Differential protection tripping can be guarded with overcurrent pickup. In this case, pickup of the protection relay is initiated only on simultaneous presence of differential current and overcurrent.
- Easy to set tripping characteristic. Because the relay works adaptively, only the setpoint *I*_{Diff}> (sensitive stage) and *I*_{Diff}>> (high-set current differential stage) must be set according to the charge current of the line/cable.

- Differential and restraint current are monitored continuously during normal operation and are displayed as operational measured values.
- High stability during external faults even with different current transformers saturation level. For an external fault, only
 5 ms of saturation-free time are necessary to guarantee the stability of the differential protection.
- Single-phase short-circuits within the protection zone can be cleared using a time delay, whereas multi-phase faults are cleared instantaneously. Because of this function, the unit is optimally suited for applications in inductively compensated networks, where differential current can occur as a result of charge transfer phenomena on occurrence of a single-phase earth fault within the protection zone, thus resulting in undesired tripping by the differential protection relay. Undesired tripping of the differential protection can be suppressed by making use of the provision for introduction of a time delay on occurrence of single-phase faults.
- With transformers or compensation coils in the protection zone, the sensitive response threshold *I*_{Diff}> can be blocked by an inrush detection function. Like in transformer differential protection, it works with the second harmonic of the measured current compared with the fundamental component. Blocking is cancelled when an adjustable threshold value of the short-circuit current is reached, so that very high current faults are switched off instantaneously.
- In the case of transformers within the protection zone, vector group adaptation and matching of different current transformer ratios is carried out within the unit. The interference zero current, which flows through the earthed winding, is eliminated from the differential current measurement. The 7SD610 thus behaves like a transformer differential relay whose ends, however, can be quite far apart.
- A more sensitive protection for transformers within the protection zone is given by measurement of the star-point current on an earthed winding. Therefore the *I*_E current measurement input has to be used.

Protection functions

If the sum of the phase currents of a winding is compared with the measured starpoint current, a sensitive earth-current differential protection (REF) can be implemented. This function is substantially more sensitive than the differential protection during faults to earth in a winding, detecting fault currents as small as 10 % of the transformer rated current.

<u>Characteristics of differential protection</u> <u>communciation through the remote relay</u> <u>interfaces</u>

The 7SD610 is ideally adapted for application in communication networks.

The data required for measurement of differential currents and numerous other variables are exchanged between the protection units in the form of synchronous serial telegrams employing the full duplex mode. The telegrams are secured using 32-bit checksums so that transmission errors in a communication network are detected immediately. Moreover, each telegram carries a time stamp accurate to a microsecond, thus allowing measurement and monitoring of the continuous transmission delay times.

- Data communication is immune to electromagnetic interference, since fiber-optic cables are employed in the critical region, e.g. in the relay house or relay room.
- Monitoring of each individual incoming telegram and of overall communication between the units, no need of supplementary equipment. The check sum (correctness of the telegram contents), the address of the neighboring unit and the transmission delay time of the telegram are monitored.
- Unambiguous identification of each unit is ensured by assignment of a settable communication address within a differential protection topology. Only those units mutually known to each other can cooperate. Incorrect interconnection of the communication links results in blocking of the protection system.
- Detection of telegrams, which are reflected back to the transmitting unit within the communication network.
- Detection of path switching in a communication network. Automatic restraint of the protection function until measurement of the parameters of the new communication link has been completed.

- Continuous measurement of the transmission delay time to the remote line end. Taking into account the delay time in differential current measurement and compensation thereof, including monitoring of a settable maximum permissible delay time of 30 ms.
- Generation of alarm signals on disturbed communication links. Statistical values for the percentage availability of the communication links per minute and per hour are available as operational measured values.
- With a GPS high-precision 1-s pulse from a GPS receiver the relays can be syncronized with an absolute, exact time at each line end. In this way, the delay in the receive and transmit path can be measured exactly. With this optional feature the relay can used in communication networks where this delay times are quite different.

Phase-selective intertrip and remote trip/indications

Normally the differential current is calculated for each line end nearly at the same time. This leads to fast and uniform tripping times. Under weak infeed conditions, especially when the differential function is combined with an overcurrent pickup, a phase-selective intertrip offers a tripping of both line ends.

- 7SD610 has 4 intertrip signals which are transmitted in high-speed mode (20 ms) to the other terminals. These intertrip signals can also be initiated and transmitted by an external relay via binary inputs. In cases where these signals are not employed for breaker intertripping, other alternative information can be rapidly transmitted to the remote end of the line.
- In addition, four high-speed remote commands are available, which can be introduced either via a binary input or by means of an internal event and then rapidly communicated to the other end.
- Provided that the circuit-breaker auxiliary contacts are wired to binary inputs at the line ends, the switching status of the circuit-breakers is indicated and evaluated at the remote ends of the line. Otherwise the switching status is derived from the measured current.

Fig. 7/14 Tripping characteristic

<u>Possible modes of operation</u> of the differential protection section

Special modes of operation such as the "Commissioning mode" and "Test operation" are advantageous for commissioning and servicing the units.

- In general, an alarm indication is generated on interruption of the communication links and an attempt is made to re-establish the communication link. The units operate in the emergency mode, provided that these have been parameterized.
- The complete configuration can also be used in a testing mode. The local end is in an operating mode, which, for example, allows the pickup values to be tested. The current values received from the remote end of the line are set to zero, so as to achieve defined test conditions. The remote-end unit ignores the differential currents, which occur as a result of testing, and blocks differential protection and breaker intertripping. It may optionally operate in the backup protection mode.
- Differential protection is activated in the commissioning mode. However, test currents injected at one end of the line and which generate a differential current do not lead to output of a TRIP command by the differential protection or to breaker intertripping. All those indications that would actually occur in conjunction with a genuine short-circuit are generated and displayed. TRIP commands can be issued by the backup protection.

Protection functions

Thermal overload protection (ANSI 49)

A built-in overload protection with a current and thermal alarm stage is provided for thermal protection of cables and transformers.

The trip time characteristics are exponential functions according to IEC 60255-8. The preload is considered in the trip times for overloads.

An adjustable alarm stage can initiate an alarm before tripping is initiated.

Overcurrent protection (ANSI 50, 50N, 51, 51N, 67, 67N)

The 7SD610 provides a three-stage overcurrent protection. Two definite-time stages and one inverse-time stage (IDMT) are available, separately for phase currents and for the earth current. Two operating modes (backup, emergency) are selectable. Two stages e.g. can run in backup mode, whereas the third stage is configured for emergency operation, e.g. during interruption of the protection communication and/or failure of the voltage in the VT secondary circuit. The secondary voltage failure can be detected by the integrated fuse failure monitor or via a binary input from a VT miniature cicuitbreaker (VT m.c.b. trip).

The following ANSI/IEC inverse-time characteristics are available:

- Inverse
- Short inverse
- Long inverse
- Moderately inverse
- Very inverse
- Extremely inverse
- Definite inverse

If VTs are connected, separate stages with directional measurement are available, two definite-time and two inverse-time stages (each for phase and earth). Using the forward pickup indication as a signal to the remote end, a 100 % protection coverage of the line can be operated in parallel to the differential protection.

Instantaneous high-speed switch-onto-fault overcurrent protection (ANSI 50HS)

Instantaneous tripping is possible when energizing a faulty line. On large fault currents, the high-speed switch-onto-fault overcurrent stage can initiate very fast three-pole tripping.

Circuit-breaker closure onto a faulty line is also possible provided that the circuitbreaker auxiliary contacts of the remote end are connected and monitored. If an overcurrent arises on closing of the circuit-breaker at one end of a line (while the other end is energized) the measured current can only be due to a short-circuit. In this case, the energizing line end is tripped instantaneously.

In the case of circuit-breaker closure, the auto-reclosure is blocked at both ends of the line to prevent a further unsuccessful closure onto a short-circuit. If circuit-breaker intertripping to the remote end is activated, intertripping is also blocked.

Auto-reclosure (ANSI 79)

The 7SD610 relay is equipped with an auto-reclose function (AR). The function includes several operating modes:

- 3-pole auto-reclosure for all types of faults; different dead times are available depending the type of fault
- 1-pole auto-reclosure for 1-phase faults, no reclosing for multi-phase faults
- 1-pole auto-reclosure for 1-phase faults and for 2-phase faults without earth, no reclosing for multi-phase faults
- 1-pole auto-reclosure for 1-phase and 3-pole auto-reclosing for multi-phase faults
- 1-pole auto-reclosure for 1-phase faults and 2-phase faults without earth and 3-pole auto-reclosure for other faults
- Multiple-shot auto-reclosure
- Interaction with an external device for auto-reclosure via binary inputs and outputs
- Control of the integrated AR function by external protection
- Adaptive auto-reclosure. Only one line end is closed after the dead time. If the fault persists this line end is switched off. Otherwise the other line ends are closed via a command over the communication links. This avoids stress when heavy fault currents are fed from all line ends again.
- Interaction with an external synchrocheck

Fig. 7/15 Inverse

• Monitoring of the circuit-breaker auxiliary contacts

In addition to the above-mentioned operating modes, several other operating principles can be employed by means of the integrated programmable logic (CFC).

Integration of auto-reclosure in the feeder protection allows evaluation of the line-side voltages. A number of voltage-dependent supplementary functions are thus available:

• DLC

By means of <u>d</u>ead-<u>l</u>ine <u>c</u>heck, reclosure is effected only when the line is deenergized (prevention of asynchronous breaker closure).

• ADT

The <u>a</u>daptive <u>d</u>ead <u>time</u> is employed only if auto-reclosure at the remote station was successful (reduction of stress on equipment).

• RDT

<u>Reduced dead time is employed in conjunction with auto-reclosure where no</u> tele-protection method is employed: When faults within the zone extension, but external to the protected line, are switched off for rapid auto-reclosure (RAR), the RDT function decides on the basis of measurement of the return voltage from the remote station which has not tripped whether or not to reduce the dead time.
Breaker failure protection (ANSI 50BF)

The 7SD610 relay incorporates a two-stage breaker failure protection to detect the failure of tripping command execution, for example, due to a defective circuit-breaker. The current detection logic is phasesegregated and can therefore also be used in single-pole tripping schemes. If the fault current is not interrupted after a settable time delay has expired, a retrip command or a busbar trip command is generated. The breaker failure protection can be initiated by all integrated protection functions as well as by external devices via binary input signals.

Overvoltage protection, undervoltage protection (ANSI 59, 27)

A voltage rise can occur on long lines that are operating at no-load or are only lightly loaded. The 7SD610 contains a number of overvoltage measuring elements. Each measuring element is of two-stage design. The following measuring elements are available:

- Phase-to-earth overvoltage
- Phase-to-phase overvoltage
- Zero-sequence overvoltage The zero-sequence voltage can be connected to the 4th voltage input or be derived from the phase voltages.
- Positive-sequence overvoltage of the local end or calculated for the remote end of the line (compounding).
- Negative-sequence overvoltage

Tripping by the overvoltage measuring elements can be effected either at the local circuit-breaker or at the remote station by means of a transmitted signal.

The 7SD610 is fitted, in addition, with three two-stage undervoltage measuring elements:

- Phase-to-earth undervoltage
- Phase-to-phase undervoltage
- Positive-sequence undervoltage

The undervoltage measuring elements can be blocked by means of a minimum current criterion and by means of binary inputs.

Frequency protection (ANSI 810/U)

Frequency protection can be used for overfrequency and underfrequency protection. Unwanted frequency changes in the network can be detected and the load can be removed at a specified frequency setting. Frequency protection can be used over a wide frequency range (45 to 55, 55 to 65 Hz). There are four elements (selectable as overfrequency or underfrequency) and each element can be delayed separately.

Monitoring and supervision functions

The 7SD610 relay provides comprehensive monitoring functions covering both hardware and software. Furthermore, the measured values are continuously checked for plausibility. Therefore the current and voltage transformers are also included in this monitoring system.

Current transformer / Monitoring functions

A broken wire between the CTs and relay inputs under load may lead to maloperation of a differential relay if the load current exceeds the differential setpoint. The 7SD610 provides fast broken wire supervision which immediatelly blocks all line ends if a broken wire condition is measured by a local relay. This avoids maloperation due to broken wire condition. Only the phase where the broken wire is detected is blocked. The other phases remain under differential operation.

7

Fuse failure monitoring

If any measured voltage is not present due to short-circuit or open circuit in the voltage transformer secondary circuit the distance protection would respond with an unwanted trip due to this loss of voltage. This secondary voltage interruption can be detected by means of the integrated fuse failure monitor. Immediate blocking of distance protection is provided for all types of secondary voltage failures.

Additional measurement supervision functions are

- Symmetry of voltages and currents
- Summation of currents and voltages

Trip circuit supervision (ANSI 74TC)

One or two binary inputs for each circuitbreaker pole can be used for monitoring the circuit-breaker trip coils including the connecting cables. An alarm signal is issued whenever the circuit is interrupted.

Lockout (ANSI 86)

All binary outputs can be stored like LEDs and reset using the LED reset key. The lockout state is also stored in the event of supply voltage failure. Reclosure can only be issued after the lockout state is reset.

Local measured values

The measured values are calculated from the measured current and voltage signals along with the power factor ($\cos \phi$), the frequency, the active and reactive power. Measured values are displayed as primary or secondary values or in percent of the specific line rated current and voltage. The relay uses a 20 bit high-resolution AD converter and the analog inputs are factorycalibrated, so a high accuracy is reached. The following values are available for measured-value processing:

- Currents 3 x I_{Phase}, 3 I₀, I_E, I_{E sensitive}
- Voltages 3 x V_{Phase-Ground, 3 x} V_{Phase-Phase}, 3 V₀, V_{en},
- Symmetrical components *I*₁, *I*₂, *V*₁, *V*₂
- Real power *P* (Watt), reactive power *Q* (Var), apparent power *S* (VA)
- Power factor PF (= $\cos \phi$)
- Frequency f
- Differential and restraint current per phase
- Availability of the data connection to the remote line ends per minute and per hour
- Regarding delay time measuring with the GPS-version the absolute time for transmit and receive path is displayed separately.

Limit value monitoring: Limit values are monitored by means of the CFC. Commands can be derived from these limit value indications.

Measured values at remote line ends

Every two seconds the currents and voltages are freezed at the same time at all line ends and transmitted via the communication link. At a local line end, currents and voltages are thus available with their amount and phases (angle) locally and remotely. This allows checking the whole configuration under load conditions. In addition, the differential and restraint currents are also displayed. Important communication measurements, such as delay time or faulty telegrams per minute/hour are also available as measurements. These measured values can be processed with the help of the CFC logic editor.

Commissioning

Special attention has been paid to commissioning. All binary inputs and outputs can be displayed and activated directly. This can simplify the wiring check significantly for the user. The operational and fault events and the fault records are clearly arranged.

Furthermore, all currents and optional voltages and phases are available via communication link at the local relay and are displayed in the relay, with DIGSI 4 or with the Web Monitor.

The operational and fault events and fault records from all line ends share a common time tagging which allows to compare events registered in the different line ends on a common time base.

WEB Monitor – Internet technology simplifies visualization

In addition to the universal DIGSI 4 operating program, the relay contains a WEB server that can be accessed via a telecommunication link using a browser (e.g. Internet Explorer). The advantage of this solution is to operate the unit with standard software tools and at the same time make use of the Intranet/Internet infrastructure. This program shows the protection topology and comprehensive measurements from local and remote line ends. Local and remote measurements are shown as phasors and the breaker positions of each line end are depicted. It is possible to check the correct connection of the current transformers or the correct vector group of a transformer.

Fig. 7/16

Browser-aided commissioning: Phasor diagram

Fig. 7/17

Browser-aided commissioning: Differential protection tripping characteristic

Stability can be checked by using the operating characteristic as well as the calculated differential and restraint values in the browser windows. Event log and trip log messages are also available. Remote control can be used, if the local front panel cannot be accessed.

Function

Control and automation functions

Control

In addition to the protection functions, the SIPROTEC 4 units also support all control and monitoring functions that are required for operating medium-voltage or highvoltage substations.

The main application is reliable control of switching and other processes.

The status of primary equipment or auxiliary devices can be obtained from auxiliary contacts and communicated via binary inputs. Therefore it is possible to detect and indicate both the OPEN and CLOSED position or a fault or intermediate circuitbreaker or auxiliary contact position.

The switchgear or circuit-breaker can be controlled via:

- integrated operator panel
- binary inputs
- substation control and protection system
- DIGSI 4

Command processing

All the functionality of command processing is offered. This includes the processing of single and double commands with or without feedback, sophisticated monitoring of the control hardware and software, checking of the external process, control actions using functions such as runtime monitoring and automatic command termination after output. Here are some typical applications:

- Single and double commands using 1, 1 plus 1 common or 2 trip contacts
- User-definable bay interlocks
- Operating sequences combining several switching operations such as control of circuit-breakers, disconnectors and earthing switches
- Triggering of switching operations, indications or alarm by combination with existing information

Automation / user-defined logic

With integrated logic, the user can set, via a graphic interface (CFC), specific functions for the automation of switchgear or substation. Functions are activated via function keys, binary input or via communication interface.

Switching authority

Switching authority is determined according to parameters, communication or by key-operated switch (when available).

If a source is set to "LOCAL", only local switching operations are possible. The following sequence of switching authority is laid down: "LOCAL"; DIGSI PC program, "REMOTE"

Every switching operation and change of breaker position is kept in the status indication memory. The switch command source, switching device, cause (i.e. spontaneous change or command) and result of a switching operation are retained.

Assignment of feedback to command

The positions of the circuit-breaker or switching devices and transformer taps are acquired by feedback. These indication inputs are logically assigned to the corresponding command outputs. The unit can therefore distinguish whether the indication change is a consequence of switching operation or whether it is a spontaneous change of state (intermediate position).

Chatter disable

The chatter disable feature evaluates whether, in a configured period of time, the number of status changes of indication input exceeds a specified figure. If exceeded, the indication input is blocked for a certain period, so that the event list will not record excessive operations.

Filter time

All binary indications can be subjected to a filter time (indication suppression).

Indication filtering and delay

Indications can be filtered or delayed.

Filtering serves to suppress brief changes in potential at the indication input. The indication is passed on only if the indication voltage is still present after a set period of time. In the event of indication delay, there is a wait for a preset time. The information is passed on only if the indication voltage is still present after this time.

Indication derivation

A further indication (or a command) can be derived from an existing indication. Group indications can also be formed. The volume of information to the system interface can thus be reduced and restricted to the most important signals.

Transmission lockout

A data transmission lockout can be activated, so as to prevent transfer of information to the control center during work on a circuit bay.

Test operation

During commissioning, all indications can be passed to an automatic control system for test purposes.

Functions

With respect to communication, particular emphasis has been placed on high flexibility, data security and use of customary standards in the field of energy automation. The concept of the communication modules allows interchangeability on the one hand, and, on the other hand, is open for future standards.

Local PC interface

The PC interface provided on the front panel on the unit allows the parameters, status and fault event data to be rapidly accessed by means of the DIGSI 4 operating program. Use of this program is particularly advantageous during testing and commissioning.

Rear-mounted interfaces

The service and system communication interfaces are located at the rear of the unit. In addition, the 7SD610 is provided with a protection interface. The interface complement is variable and retrofitting is possible without any difficulty. These interfaces ensure that the requirements for different communication interfaces (electrical and optical) and protocols can be met.

The interfaces are designed for the following applications:

Service / modem interface

By means of the RS485 interface, it is possible to efficiently operate a number of protection units centrally via DIGSI 4. Remote operation is possible on connection of a modem. This offers the advantage of rapid fault clarification, especially in the case of unmanned power plants.

In the case of the 7SD610, a PC with a standard browser can be connected to the service interface (refer to "Commissioning program").

System interface

This interface is used to carry out communication with a control or protection and control system and supports a variety of communication protocols and interface designs, depending on the module connected.

Commissioning aid via a standard Web browser

In the case of the 7SD610, a PC with a standard browser can be connected to the local PC interface or to the service interface (refer to "Commissioning program"). The relays include a small Web server and sends its HTML pages to the browser via an established dial-up network connection.

Retrofitting: Modules for every type of communication

Communication modules for retrofitting are available for the entire SIPROTEC 4 unit range. These ensure that, where different communication interfaces (electrical or optical) and protocols (IEC 61850 Ethernet, IEC 60870-5-103, PROFIBUS-DP, DNP 3.0, MODBUS, DIGSI, etc.) are required, such demands can be met.

Safe bus architecture

• RS485 bus

With this data transmission via copper conductors, electromagnetic fault influences are largely eliminated by the use of twisted-pair conductor. Upon failure of a unit, the remaining system continues to operate without any disturbances.

• Fiber-optic double ring circuit The fiber-optic double ring circuit is immune to electromagnetic interference. Upon failure of a section between two units, the communication system continues to operate without disturbance.

It is generally impossible to communicate with a unit that has failed. If a unit were to fail, there is no effect on the communication with the rest of the system.

Fig. 7/18

IEC 60870-5-103 star-type RS232 copper conductor connection or fiber-optic connection

Fig. 7/19 Bus structure for station bus with Ethernet and IEC 61850

IEC 61850 Ethernet

The Ethernet-based IEC 61850 protocol is the worldwide standard for protection and control systems used by power supply corporations. Siemens was the first manufacturer to support this standard. By means of this protocol, information can also be exchanged directly between bay units so as to set up simple masterless systems for bay ans system interlocking. Access to the units via the Ethernet bus is also possible with DIGSI.

IEC 60870-5-103

IEC 60870-5-103 is an internationally standardized protocol for the efficient communication in the protected area. IEC 60870-5-103 is supported by a number of protection device manufacturers and is used worldwide.

PROFIBUS-DP

PROFIBUS-DP is an industry-recognized standard for communications and is supported by a number of PLC and protection device manufacturers.

MODBUS RTU

MODBUS RTU is an industry-recognized standard for communications and is supported by a number of PLC and protection device manufacturers.

DNP 3.0

DNP 3.0 (Distributed Network Protocol Version 3) is a messaging-based communication protocol. The SIPROTEC 4 units are fully Level 1 and Level 2 compliant with DNP 3.0. DNP 3.0 is supported by a number of protection device manufacturers.

Fig. 7/20 RS232/RS485 electrical communication module

Fig. 7/21 PROFIBUS communication module, optical double-ring

LSP3.01-0021.tif

Fig. 7/22 820 nm fiber-optic communication module

Fig. 7/23 Fiber-optic Ethernet communication module for IEC 61850 with integrated Ethernet switch

Fig. 7/24 System solution: Communications

System solutions for protection and station control

Together with the SICAM power automation system, SIPROTEC 4 can be used with PROFIBUS-FMS. Over the low-cost electrical RS485 bus, or interference-free via the optical double ring, the units exchange information with the control system.

Units featuring IEC 60870-5-103 interfaces can be connected to SICAM in parallel via the RS485 bus or radially by fiber-optic link. Through this interface, the system is open for the connection of units of other manufacturers (see Fig. 7/18).

Because of the standardized interfaces, SIPROTEC units can also be integrated into systems of other manufacturers or in SIMATIC. Electrical RS485 or optical interfaces are available. The optimum physical data transfer medium can be chosen thanks to opto-electrical converters. Thus, the RS485 bus allows low-cost wiring in the cubicles and an interference-free optical connection to the master can be established.

For IEC 61850, an interoperable system solution is offered with SICAM PAS. Via the 100 Mbits/s Ethernet bus, the units are linked with PAS electrically or optically to the station PC. The interface is standardized, thus also enabling direct connection of units of other manufacturers to the Ethernet bus. With IEC 61850, however, the units can also be used in other manufacturers' systems (see Fig. 7/19).

Via modem and service interface, the protection engineer has access to the protection devices at all times. This permits remote maintenance and diagnosis (cyclic testing).

Parallel to this, local communication is possible, for example, during a major inspection.

Serial protection data interface (R2R interface)

The 7SD610 provides one protection data interface to cover two line end applications.

In addition to the differential protection function, other protection functions can use this interface to increase selectivity and sensitivity as well as covering advanced applications.

• Fast phase-selective teleprotection signaling using the directional stages of the overcurrent protection with POTT or PUTT schemes

- Two terminal line applications can be implemented without additional logic
- Interclose command transfer with the auto-reclosure "Adaptive dead time" (ADT) mode
- 4 remote signals for fast transfer of binary signals
- Flexible utilization of the communication channels by means of the programmable CFC logic

The protection data interfaces have different options to cover new and existing communication infrastructures.

- FO5¹⁾, OMA1²⁾ module: 820 nm fiber-optic interface with clock recovery/ST connectors for direct connection with multi-mode FO cable up to 1.5 km for the connection to a communication converter.
- FO6¹⁾, OMA2²⁾ module: 820 nm fiber-optic interface/ST connectors for direct connection up to 3.5 km with multi-mode FO cable.

New fiber-optic interfaces, series FO1x

- FO17¹): For direct connection up to 24 km³, 1300 nm, for mono-mode fiber 9/125 μm, LC-Duplex connector
- FO18¹: For direct connection up to 60 km³, 1300 nm, for mono-mode fiber 9/125 μm, LC-Duplex connector
- FO19¹): For direct connection up to 100 km³, 1550 nm, for mono-mode fiber 9/125 μm, LC-Duplex connector
- FO30: 820 nm fiber-optic interface/ST connectors for direct connection up to 1.5 km and for connections to a IEEE C37.94 multiplexer interface.

The link to a multiplexed communication network is made by separate communication converters (7XV5662). These have a fiber-optic interface with 820 nm and 2 ST connectors to the protection relay. The link to the communication network is optionally an electrical X21/G703-64 kbit/s or G703-E1/-T1 interface. Furthermore the IEEE C37.94 interface is supported by the FO30 module.

For operation via copper wire communication (pilot wires or twisted telephone pair), a modern communication converter for copper cables is available. This operates with both the two-wire and three-wire copper connections which were used by conventional differential protection systems before. The communication converter for copper cables is designed for 5 kV insulation voltage. An additional 20 kV isolation transformer can extend the field of applications of this technique into ranges with higher insulation voltage requirements. The connection via FO cable to the relay is interference-free. With SIPROTEC 4 and the communication converter for copper cables a digital follow-up technique is available for two-wire protection systems (up to 8 km) and all three-wire protection systems using existing copper communication links.

Different communication converters are listed under "Accessories".

Communication data:

- 32-bit CRC-check according to CCITT and ITU
- Each protection relay possesses a unique relay address
- Continuous communication link supervision: Individual faulty data telegrams do not constitute an immediate danger, if they occur only sporadically. The statistical availability, per minute and hour, of the serial protection data interface can be displayed.
- Supported network interfaces X21/RS422 with 64 or 128 or 512 kbit/s; or G703-64 kbit/s and G703-E1 (2,048 kbit/s) or G703-T1 (1,554 kbit/s) or IEEE C37.94.
- Max. channel delay time 0.1 ms to 30 ms (in steps of 0.1 ms)
- Protocol HDLC

¹⁾ For flush-mounting housing.

²⁾ For surface-mounting housing.

³⁾ For surface-mounting housing the internal FO module OMA1 will be delivered together with an external repeater.

Communication possibilities between relays

Fig. 7/25 Direct optical link up to 1.5 km/3.5 km, 820 nm

Fig. 7/27

Connection to a communication network CC-XG

Fig. 7/29 Connection to a communication network via IEEE C37.94

Fig. 7/26

Direct optical link up to 25/60 km with 1300 nm or up to 100 km with 1550 nm

Fig. 7/28

Connection to a communication network CC-2M

Fig. 7/30 Connection to a pilot wire

Typical connection

Connection to current and voltage transformers

A typical connection is to the phase CT. The residual current at the I_E input is formed by summation of the phase currents. This ensures optimum supervision functions for the current.

Optionally, voltages are measured by means of voltage transformers and are fed to the unit as a phase-to-earth voltage. The zero voltage is derived from the summation voltage by calculation performed in the unit.

As a matter of fact, the 7SD610 unit does not require any voltage transformers for operation of the differential protection.

Alternative current connection

3 phase current transformers with neutral point in the line direction, I_4 connected to a current transformer in the neutral point of a grounded (earthed) transformer for restricted earth-fault protection (REF) or directional ground (earth)-fault protection.

Fig. 7/31 Typical connection to current transformers

Typical connection to current transformers with optional voltage inputs

Fig. 7/33 Connection for transformer with restricted earth-fault protection (REF)

Fig. 7/34 Alternative connection of current transformers for measuring neutral current of a grounded (earthed) power transformer

50 or 60 Hz (selectable)

80 to 125 V (selectable)

1 or 5 A (selectable)

General unit data

Analog inputs Rated frequency Rated current IN Rated voltage V_N

Power consumption	
in CT circuits with $I_{\rm N} = 1$ A	Approx. 0.05 VA
in VT circuits	Approx. 0.1 VA
Thermal overload capacity	IN
in CT circuits (for $I_{\rm N} = 5$ A)	100 A for 1 s
	30 I _N for 10 s
Dynamic (peak value)	$250 I_{\rm N}$ (half sine)
In VT circuits for highly sensitive	
earth-fault protection	300 A for 1 s
	100 A for 10 s
in VT circuits	230 V per phase continuous
Auxiliary voltage	
Rated voltages	24 to 48 V DC
Ranges are settable by	60 to 125 V DC ¹⁾
means of jumpers	and 115 V AC $(50/60 \text{ Hz})^{1)}$
Permissible tolerance	-20 % to +20 %
Superimposed AC voltage	≤ 15 %
(peak-to-peak)	
Power consumption	
Under normal operating conditions	Approx. 8 W
inputs and outputs activated	приох. 10 W
Bridging time during failure of the	
auxiliary voltage	> 50
$V_{aux} \ge 110 V$	\geq 50 ms
Binary inputs	7 (manshallahla)
Number	7 (marshallable)
Pickup threshold	17 or 73 V (selectable)
Functions are freely assignable	
Minimum pickup threshold	
iumpers for each binary input	17 or 73 V DC, bipolar
Maximum permissible voltage	300 V DC
Current consumption, energized	Approx. 1.8 mA
Output relay	
Command / indication relay	
Number	5 (marshallable)
Switching capacity	i alarm contact (not marshallable
Make	1000 W/VA
Break	30 VA
Break (with resistive load)	40 W
Break (with $L/R \le 50 \text{ ms}$)	25 W
Switching voltage	200 V
remissible total current	50 A for 0.5 seconds 5 A continuous

LEDs Number RUN (green) 1 ERROR (red) 1 LED (red), function can be 7 assigned Unit design Housing 7XP20 For dimensions refer to dimension drawings, part 15 Degree of protection acc. to EN 60529 IP 51 Surface-mounting housing Flush-mounting housing IP 51 front IP 50 rear IP 20 with terminal cover put on for the terminals Weight Flush-mounting housing 1/3 x 19" 4 kg Surface-mounting housing 1/3 x 19" 6 kg Serial interfaces **Operating interface 1 for DIGSI 4 or browser** (front of unit) Connection Non-isolated, RS232, front panel, 9-pin subminiature connector (SUB-D) 4800 to 115200 baud, setting as Baud rate supplied: 38400 baud; parity 8E1 Time synchronization (rear of unit DCF77/IRIG-B signal format IRIG-B000) Connection 9-pin subminiature connector (SUB-D) (terminals with surface-mounting housing) Voltage levels 5, 12 or 24 V (optional) 500 V/50 Hz Dielectric test Service interface (op. interface 2) for DIGSI 4/modem/service/browser (rear of unit) Isolated RS232/RS485 9-pin subminiature connector (SUB-D) Dielectric test 500 V/50 Hz Distance for RS232 Max. 15 m Distance for RS485 Max. 1000 m System interface (rear of unit) Refer to ordering code IEC 61850 Ethernet IEC 60870-5-103 PROFIBUS-DP DNP 3.0, MODBUS Isolated RS232/RS485 9-pin subminiature connector (SUB-D) 4800 to 38400 baud Baud rate Dielectric test 500 V/50 Hz Distance for RS232 Max. 15 m Distance for RS485 Max. 1000 m For fiber-optic cable ST connector Optical wavelength $\lambda = 820 \text{ nm}$ Permissible attenuation

Max. 8 dB for 62.5/125 µm fiber Max. 1.5 km

Distance (spanned)

Technical data

System interface, continued

PROFIBUS RS485 Dielectric test Baud rate Distance

PROFIBUS fiber-optic²⁾ Only for flush-mounting housing

For surface-mounting housing Baud rate Optical wavelength Permissible attenuation Distance

Protection data interface (R2R interface)

FO5¹⁾, OMA1²⁾: Fiber-optic interface For multi-mode fiber 62.5/125 µm, with clock recovery for direct connection up to 1.5 km or for connection to a comm. converter, 820 nm FO6¹⁾, OMA2²⁾: Fiber-optic interface for direct connection up to 3.5 km, 820 nm

New fiber-optic interfaces, series FO1

FO30: Fiber-optic interface to support the IEEE C37.94 interface and for direct fiber - optic connection up to 1.5 km FO17¹⁾: for direct connection up to 24 km³⁾, 1300 nm

FO18¹⁾: for direct connection up to 60 km³⁾, 1300 nm

FO19¹): for direct connection up to 100 km³⁾, 1550 nm

Relay communication equipment

External communication converter 7XV5662-0AA00 for communication networks X21/G703-64 kbit/s

External communication converter to interface between the relays, optical 820 nm interface and the X21/RS422/G703-64 kbit/s interface of a communication device

X21/G703, RS422 selectable by jumpers. Baud rate selectable by jumpers

Input: fiber-optic 820 nm with clock recovery

Output: X21 (RS422) electrical interface on communication device

G703-64 kbit/s electrical interface on 64 kbit/s, max. 800 m, screw-type communication device

External communication converter 7XV5662-0AD00 for communication networks with G703-E1 or G703-T1

External communication converter to interface between the relays, optical 820 nm interfac and G703-E1 or G703-T1 interface of a communication network

Inputs: 2 fiber-optic inputs 820 nm, 1 RS232 input

Output: G703.5 G703.6

Electrical interface on communication network 500 V/50 Hz Max. 12 Mbaud 1 km at 93.75 kbd; 100 m at 12 Mbd

ST connector Optical interface with $OLM^{2)}$ Max. 1.5 Mbaud $\lambda = 820 \text{ nm}$ Max. 8 dB for 62.5/125 µm fiber 500 kbit/s 1.6 km; 1500 kbit/s 530 m

ST connectors Permissible fiber attenuation: 8 dB For multi-mode fiber 62.5/125 µm,

ST connectors Permissible fiber attenuation: 16 dB

For multi-mode fiber 62.5/125 µm,

ST connectors Permissible fiber attenuation: 8 dB
For mono-mode fiber 9/125 μ m,
Permissible fiber attenuation: 13 dB
For mono-mode fiber 9/125 µm,
LC-Duplex connector

Permissible fiber attenuation: 29 dB For mono-mode fiber 9/125 µm, LC-Duplex connector Permissible fiber attenuation: 29 dB

Max. 1.5 km with 62.5/125 µm

max. 800 m, 15-pin connector

Max. 1.5 km with 62.5/125µm

max. 800 m, screw-type terminal

E1: 2,048 kbit/s

T1: 1,554 kbit/s

multi-mode 1 FO cable to device side

terminal

multi-mode FO cable to device side

64/128/512 kbit (selectable by jumper)

External communication converter	7XV5662-0AC00 for pilot wires
External communication converter to interface between relays, optical 820 nm interface and a pilot wire or twisted telephone pair.	
Typical distance	15 km
Fiber-optic 820 nm with clock re- covery	Max. 1.5 km with 62.5/125 μm multi-mode FO cable
Pilot wire	Screw-type terminal 5 kV isolated
Permissible time delay (duration of d	lata transmission)
Delay of telegrams due to trans- mission for one unit to the other. Delay is constantly measured and adjusted	Max. 30 ms per transmission path Permissible max. value can be selected
Electrical tests	
Specification	
Standards	IEC 60255 (product standards) ANSI/IEEE C37.90.0/.1/.2 UL 508 For further standards see "Individual functions"
Insulation tests	
Standards	IEC 60255-5
Voltage test (100 % test) All circuits except for auxiliary supply, binary inputs and communication interfaces	2.5 kV (r.m.s.), 50 / 60 Hz
Auxiliary voltage and binary inputs (100 % test)	3.5 kV DC
RS485/RS232 rear side communi- cation interfaces and time synchronization interface (100 % test)	500 V (r.m.s.), 50 / 60 Hz
Impulse voltage test (type test) All circuits except for communi- cation interfaces and time syn- chronization interface, class III	5 kV (peak); 1.2/50 μs; 0.5 J 3 positive and 3 negative impulses at intervals of 5 s
EMC tests for noise immunity; type t	ests
Standards	IEC 60255-6, IEC 60255-22 (product standards) (type tests) EN 50082-2 (generic standard) DIN 57435 part 303
High frequency test IEC 60255-22-1, class III and VDE 0435 part 303, class III	2.5 kV (peak); 1 MHz; τ = 15 ms; 400 surges per s; test duration 2 s
Electrostatic discharge IEC 60255-22-2, class IV EN 61000-4-2, class IV	8 kV contact discharge; 15 kV air dis charge; both polarities; 150 pF; $R_i = 330 \Omega$
Irradiation with RF field, non-modulated IEC 60255-22-3 (report), class III	10 V/m; 27 to 500 MHz
Irradiation with RF field, amplitude-modulated IEC 61000-4-3, class III	10 V/m; 80 to 1000 MHz; 80 % AM; 1 kHz

1) For flush-mounting housing.

2) For surface mounting housing.

3) For surface mounting housing the internal FO module OMA1 will be delivered together with an external repeater.

Technical data

Irradiation with RF field, pulse-modulated IEC 61000-4-3/ ENV 50204, class III

Fast transients, bursts IEC 60255-22-4 and IEC 61000-4-4, class IV

High-energy surge voltages (SURGE), IEC 61000-4-5 installation, class III

Auxiliary supply

binary output relays

Line-conducted HF, amplitudemodulated IEC 61000-4-6, class III

Magnetic field with power frequency IEC 61000-4-8, class IV; IEC 60255-6

Oscillatory surge withstand capability ANSI/IEEE C37.90.1

Fast transient surge withstand capability ANSI/IEEE C37.90.1

Radiated electromagnetic interference ANSI/IEEE C37.90.2

Damped oscillation IEC 60694, IEC 61000-4-12

EMC tests for interference emission; type tests

Standard Conducted interference voltage lines. only auxiliary voltage IEC-CISPR 22 Radio interference field streng

IEC-CISPR 22

10 V/m; 900 MHz; repetition frequency 200 Hz; duty cycle 50 %

4 kV; 5/50 ns; 5 kHz; burst length = 15 ms; repetition rate 300 ms; both polarities; $R_i = 50 \Omega$; test duration 1 min Impulse: 1.2/50 µs

Common (longitudinal) mode: 2 kV; 12 Ω; 9 µF Differential (transversal) mode: 1 kV; 2 Ω; 18 µF Measurement inputs, binary inputs, Common (longitudinal) mode: 2 kV; 42 Ω; 0.5 µF Differential (transversal) mode: 1 kV; 42 Ω; 0.5 µF 10 V; 150 kHz to 80 MHz; 80 % AM; 1 kHz 30 A/m continuous; 300 A/m for 3 s;

50 Hz 0.5 mT; 50 Hz

2.5 to 3 kV (peak); 1 to 1.5 MHz damped wave; 50 surges per second, duration 2 s, $R_i = 150$ to 200 Ω 4 to 5 kV; 10/150 ns; 50 impulses per second: both polarities; duration 2 s; $R_i = 80 \Omega$

35 V/m; 25 to 1000 MHz

2.5 kV (peak value); polarity alternating 100 kHz; 1 MHz; 10 and 50 MHz; $R_i = 200 \Omega$

	EN 50081-1 (generic standard)
ge on	150 kHz to 30 MHz Limit class B
th	30 to 1000 MHz Limit class B

Mechanical dynamic tests

Vibration, shock stress and seismic vibration

During operation Standards Vibration

IEC 60255-21-1, class 2 IEC 60068-2-6

Shock IEC 60255-21-2, class 1 IEC 60068-2-27

Seismic vibration IEC 60255-21-2, class 1 IEC 60068-3-3

During transport

Standards Vibration IEC 60255-21-1, class 2 IEC 60068-2-6

Shock IEC 60255-21-2, class 1 IEC 60068-2-27

Continuous shock IEC 60255-21-2, class 1 IEC 60068-2-29

Climatic stress test

Temperatures Type-tested acc. to IEC 60068-2-1 -25 °C to +85 °C / -13 °F to +185 °F and -2, test Bd, for 16 h Temporarily permissible operating -20 °C to +70 °C / -4 °F to +158 °F temperature, tested for 96 h Recommended permanent operating -5 °C to +55 °C / +25 °F to +131 °F temperature acc. to IEC 60255-6 (Legibility of display may be impaired above +55 °C / +131 °C) - Limiting temperature during -25 °C to +55 °C / -13 °F to +131 °F permanent storage - Limiting temperature during -25 °C to +70 °C / -13 °F to +158 °F transport

mitted

Humidity

Permissible humidity stress; It is recommended to arrange the units in such a way that they are not exposed to direct sunlight or pronounced temperature changes that could cause condensation.

IEC 60255-21 and IEC 60068-2

Sinusoidal 10 to 60 Hz: \pm 0.075 mm amplitude; 60 to 150 Hz: 1 g acceleration frequency sweep 1 octave/min 20 cycles in 3 orthogonal axes

Half-sinusoidal Acceleration 5 g, duration 11 ms, 3 shocks on each of the 3 axes in both directions

Sinusoidal 1 to 8 Hz: ± 3.5 mm amplitude (horizontal axis), 1 to 8 Hz: \pm 1.5 mm amplitude (vertical axis), 8 to 35 Hz: 1 g acceleration (horizontal axis), 8 to 35 Hz: 0.5 g acceleration (vertical axis), frequency sweep 1 octave/min 1 cycle in 3 orthogonal axes

IEC 60255-21 and IEC 60068-2 Sinusoidal 5 to 8 Hz: \pm 7.5 mm amplitude; 8 to 150 Hz: 2 g acceleration, Frequency sweep 1 octave/min 20 cycles in 3 orthogonal axes Half-sinusoidal Acceleration 15 g, duration 11 ms, 3 shocks on each of the 3 axes in both directions

Half-sinusoidal Acceleration 10 g, duration 16 ms, 1000 shocks on each of the 3 axes in both directions

Annual average \leq 75 % relative hu-

midity; on 56 days in the year up to

93 % relative humidity; moisture con-

densation during operation is not per-

Functions

Differential protection (ANSI 87L, 87T)

sitizes differential are

Sensitive ain	<u>erential current trip stag</u>	<u>e I Diff</u> >
Setting range	secondary 1 A	0.1 to 20 Å (steps 0.01 Å)
$1D_{\rm H} > 1_{\rm N}$	secondary 5 A	0.5 to 100 A
Tripping tim I _{Diff} > 2 x I	ne I _{Diff} > (setting value)	Typical 35 ms with FO cable
High curren	t differential trip stage I _D	<u>iff>></u>
Setting range	2	
$I_{\text{Diff}} >>$	secondary 1 A secondary 5 A	0.8 to 100 A (steps 0.01 A) 4.0 to 50 A
Tripping tim I _{Diff} > 2 x I	ne I _{Diff} >> (setting value)	Typical 16 ms with FO cable
Vector grou	p adaption with transfo	mers in the differential zone
Adaption of	connection sympol	0 to 11 (x 30°)(step 1)
Neutral poin	t connection	Grounded (earthed) or not grounded (earthed)(for each winding)
Inrush resta	int	
Restraint rat 2 nd harmo	io onic I _{2fn} /I _{fN}	10 % to 45 % (step 1 %)
Max. curren	t for restraint	1.1 A to 25 A ¹⁾ (step 0.1 A)
Crossblock f	unction	Can be switched on and off
Max. operati T _{oper crossb}	ive time for crossblock	0 to 60 s (step 0.01 s) or deactivated (operating up to release)
Backup / em	ergency overcurrent pro	otection (ANSI 50N, 51N, 67, 67N)
Operating m	odes	Backup (always active) or emergency (e.g. loss of data connection)
Characterist	ic	2 definite-time stages / 1 inverse-time stage
Definite-tim	e stage (ANSI 50, 50N)	
Phase currer	nt pickup <i>I</i> _{ph} >>	0.1 to 25 A $_{\rm (1A)}$ / 0.5 to 125 A $_{\rm (5A)}$ (step 0.01 A) or deactivated
Earth curren	t pickup $3I_0>>$	0.05 to 25 A $_{\rm (1A)}$ / 0.25 to 125 A $_{\rm (5A)}$ (step 0.01 A) or deactivated
Phase currer	nt pickup <i>I</i> _{ph} >	0.1 to 25 A $_{\rm (1A)}$ / 0.5 to 125 A $_{\rm (5A)}$ (step 0.01 A)
Earth curren	t pickup 3 <i>I</i> ₀ >	0.05 to 25 A $_{\rm (1A)}$ / 0.25 to 125 A $_{\rm (5A)}$ (step 0.01 A)
Phase currer with directio	nt pickup I _{ph} > nal element	0.1 to 25 $A_{(1A)}$ / 0.5 to 125 $A_{(5A)}$
Earth curren with directio	t pickup 3 <i>I</i> 0 > nal element	0.05 to 25 $A_{(1\;A)}$ / 0.25 to 125 $A_{(5\;A)}$ (step 0.01 A)
Time delay		0 to 30 s (step 0.01 s) or deactivated
Folerances Current p Delay tim Operating	ickup es t time	\leq 3 % setting value or 1 % of $I_{\rm N}$ \pm 1 % setting value or 10 ms Approx. 25 ms

0.1 to 4 A $_{\rm (1A)}$ / 0.5 to 20 A $_{\rm (5A)}$ (step 0.01 A)
0.05 to 4 A $_{\rm (1A)}$ / 0.25 to 20 A $_{\rm (5A)}$ (step 0.01 A)
0.1 to 4 $A_{(1A)}$ / 0.5 to 20 $A_{(5A)}$ (step 0.01 A)
0.05 to 25(1 A) / 0.25 to 20 A(5 A) (step 0.01 A)
Normal inverse; very inverse; ex- tremely inverse; long time inverse
Inverse; short inverse; long inverse; moderately inverse; very inverse; extremely inverse; definite inverse
$T_{\rm p}$ = 0.05 to 3 s (step 0.01 s) or deactivated
$D_{\text{IP}} = 0.5$ to 15 (step 0.01) or deactivated
Approx. 1.1 I/I_p (ANSI: $I/I_p = M$)
Approx. 1.05 x $I/I_{\rm p}$ (ANSI: $I/I_{\rm p}={\rm M}$)
\leq 5 % of setpoint ± 15 ms

Instantaneous high-speed switch-onto-fault overcurrent protection (ANSI 50HS)

Operating mode	Active only with connected auxiliary contacts
Characteristic	2 independent stages
Pickup current <i>I</i> >>>	0.1 to 15 A $_{\rm (1A)}$ / 0.5 to 75 A $_{\rm (5A)}$ (step 0.01 A) or deactivated
Pickup current <i>I</i> >>>>	1 to 25 A $_{(1A)}$ / 5 to 125 A $_{(5A)}$ (step 0.01 A) or deactivated
Reset ratio	Approx. 0.95
Tolerances Current starting	\leq 3 % of setting value or 1 % <i>I</i> _N
Auto-reclosure (ANSI 79)	Ŭ
Number of auto-reclosures	Up to 8
Operating modes with line voltage check	Only 1-pole; only 3-pole, 1 or 3-pole, adaptive AR Discrimination between successful and non-successful reclose attempts
Dead times T_{1-ph} , T_{3-ph} , T_{Seq}	0.01 to 1800 s (step 0.01 s) or deactivated
Action times	0.01 to 300 s (step 0.01 s) or deactivated

CLOSE command duration Tolerances

Time stages Voltage limit values

Reclaim times

1 % of setting value or 10 ms \leq 3 % of setting value or 0.5 V

0.5 to 300 s (step 0.01 s)

0.01 to 30 s (steps 0.01 s)

Technical data

Breaker failure protection (ANSI 50BF)

Number of stages	2	Hysteres
Pickup of current element	0.05 to 20 A (14) / 0.25 to 100 A (54)	Dropout
rickup of current clement	(step 0.01 A)	Toleranc
Time delays T11phase, T13phase, T2	0 to 30 s (steps 0.01 s) or deactivated	Delay
Additional functions	CB synchronism monitoring	Restricte
Reset time	10 ms, typical	Multiple
Tolerances		Settings
Current limit value	\leq 3 % of setting value or 1 % $I_{\rm N}$	Differe
Time stages	1 % of setting value or 10 ms	Limit a
Voltage protection (ANSI 59, 27)		Time d
Operating modes	Local tripping or only indication	The set t
Overvoltage protection		Operatir
Pickup values <i>V</i> _{PH-Gnd} >>, <i>V</i> _{PH-Gnd} > (phase-ground (earth) overvoltage)	1 to 170 V (step 0.1 V) or deactivated	<u>Pickup</u>
Pickup values <i>V</i> _{PH-PH} >>, <i>V</i> _{PH-PH} > (phase-phase overvoltage)	2 to 220 V (step 0.1 V) or deactivated	At 1.5 · At 2.5 ·
Pickup values $3V_0 >>, 3V_0 >$	1 to 220 V (step 0.1 V)	Dropo
$(3V_0 can be measured via V4 trans-formers or calculated by the relay)$	or deactivated	Dropout
(zero-sequence overvoltage)		Overcur
Pickup values $V_1 >$, $V_1 >$	2 to 220 V (step 0.1 V)	Multiple
(positive-sequence overvoltage)	or deactivated	Charact
Measured voltage	Local positive-sequence	Definite-
	remote positive-sequence	Inverse-t
	voltage (compounding)	Acc. to
Pickup values V ₂ >>, V ₂ > (negative-sequence overvoltage)	2 to 220 V (step 0.1 V) or deactivated	Acc. to
Reset ratio (settable)	0.5 to 0.98 (step 0.01)	
Undervoltage protection		
Pickup values <i>V</i> _{PH-Gnd} <<, <i>V</i> _{PH-Gnd} < (phase-ground (earth) undervoltage)	1 to 100 V (step 0.1 V) or deactivated	Reset cha
Pickup values <i>V</i> _{PH-PH} <<, <i>V</i> _{PH-PH} < (phase-phase undervoltage)	1 to 175 V (step 0.1 V) or deactivated	Current: High-cu
Pickup values <i>V</i> ₁ <<, <i>V</i> ₁ < (positive-sequence undervoltage)	1 to 100 V (step 0.1 V) or deactivated	
Blocking of undervoltage protection stages	Minimum current; binary input	
Reset ratio	1.05	
Time delays		
Time delay for all over- and undervoltage stages	0 to 100 s (steps 0.01 s) or deactivated	Definite-
Command / pickup time	Approx. 40 ms	
Tolerances		
Voltage limit values	\leq 3 % of setting value or 0.5 V	
Time stages	1 % of setting value or 10 ms	
Frequency protection (ANST81)		
Number of frequency elements	4	
Setting range	45.5 to 54.5 Hz (in steps of 0.01) at $f_{nom} = 50$ Hz 55.5 to 64.5 Hz (in steps of 0.01) at $f_{nom} = 60$ Hz	
Delay times	0 to 600 s or ∞ (in steps of 0.01 s)	
Operating voltage range	6 to 230 V (phase-to-ground (earth))	
Pickup times	Approx. 85 ms	
1	1 1	

Dropout times Hysteresis Dropout condition		Approx. 30 ms Approx. 20 mHz Voltage = 0 V and current = 0 A
Tolerances		
Frequency Delay times		12 m Hz for V = 29 to 230 V 1 % of the setting value or 10 ms
Restricted earth-fau	It protection (AN	SI 87N)
Multiple availability		2 times (option)
Settings		
Differential current	t I _{REF} >/I _{Nobj}	0.05 to 2.00 (steps 0.01)
Limit angle	φ ref	110 ° (fixed)
Time delay	T _{REF}	0.00 to 60.00 s (steps 0.01 s)
The set times are pur	e delay times	or deactivated (no trip)
Operatina times	,	
Pickup time (in ms) at frequency	50 Hz 60 Hz
At 1.5 · setting value	$P_{\text{DEE}} > \text{approx}$	35 30
At $2.5 \cdot$ setting value	I_{REF} >, approx.	33 29
Dropout time (in r	ns), approx.	26 23
Dropout ratio, appro	X.	0.7
Overcurrent-time pr	otection for pha	se and residual currents
Multiple availability		3 times (option)
Characteristics		
Definite-time stages	(DT)	$I_{\rm Ph} >>, 3I_0 >>, I_{\rm Ph} >, 3I_0 >$
Inverse-time stages (IT)	<i>I</i> _P , 3 <i>I</i> _{0P}
Acc. to IEC	,	Inverse, very inverse, extremely inverse, long-time inverse
Acc. to ANSI		Inverse, moderately inverse, very
		inverse, extremely inverse, definite inverse, short inverse, long inverse
		Alternatively, user-specified trip and reset characteristics
Reset characteristics	(IT)	Acc. to ANSI with disk emulation
Current stages		
High-current stages	$I_{\rm Ph}>>$	0.10 to 35.00 A ¹⁾ (steps 0.01 A) or deactivated (stage ineffective)
	$T_{\rm IPh}>>$	0.00 to 60.00 s (steps 0.01 s) or deactivated (no trip)
	3 <i>I</i> ₀ >>	0.05 to 35.00 A ¹⁾ (steps 0.01 A) or deactivated (stage ineffective)
	T _{3I0} >>	0.00 to 60.00 s (steps 0.01 s) or deactivated (no trip)
Definite-time stages	$I_{\rm Ph}$ >	0.10 to 35.00 A ¹⁾ (steps 0.01 A) or deactivated (stage ineffective)
	T_{IPh}	0.00 to 60.00 s (steps 0.01 s) or deactivated (no trip)
	3 <i>I</i> ₀ >	0.05 to 35.00 A ¹⁾ (steps 0.01 A) or deactivated (stage ineffective)
	$T_{3I0} >$	0.00 to 60.00 s (steps 0.01 s) or deactivated (no trip)

Technical data				
Inverse-time stages	s Ip	0.10 to 4.00 A $^{1)}$	(steps 0.01 A)	Fault record storage
Acc. to IEC	T_{IP}	0.05 to 3.20 s or deactivated (no	(steps 0.01 s) trip)	Measured analog c
	3 <i>I</i> _{0P}	0.05 to 4.00 A $^{1)}$	(steps 0.01 A)	Max. number of av
	T _{3I0P}	0.05 to 3.20 s or deactivated (no	(steps 0.01 s) trip)	Sampling intervals
Inverse-time stages	$I_{\rm P}$	0.10 to 4.00 A $^{\rm 1)}$	(steps 0.01 A)	Total storage time
Acc. to ANSI	D_{IP}	0.50 to 15.00 s or deactivated (no	(steps 0.01 s) trip)	Binary channels
	3 <i>I</i> _{0P}	0.05 to 4.00 A $^{\rm 1)}$	(steps 0.01 A)	
	D _{3I0P}	0.50 to 15.00 s or deactivated (no	(steps 0.01 s) trip)	Further additional Measured value sup
Thermal overload	protection (ANSI 4	19)		
Setting range Factor k to IEC Time constant τ	60255.8	0.1 to 4 (steps 0.01 1 to 999.9 min (ste) eps 0.1 min)	
Thermal alarm stag	ge $\Theta_{Alarm}/\Theta_{Trip}$	50 to 100 % referr perature (steps 1 %	ed to tripping tem- 6)	Indications Operational ind
Current-based alar	m stage I _{alarm}	$\begin{array}{c} 0.1 \text{ to } 4 \text{ A}_{(1\text{A})} / 0.5 \\ (\text{steps } 0.01 \text{ A}) \end{array}$	to 5 A _(5A)	System disturba
Calculating mode for a construction overtemperature	or	$\Theta_{\max}, \Theta_{\max}, \Theta$ w	ith I _{max}	Switching statistics
Pickup time charac	teristic	$t = \tau \ln \frac{I^2 - I_{\text{pre}}^2}{I^2 - (k I_{\text{N}})}$	$\overline{)}^2$	
Reset ratio				Circuit-breaker tes
Θ/Θ_{Alarm}		Approx. 0.99		
I / I _{Alarm}		Approx. 0.99		cycle
Tolerances		Class 10 % acc. to	IEC 60255-8	Commissioning su
Additional functio	ns			
Operational meas	ured values			
Representation		Primary, secondar referred to rated va	y and percentage alue	
Currents		3 x I _{Phase} ; 3I ₀ ; I _E ; I	$I_1; I_2$	
Tolerances		T_{v} Typical $\leq 1.\%$ of f	50 % L	CE conformity
50 to 200 % I _N		Typical $\leq 1\%$ of r	neasured value	This product is in a
Voltages		3 x V _{Phase-Earth} ; 3 x 3V ₀ , V ₁ , V ₂ , V _{en}	VPhase-Phase;	nities on the harmo electromagnetic co
Tolerances 10 to 50 % $V_{\rm N}$ 50 to 200 % $V_{\rm N}$		Typical $\leq 1\%$ of 5	$50 \% V_{\rm N}$	Directive 73/23/EE
Power with direction	on indication	$P \cap S$	ileasured value	man standard DIN
Tolerances		1, 2, 0		Further applicable
P: for $ \cos \varphi = 0$. $I/I_N = 50$ to 120 9	7 to 1 and <i>V</i> / <i>V</i> _N , %	Typical \leq 3 %		The unit has been of industrial environment
Q: for $ \sin \varphi = 0$. $I/I_N = 50$ to 120° S: for V/V_N I/I_N	7 to 1 and $V/V_{\rm N}$, %	Typical $\leq 3\%$		This conformity is accordance with Au generic standards F
Frequency Tolerance		$f \leq 20 \text{ mHz}$		standard EN 60255
Power factor		p.f. (cos φ)		
Tolerance for cos	ϕ = 0.7 to 1	Typical $\leq 3\%$		
Remote measurem	ents	3 x I _{Phase-Earth} ; 3 I ₀ ,	3 x V _{Phase-Earth} ; 3V ₀	
Overload measured	d values	$\Theta / \Theta_{\text{Trip}} L1; \Theta / \Theta$ $\Theta / \Theta_{\text{Trip}}$	Trip L2; Θ/Θ Trip L3;	

ge

asured analog channels	3 x I _{Phase} , 3I ₀ , 3I _{Diff} 3 x V _{Phase} , 3V ₀ , 3I _{Restraint}
x. number of available recordings	8, backed up by battery if auxiliary voltage supply fails
pling intervals	20 samplings per cycle
al storage time	Approx. 10 s
ary channels	Pickup and trip information; number and contents can be freely configured by the user
ther additional functions	
asured value supervision	Current sum Current symmetry Voltage sum Voltage symmetry Voltage phase sequence Fuse failure monitor
ications	Puffer size 200
system disturbance indication	Storage of signals of the last 8 faults, buffer size 600
tching statistics	Number of breaking operations per CB pole Sum of breaking current per phase Breaking current of last trip operations Max. breaking current per phase
cuit-breaker test	TRIP/CLOSE cycle, 3 phases TRIP/CLOSE cycle per phase
id time for CB TRIP / CLOSE e	0 to 30 s (steps 0.01 s)
nmissioning support	Operational measured values, CB test, status display of binary indication in- puts, setting of output relays, genera- tion of indications for testing serial interfaces, commissioning support via Web-browser, test mode, commis- sioning mode
conformity	
s product is in conformity with thes on the harmonization of the law tromagnetic compatibility (EMC trical equipment designed for use ective 73/23/EEC).	e Directives of the European Commu- vs of the Member States relating to Council Directive 89/336/EEC) and within certain voltage limits (Council
s unit conforms to the internation	al standard IEC 60255, and the Ger-

57435/Part 303 (corresponding to VDE 0435/Part 303).

standards: ANSI/IEEE C37.90.0 and C37.90.1.

developed and manufactured for application in an ment according to the EMC standards.

the result of a test that was performed by Siemens AG in rticle 10 of the Council Directive complying with the EN 50081-2 and EN 50082-2 for the EMC Directive and 5-6 for the "low-voltage Directive".

Selection and ordering data

Description

7SD61 numerical line differential protection 87L SIPROTEC 4 for two-line ends, allows transformers in the protection zone

$I_{\rm ph} = 1 {\rm A}^{1}, I_{\rm e} = 1 {\rm A}^{1}$	1	
$\vec{I}_{\rm ph} = 5 {\rm A}^{1}, I_{\rm e} = 5 {\rm A}^{1}$	5	see next page
Auxiliary voltage		
(Power supply, BI operating voltage)		
24 to 48 V DC, trigger level binary input 19 V ³)	2	
60 to 125 V DC ²⁾ , trigger level binary input 19 V ³⁾	4	
110 to 250 V DC ²⁾ , 115 to 230 V AC,		
trigger level binary input 88 V ³⁾	5	
110 to 250 V DC ²⁾ , 115 to 230 V AC,		
trigger level binary input 176 V 3)	6	
Housina, number of binary inputs/outputs		
Flush-mounting housing with screw-type terminals		
1/3 19", 7 BI, 5 BO, 1 live-status contact	В	
Surface-mounting housing with screw-type terminals		
1/3 19", 7 BI, 5 BO, 1 live-status contact	F	
Flush-mounting housing with plug-in term.,		
1/3 19", 7 BI, 5 BO, 1 live-status contact	K	
Region-specific default settings/		
function versions and language settings		
Region DE, German language (language changeable)	A	
Region world, English language (language changeable)	В	
Region US, US-English language (language changeable)	С	
Region world, French language (language changeable)	D	
Region world, Spanish language (language changeable)	Ε	
Region world, Italian language (language changeable)	F	
System interfaces, functions and hardware		
Without system interface	(2
IEC 60870-5-103 protocol, electric RS232		1
IEC 60870-5-103 protocol, electric RS485	-	2
IEC 60870-5-103 protocol, optical 820 nm, ST connector	-	3
Further protocols see supplement L	9	9
DDOPIDLIC DD alarra DC 405		
PROFIBUS DP slave, K5485	4)	
PROFIBUS DP slave, optical 820 nm, double ring, ST conne	ector *	

DNP 3.0, RS485 DNP 3.0, optical 820 nm, ST connector ⁴⁾ IEC 61850, 100 Mbit Ethernet electrical, double, RS45 connector (EN 100) IEC 61850, 100 Mbit Ethernet, with integrated switch optical, double, LC connector ⁵⁾

BI = Binary input

BO = Binary output

1) Rated current 1/5 A can be selected by means of jumpers.

2) Transition between the two auxiliary voltage ranges can be selected by means of jumpers.

3) Setting of the BI thresholds can be made for each binary input via jumpers in 3 steps.

4) Not possible for surface mounting housing (Order No. pos. 9 = F). For the surface mounted version, please order a device with the appropriate electrical RS485 interface and an external FO-converter

5) Not possible for surface mounting housing (Order No. pos. 9 = F) please order the relay with electrical interface and use a separate fiber-optic switch

H R

S

n and ordering data	Description 7SD61 numerical line dif	ferential protect	Ore ion 751	ler No. ⊃610 □ - □□]		Short co
	87L SIPROTEC 4 (continu	ed)					
	DIGSI/Modem interface	(on rear of devi	ce) and protection int	erface 1	9		МÒ
	DIGSI/Modem interface DIGSI 4, electrical RS23	e (on rear of dev 2	rice)				1
	DIGSI 4, electrical RS48	5					2
	Protection data interface FO5: Optical 820 nm, 2 for communication com	e 1 ST-plugs, line le verter or direct	ength up to 1.5 km via FO connection ¹⁾	multimode	FO cable		ŀ
	FO6: Optical 820 nm, 2 for direct FO connection	ST-plugs, line le n	ength up to 3.5 km via	multimode	FO cable		E
	FO17: Optical 1300 nm, LC-Duplex-plugs, line length up to 24 km ²) via monomode FO cable for direct FO connection ²)						
	FO18: Optical 1300 nm, via monomode FO cabl	, LC-Duplex-plu e for direct FO c	igs, line length up to $6^{2(3)}$	60 km			
	FO19: Optical 1550 nm, via monomode FO cabl	, LC-Duplex-plu e for direct FO c	igs, line length up to 1 connection $^{2)4)}$	00 km			
	FO30: Optical 820 nm, 2 for communication net	2 ST-plugs, line works with IEEE	length up to 1.5 km v C37.94 interface or c	ia multimod lirect FO cor	e FO cable mection ⁵⁾		
	Trip mode 3-pole only v Trip mode 3-pole only v Trip mode 1- and 3-pol Trip mode 1- and 3-pol Back-up functions	without auto rec with auto reclose e without auto e with auto reclo	losure ure reclosure osure		0 1 2 3		
	with emergency or back	-up overcurrent	protection	failure prote	ction	8	
	with directional – emergency or back-up overcurrent and breaker failure protection <i>R</i>						
	with directional – emerg	gency or back-u	p overcurrent and bre	aker failure j	protection	S	
	Additional functions 1						
	4 Remote commands/ 24 Remote indications	Transformer expansions	Voltage-/frequence protection	Restricted (low imped	earth fault dance)		
						Α	
			•			В	
						Ε	
						F	
						J	
						K	
						Ν	
						Р	
						S	
		_	_	_			

1) Communication converter 7XV5662, see Accessories.

2) Device for surface mounting housing (Order No. pos. 9 = F) will be delivered with external repeater 7XV5461-0Bx00.

3) For distances less than 25 km a set of optical attenuators 7XV5107-0AA00 must be installed to avoid saturation of the receiver element.

4) For distances less than 50 km a set of optical attenuators 7XV5107-0AA00 must be installed to avoid saturation of the receiver element.

5) Only available in flush-mounting housing (Order No. pos. 9 = B, K).

Accessories	Description	Order No.
	Opto-electric communication converter CC-XG (connection to communication network)	
	Converter to interface to X21 or RS422 or G703-64 kbit/s synchronous	
	communication interfaces	
	Connection via FO cable for $62.5 / 125 \mu\text{m}$ or $50 / 120 \mu\text{m}$ and 820nm	
	wavelength (multi-mode FO cable) with ST connector, max. distance 1.5 km	7/1/5/22 04400
	Electrical connection via X21/K8422 or G/03-64 kbit/s interface	/XV5662-0AA00
	Opto-electric communication converter CC-2M to G703-E1/-T1 communication network	5
	with 2.048 / 1.554 kbit/s	
	Converter to interface between optical 820 nm interface and G703-E1/-T1 interface	
	of a communication network	
	Connection via FO cable for 62.5/125 µm or 50/120 µm and	
	820 nm wavelength (multi-mode FO cable) with ST connector, max. distance 1.5 km	
	Electrical connection via G703-E1/-T1 interface	7XV5662-0AD00
	Opto-electric communication converter (connection to nilot wire)	
	Converter to interface to a pilot wire or twisted telephone pair (typical 15 km length)	
	Connection via FO cable for $62.5/125 \mu\text{m}$ or $50/120 \mu\text{m}$ and 820nm	
	wavelength (multi-mode FO cable) with ST connector;	
	max. distance 1.5 km, screw-type terminals to pilot wire	7XV5662-0AC00
	Additional interface modules	
	Protection data interface mod. opt. 820 nm, multi-mode FO cable, ST connector, 1.5 km	C53207-A351-D651-1
	Protection data interface mod. opt. 820 nm, multi-mode FO cable, ST connector, 3.5 km	C53207-A351-D652-1
	Eurthermodules	
	Protection data interface mod ont 1300 nm mono mode EQ cable	
	I C-Duplex connector 24 km	C53207-A351-D655-1
	Protection data interface mod ont 1300 nm mono-mode FO cable	C55207 77557 2055 7
	LC-Duplex connector, 60 km	C53207-A351-D656-1
	Protection data interface mod. opt. 1550 nm, mono-mode FO cable.	
	LC-Duplex connector, 100 km	C53207-A351-D657-1
	Protection data interface mod. opt. 820 nm, multi-mode FO cable,	
	ST connector, 1.5 km support of IEEE C37.94	C53207-A351-D658-1
	Optical repeaters	
	Serial repeater (2-channel), opt. 1300 nm, mono-mode FO cable,	7/1/5461 00600
	LC-Duplex connector, 24 km	/XV5461-0BG00
	Serial repeater (2-channel), opt. 1300 nm, mono-mode FO cable,	TVVEAC1 OPHOD
	EC-Duplex connector, 60 km	///////////////////////////////////////
	I C-Duplex connector 100 km	7XV5461-0B100
		//// 00000
	Time synchronizing unit with GPS output	
	GPS 1 sec pulse and time telegram IRIG B/DCF 77	7XV5664-0AA00
	Isolation transformer (20 kV) for pilot wire communication	7XR9516
	Voltage transformer miniature circuit-breaker	2DV/1611 1AC1A
	kated current 1.6 A; thermal overload release 1.6 A; overcurrent trip 6 A	3KV1011-1AG14

	1010	$c \cap$	 20
			 _
 		~~	

Description	Order No.
DIGSI 4	
Software for configuration and operation of Siemens protection units running under MS Windows (Windows 2000/XP Professional) device templates, Comtrade Viewer, electronic manual included as well as "Getting started" manual on paper, connecting cables (copper)	
Basis	
Full version with license for 10 computers, on CD-ROM	
(authorization by serial number)	7XS5400-0AA00
Professional	
Complete version:	
DIGSI 4 Basis and additionally SIGRA (fault record analysis),	
CFC Editor (logic editor), Display Editor (editor for default	
and control displays) and DIGSI 4 Remote (remote operation)	7XS5402-0AA00
SIGPA A	
(generally contained in DICSI Professional but can be ordered additionally)	
Software for graphic visualization analysis and evaluation of fault records	
Can also be used for fault records of devices of other manufacturers	
(Comtrade format), Running under MS Windows (Windows 2000/XP Profession	al).
Incl. templates, electronic manual with license for 10 PCs.	
Authorization by serial number. On CD-ROM.	7XS5410-0AA00
Connectina cable	
Cable between PC/notebook (9-pin connector)	
and protection unit (9-pin connector)	
(contained in DIGSI 4, but can be ordered additionally)	7XV5100-4
Manual for 7SD61 V4 6	
English	C53000_C1176_C145_4
	CJJ000-CTT70-CT4J-4

Fig. 7/35 Mounting rail for 19" rack

Fi 3-

Fig. 7/36 2-pin connector

Fig. 7/38 Short-circuit link for current terminals

11	I SP2091-afr
g. 7/37 pin connector	

Fig. 7/39 Short-circuit link for voltage terminals/ indications terminals

Description		Order No.	Size of package	Supplier	Fig.
Connector	2-pin 3-pin	C73334-A1-C35-1 C73334-A1-C36-1	1 1	Siemens Siemens	7/36 7/37
Crimp connector	CI2 0.5 to 1 mm ²	0-827039-1 0-827396-1	4000 1	AMP ¹⁾ AMP ¹⁾	
	CI2 1 to 2.5 mm ²	0-827040-1 0-827397-1	4000 1	AMP ¹⁾ AMP ¹⁾	
	Type III+ 0.75 to 1.5 mm ²	0-163083-7 0-163084-2	4000 1	AMP ¹⁾ AMP ¹⁾	
Crimping tool	For Type III+ and matching female	0-539635-1 0-539668-2	1	AMP ¹⁾ AMP ¹⁾	
	For Cl2 and matching female	0-734372-1 1-734387-1	1	AMP ¹⁾ AMP ¹⁾	
19" mounting rail		C73165-A63-D200-1	1	Siemens	7/35
Short-circuit links	For current terminals For other terminals	C73334-A1-C33-1 C73334-A1-C34-1	1 1	Siemens Siemens	7/38 7/39
Safety cover for terminals	Large Small	C73334-A1-C31-1 C73334-A1-C32-1	1 1	Siemens Siemens	

1) Your local Siemens representative can inform you on local suppliers.

Connection diagram

7

SIPROTEC 4 7SD52/53 Multi-End Differential and Distance Protection in One Relay

Description

The 7SD52/53 relay provides full scheme differential protection and incorporates all functions usually required for the protection of power lines. It is designed for all power and distribution levels and protects lines with two up to six line ends. The relay is designed to provide high-speed and phase-selective fault clearance. The relay uses fiber-optic cables or digital communication networks to exchange telegrams and includes special features for the use in multiplexed communication networks. Also pilot wires connections can be used with an external converter. This contributes toward improved reliability and availability of the electrical power system.

The relay is suitable for single and three-phase tripping applications for two up to six line ends. Also, transformers and compensation coils within the differential protection zone are protected as are serial and parallel-compensated lines and cables. The relays may be employed with any type of system earthing.

The relay also provides a full-scheme and non-switched distance protection as an optional main 2 protection. Several teleprotection schemes ensure maximum selectivity and high-speed tripping time. The units measure the delay time in the communication networks and adaptively match their measurements accordingly.

A special GPS-option allows the use of the relays in communication networks, where the delay time in the transmit and receive path may be quite different.

The 7SD52/53 has the following features:

- 2 full-scheme main protections in one unit (differential and distance protection)
- High-speed tripping 10 15 ms
- The serial protection data interfaces (R2R interfaces) of the relays can flexibly be adapted to the requirements of all communication media available.
- If the communication method is changed, flexible retrofitting of communication modules to the existing configuration is possible.
- Tolerates loss of one data connection in a ring topology (routing in 120 ms). The differential protection scheme is fully available in a chain topology.
- Browser-based commissioning tool.
- Fault locator for one and two terminal measurement for high accuracy on long lines with high load and high fault resistance.
- Capacitive charge current compensation increases the sensitivity of the differential protection on cables and long lines.

Function overview

Protection functions

- Differential protection with phasesegregated measurement (87L, 87T)
- Restricted earth-fault protection (87N) if a transformer is within the protection zone
- Sensitive meas. stage f. high-resist. faults
- Non-switched distance protection with 7 measuring systems (21/21N)
- High resistance ground (earth)-fault protection for single and three-pole tripping (50N/51N/67N)
- Phase-selective intertripping (85)
- Earth-fault detection in isolated and resonant-earthed networks
- Tele (pilot) protection (85/21, 85/67N)
- Weak-infeed protection (27WI)
- Fault locator (FL)
- Power swing detection/tripping (68/68T)
- 3-stage overcurrent protection (50, 50N, 51, 51N)
- STUB bus protection (50 STUB)
- Switch-onto-fault protection (50HS)
- Over/undervoltage protection (59/27)
- Over/underfrequency protection (81O/U)
- Auto-reclosure (79), Synchro-check (25)
- Breaker failure protection (50BF)
- Overload protection (49)
- Lockout function (86)

Control functions

• Commands f. ctrl of CB and isolators

Monitoring functions

- Self-supervision of relay and protection data (R2R) communication
- Trip circuit supervision (74TC)
- Measured-value supervision
- Oscillographic fault recording
- Event logging/fault logging
- Switching statistics

Front design

- User-friendly local operation
- PC front port for relay setting
- Function keys and 14 LEDs f. local alarm

Communication interfaces

- 2 serial protection data (R2R) interfaces for ring and chain topology
- Front interface for connecting a PC
- System interface for connection to a control system via various protocols
 – IEC 61850 Ethernet
 - IEC 60870-5-103
- PROFIBUS-FMS/-DP and DNP 3.0
- Rear-side service/modem interface
- Time synchronization via IRIG-B or DCF77 or system interface

Application

ANSI		ANSI	
(87L)	ΔI for lines / cables	50HS	Instantaneous high-current tripping (switch-onto-fault)
(87T)	ΔI for lines / cables with transformers	5927	Overvoltage/undervoltage protection
87N)	Low impedance restricted earth-fault protection for transformers	810/U	Over/underfrequency protec- tion
85)	Phase-selective intertrip, remote trip	25	Synchro-check
86	Lockout function	79	Single or three-pole auto-reclosure with new adaptive technology
21)21N	Distance protection	(49)	Overload protection
FL	Fault locator	(50BF)	Breaker failure protection
68)68T)	Power swing detec- tion/tripping	(74TC)	Trip circuit supervision
85/21)	Teleprotection for distance protection	50-STUB	STUB bus protection
27WI	Weak-infeed protection		
50N 51N 67N	Directional earth(ground)- fault protection		
85/67N	Teleprotection for earth (ground)-fault protection		
50 50N 51 51N	Three-stage overcurrent protection		

Application

Typical applications

SIPROTEC 7SD52/53 is a full-scheme differential protection relay for two up to six line ends, incorporating all the additional functions for protection of overhead lines and cables at all voltage levels. Also transformers and compensation coils within the protection zone are protected. The 7SD52/53 is suitable for single-pole and three-pole tripping. The power system star point can be solid or impedance-grounded (earthed), resonant-earthed via Peterson coil or isolated. On the TAP-line, the 7SD52/53 differential relay is connected to current (CT) and optionally voltage (VT) transformers. For the differential functions, only CTs are necessary. By connecting the relay to VTs, the integrated "main 2" distance protection can be applied (full-scheme, nonswitched). Therefore, no separate distance protection relay is required.

The link to the other relays is made by multi-mode or mono-mode FO cables. There are 5 options available, which correspondingly cover:

- 820 nm, up to 1.5 km, multi-mode
- 820 nm, up to 3.5 km, multi-mode
- 1300 nm, up to 24 km, mono-mode
- 820 nm support of the IEEE C37.94 interface
- 1300 nm, up to 60 km, mono-mode
- 1550 nm, up to 100 km, mono-mode

Direct fiber-optic connection offers highspeed data exchange with 512 kbit/s and improves the speed for remote signaling.

At the main line two differential relays are connected to CTs. The communication is made via a multiplexed communication network. The 7SD52/53 offers many features to reliably and safely handle data exchange via communication networks.

Depending on the bandwidth available in the communication system, 64, 128 or 512 kbits/s can be selected for the X21 (RS422) interface; the G703 interface with 64 kbit/s, and G703-E1 (2,048 kbit/s) or G703-T1 (1,554 kbit/s). Furthermore the 7SD610 supports the IEEE C37.94 interface with 1/2/4 and 8 timeslots.

The connection to the communication device is effected via cost-effective 820 nm interface with multi-mode FO cables. A communication converter converts the optical to electrical signals. This offers an interference-free and isolated connection between the relay and the communication device.

Fig. 7/44 Application for three line ends (Ring topology)

Cost-effective power system management

The SIPROTEC 4 units are numerical relays which also provide control and monitoring functions and therefore support the user in view of a cost-effective power system management. The security and reliability of power supply is increased as a result of minimizing the use of hardware.

The local operation has been designed according to ergonomic criteria. Large, easy- to-read backlit displays are provided. The SIPROTEC 4 units have a uniform design and a degree of functionality which represents a benchmark-level of performance in protection and control. If the requirements for protection, control or interlocking change, it is possible in the majority of cases to implement such changes by means of parameterization using DIGSI 4 without having to change the hardware. The use of powerful microcontrollers and the application of digital measured-value conditioning and processing largely suppresses the influence of higher-frequency transients, harmonics and DC components.

Construction

Connection techniques and housing with many advantages

1/3, 1/2, 2/3, and 1/1-rack sizes: These are the available housing widths of the 7SD52/53 relays, referred to a 19" module frame system. This means that previous models can always be replaced. The height is a uniform 245 mm for flush-mounting housings and 266 mm for surface-mounting housings for all housing widths. All cables can be connected with or without ring lugs. Plug-in terminals are available as an option. It is thus possible to employ prefabricated cable harnesses. In the case of surface mounting on a panel, the connection terminals are located above and below in the form of screw-type terminals. The communication interfaces are located in a sloped case at the top and bottom of the housing.

Fig. 7/45 Flush-mounting housing with screw-type terminals

Fig. 7/46 Rear view of flush-mounting housing with covered connection terminals and wirings

Fig. 7/47 Surface-mounting housing with screw-type terminals

Fig. 7/48 Communication interfaces in a sloped case in a surfacemounting housing

Differential protection (ANSI 87L, 87T, 87N)

The differential protection function has the following features:

- It is possible to select the operating mode as "main" or as "main 1", if the back-up distance protection is activated as "main 2".
- Measurements are performed separately for each phase; thus the trip sensitivity is independent of the fault type.
- An adaptive, sensitive measurement method with high sensitivity for differential fault currents below the rated current offers the detection of highly resistive faults. This trip element uses special filters, which offers high security even with high level DC-components in the shortcircuit current. The trip time of this stage is about 30 ms.
- A high-set differential trip stage which clears differential fault currents higher than the rated current within 10 15 ms offers fast tripping time and high-speed fault clearence time.
- When a long line or cable is switched on, transient charge currents load the line. To avoid a higher setting of the sensitive differential trip stage, this setpoint may be increased for a settable time. This offers greater sensitivity under normal load conditions.
- With the setting of the CT-errors the relay automatically calculates the restraint/stabilization current and adapts its permissible sensitivity according to the CT's data in the differential configuration, optimizing sensitivity.
- Different CT ratios at the line ends are handled inside the relay. The mismatch of 1 to 6 is allowed.
- The differential protection trip can be guarded with an overcurrent pickup. Thus differential current and overcurrent lead to a final trip decision.
- Easy to set tripping characteristic. Because the relay works adaptively, only the setpoint *I*_{Diff} > (sensitive stage) and *I*_{Diff} >> (high-set current differential stage) must be set according to the charge current of the line/cable.
- With an optional capacitive charge current compensation, the sensitivity can be increased to 40 % of the normal setting of *I*_{DIFF}>. This function is recommended for long cables and long lines.

- Differential and restraint currents are monitored continuously during normal operation and are displayed as operational measurements.
- High stability during external faults even with different current transformers saturation level. For an external fault, only 5 ms saturation-free time are necessary to guarantee the stability of the differential configuration.
- With transformers or compensation coils in the protection zone, the sensitive trip stage can be blocked by an inrush detection function. It works with the second harmonic of the measured current which is compared with the fundamental component.
- With transformers in the protection zone, vector group adaptation and matching of different CT ratios are carried out in the relay. Additionally, the zero-sequence current flowing through an earthed neutral is eliminated from the differential measurement. The 7SD52/53 therefore works like a transformer differential relay, whereas the line ends may be far away.
- A more sensitive protection for transformers within the protection zone is given by measurement of the star-point current on an earthed winding. Therefore the *I*_E current measuring input has to be used.

If the sum of the phase currents of winding is compared with the measured star-point current, a sensitive earth-current differential protection (REF) can be implemented.

This function is substantially more sensitive than the differential protection during faults to earth in a winding, detecting fault currents as small as 10 % of the transformer rated current.

Enhanced communication features for communication networks

The data required for the differential calculations are cyclically exchanged in full-duplex mode in form of synchronous, serial telegrams between the protection units. The telegrams are secured with CRC check sums, so that transmission errors in a communication network are immediately detected.

Fig. 7/49 Tripping characteristic

- Data communication is immune to electromagnetic interference because fiber-optic cables are employed in the critical region
- Supervision of each individual incoming telegram and of the entire communication path between the units without additional equipment.
- Unambiguous identification of each unit is ensured by assignment of a settable communication address within a differential protection topology. Only those units mutually known to each other can cooperate. Incorrect interconnection of the communication links results in blocking of the protection system.
- Detection of reflected telegrams in the communication system.
- Detection of delay time changes in communication networks.
- Measurement of the delay time to the remote line ends with dynamic compensation of the delay in the differential measurement. Supervision of the maximum permissible delay time is included.
- Generation of alarms on heavily disturbed communication links. Faulty telegram counters are available as operational measurement.
- With a GPS high-precision 1-s pulse from a GPS receiver the relays can be synchronized with an absolute, exact time at each line end. In this way, the delay in the receive and transmit path can be measured exactly. With this optional feature the relay can be used in communication networks where this delay times are quite different.

Phase-selective intertrip and remote trip/indications

Normally the differential fault current is calculated for each line end nearly at the same time. This leads to fast and uniform tripping times. Under weak infeed conditions, especially when the differential function is combined with an overcurrent pickup a phase-selective intertrip offers a tripping of all line ends.

- 7SD52/53 has 4 intertrip signals which are transmitted in high-speed (< 20 ms) to the other line ends. These intertrip signals can also be initiated by an external relay via binary inputs and therefore be used to indicate, for example, a directional decision of the backup distance relay.
- In addition, 4 high-speed remote trip signals are available, which may be initiated by an external or internal event.
- 24 remote signals can be freely assigned to inputs and outputs at each line end and are circulating between the different devices.

Communication topologies / modes of operation

The differential relays may work in a ring or daisy chain line topology. Use of a test mode offer advantages under commissioning and service conditions.

- The system tolerates the loss of one data connection in a ring topology. The ring topology is rerouted within 20 ms forming then a chain topology, while the differential protection function is immediately reactivated.
- When the communication connections need to be reduced or when these are not available, the whole system is able to function without interruption as chain topology. At the line ends, only costeffective 7SD52/53 relays with one protection data interface are necessary for this application.
- The two-end line is a special case, because when the main connection is interrupted, the communication switches over from a main path to a secondary path. This hot standby transmission function ensures a high availability of the system and protects differential protection against communication route failure on important lines.

Ring topology

- In a ring topology, one line end can be logged out from the differential protection topology for service or maintenance reasons by a signal via binary input. Checks for the breaker position and load current are made before this logout is initiated. In a chain topology, the relays at the end of the line can be logged out from the differential protection topology.
- The whole configuration can be set up into a test mode. All functions and indications are available except the breakers are not tripped. The local relay can be tested and no trip or intertrip reaction is effected by the other relays.

Distance protection (ANSI 21, 21N)

7SD52/53 provides a non-switched distance protection featuring all well-proven algogrithms of 7SA522 and 7SA6. It is possible to select the operating mode "main" or "main 2", if the back-up differential is activated as "main 1". By parallel calculation and monitoring of all six impedance loops, a high degree of sensitivity and selectivity is achieved for all types of faults. The shortest tripping time is less than one cycle. All methods of neutral-point connection (resonant earthing, isolated, solid or low-resistance earthing) are reliably dealt with. Single and three-pole tripping is possible. Overhead lines can be equipped with or without series capacitor compensation

Quadrilateral and mho characteristics

The 7SD52/53 relay provides quadrilateral as well as mho zone characteristics. Both characteristics can be used separately for phase and ground (earth) faults. Resistance ground (earth) faults can, for instance, be covered with the quadrilateral characteristic and phase faults with the mho characteristic.

Alternatively, the quadrilateral characteristic is available with 4 different pickup methods:

- Overcurrent pickup I>>
- Voltage-dependent overcurrent pickup *V/I*
- Voltage-dependent and phase angledependent overcurrent pickup V/I/φ
- Impedance pickup Z<

Load zone

In order to guarantee a reliable discrimination between load operation and shortcircuit – especially on long high loaded lines – the relay is equipped with a selectable load encroachment characteristic. Impedances within this load encroachment characteristic prevent the distance zones from unwanted tripping.

Absolute phase-selectivity

The distance protection incorporates a well-proven highly sophisticated phase selection algorithm. The pickup of unfaulted loops is reliably eliminated to prevent the adverse influence of currents and voltages in the fault-free loops. This phase selection algorithm achieves single-pole tripping and correct distance measurement in a wide application range.

Fig. 7/51 Distance protection: quadrilateral characteristic

Parallel line compensation

The influence of wrong distance measurement due to parallel lines can be compensated by feeding the neutral current of the parallel line to the relay. Parallel line compensation can be used for distance protection as well as for fault locating.

7 distance zones

6 independent distance zones and one separate overreach zone are available. Each distance zone has dedicated time stages, partly separate for single-phase or multiphase faults. Ground (earth) faults are detected by monitoring the neutral current $3I_0$ and the zero-sequence voltage $3V_0$.

The quadrilateral tripping characteristic permits separate setting of the reactance *X* and the resistance *R*. The resistance section *R* can be set separately for faults with and without earth involvement. This characteristic has therefore an optimal performance in case of faults with fault resistance. The distance zones can be set forward, reverse or non-directional. Sound phase polarization and voltage memory provides a dynamically unlimited directional sensitivity.

Mho

The mho tripping characteristic provides sound phase respectively memory polarization for all distance zones. The diagram shows characteristic without the expansion due to polarizing. During a forward fault the polarizing expands the mho circle towards the source so that the origin is included. This mho circle expansion guarantees safe and selective operation for all types of faults, even for close-in faults.

Elimination of interference signals

Digital filters render the unit immune to interference signals contained in the measured values. In particular, the influence of DC components, capacitive voltage transformers and frequency changes is considerably reduced. A special measuring method is employed in order to assure protection selectivity during saturation of the current transformers.

Measuring voltage monitoring

Tripping of the distance protection is blocked automatically in the event of failure of the measuring voltage, thus preventing spurious tripping.

The measuring voltage is monitored by the integrated fuse failure monitor. Distance protection is blocked if either the fuse failure monitor or the auxiliary contact of the voltage transformer protection switch operates and, in this case, the EMERGENCY definite-time overcurrent protection can be activated.

Power swing detection (ANSI 68, 68T)

Dynamic transient reactions, for instance short-circuits, load fluctuations, auto-reclosures or switching operations can cause power swings in the transmission network. During power swings, large currents along with small voltages can cause unwanted tripping of distance protection relays. To avoid uncontrolled tripping of the distance protection and to achieve controlled tripping in the event of loss of synchronism, the 7SD52/53 relay is equipped with an efficient power swing detection function. Power swings can be detected under symmetrical load conditions as well as during single-pole auto-reclosures.

Tele (pilot) protection for distance protection (ANSI 85-21)

A teleprotection function is available for fast clearance of faults up to 100 % of the line length. The following operating modes may be selected:

- PUTT, permissive underreaching zone transfer trip
- POTT, permissive overreaching zone transfer trip
- UNBLOCKING
- BLOCKING
- Directional comparison pickup
- Pilot-wire comparison
- Reverse interlocking

Fig. 7/53

Power swing current and voltage wave forms

Fig. 7/54 Power swing circle diagram

• DUTT, direct underreaching zone transfer trip (together with Direct Transfer Trip function)

The carrier send and receive signals are available as binary inputs and outputs and can be freely assigned to each physical relay input or output. At least one channel is required for each direction.

Common transmission channels are power-line carrier, microwave radio and fiber-optic links. The serial protection data interface can be used for direct connection to a digital communication network, fiberoptic or pilot-wire link as well.

7SD52/53 also permits the transfer of phase-selective signals. This feature is particularly advantageous as it ensures reliable single-pole tripping, if two single-pole faults occur on different lines. The transmission methods are suitable also for lines with three ends (three-terminal lines). Phase-selective transmission is also possible with multi-end applications, if some user-specific linkages are implemented by way of the integrated CFC logic. During disturbances in the transmission receiver or on the transmission circuit, the tele-protection function can be blocked by a binary input signal without losing the zone selectivity. The control of the overreach zone Z1B (zone extension) can be switched over to the auto-reclosure function. A transient blocking function (Current reversal guard) is provided in order to suppress interference signals during tripping of parallel lines.

Direct transfer tripping

Under certain conditions on the power system it is necessary to execute remote tripping of the circuit-breaker. The 7SD52/53 relay is equipped with phaseselective "external trip inputs" that can be assigned to the received inter-trip signal for this purpose.

Weak-infeed protection: echo and/or trip (ANSI 27 WI)

To prevent delayed tripping of permissive schemes during weak or zero infeed situations, an echo function is provided. If no fault detector is picked up at the weak-infeed end of the line, the signal received here is returned as echo to allow accelerated tripping at the strong infeed end of the line. It is also possible to initiate tripping at the weak-infeed end. A phaseselective 1-pole or 3-pole trip is issued if a permissive trip signal (POTT or Unblocking) is received and if the phase-earth voltage drops correspondingly. As an option, the weak-infeed logic can be equipped according to a French specification.

Directional ground(earth)-fault protection for high-resistance faults (ANSI 50N, 51N, 67N)

In grounded (earthed) networks, it may happen that the distance protection sensitivity is not sufficient to detect high-resistance ground (earth) faults. The 7SD52/53 protection relay has therefore protection functions for faults of this nature.

The ground (earth)-fault overcurrent protection can be used with 3 definite-time stages and one inverse-time stage (IDMT). A 4th definite-time stage can be applied instead of the 1st inverse-time stage.

Inverse-time characteristics according to IEC 60255-3 and ANSI/IEEE are provided (see "Technical data"). An additional logarithmic inverse-time characteristic is also available.

The direction decision can be determined by the neutral current and the zerosequence voltage or by the negativesequence components V_2 and I_2 . In addition or as an alternative to the directional determination with zero-sequence voltage, the star-point current of a grounded (earthed) power transformer may also be used for polarization. Dual polarization applications can therefore be fulfilled. Alternatively, the direction can be determined by evaluation of zero-sequence power. Each overcurrent stage can be set in forward or reverse direction or for both directions (non-directional). As an option the 7SD52/53 relay can be provided with a sensitive neutral (residual) current transformer. This feature provides a measuring range for the neutral (residual) current from 5 mA to 100 A with a nominal relay current of 1 A and from 5 mA to 500 A with a nominal relay current of 5 A. Thus the ground (earth)-fault overcurrent protection can be applied with extreme sensitivity.

The function is equipped with special digital filter algorithms, providing the elimination of higher harmonics. This feature is particularly important for low zerosequence fault currents which usually have a high content of 3rd and 5th harmonics. Inrush stabilization and instantaneous switch-onto-fault trip can be activated separately for each stage as well.

Different operating modes can be selected. The ground(earth)-fault protection is suitable for three-phase and, optionally, for single-phase tripping by means of a sophisticated phase selector. It may be blocked during the dead time of single-pole autoreclose cycles or during pickup of the distance protection.

Tele (pilot) protection for directional ground(earth)-fault protection (ANSI 85-67N)

The directional ground(earth)-fault overcurrent protection can be combined with one of the following teleprotection schemes:

- Directional comparison
- BLOCKING
- UNBLOCKING

The transient blocking function (current reversal guard) is also provided in order to suppress interference signals during tripping of parallel lines.

The pilot functions for distance protection and for ground(earth)-fault protection can use the same signaling channel or two separate and redundant channels.

Backup overcurrent protection (ANSI 50, 50N, 51, 51N)

The 7SD52/53 provides a backup overcurrent protection. Two definite-time stages and one inverse-time stage (IDMTL) are available, separately for phase currents and for the neutral (residual) current. Two operating modes are selectable. The function can run in parallel to the differential

protection and the distance protection or only during interruption of the protection communication and/or failure of the voltage in the VT secondary circuit (emergency operation). The secondary voltage failure can be detected by the integrated fuse failure monitor or via a binary input from a VT miniature circuit-breaker (VT m.c.b. trip).

The following inverse-time characteristics according to IEC 60255-3 and ANSI/IEEE are provided:

- Inverse
- Short inverse
- Long inverse
- Moderately inverse
- Very inverse
- Extremely inverse
- Definite inverse

STUB bus overcurrent protection (ANSI 50(N)-STUB)

The STUB bus overcurrent protection is a separate definite-time overcurrent stage. It can be activated from a binary input signaling the line isolator (disconnector) is open. Settings are available for phase and ground (earth)-faults.

Instantaneous high-speed switch-ontofault overcurrent protection (ANSI 50HS)

Instantaneous tripping is possible when energizing a faulty line. In the event of large fault currents, the high-speed switch-onto-fault overcurrent stage can initiate very fast 3-pole tripping.

With lower fault currents, instantaneous tripping after switch-onto-fault is also possible

- if the breaker positions at the line ends are monitored and connected to the relays. This breaker position monitor offers a high-speed trip during switch-ontofault conditions.
- with the overreach distance zone Z1B or just with pickup in any zone.

The switch-onto-fault initiation can be detected via the binary input "manual close" or automatically via measurement.

Fault locator

The integrated fault locator calculates the fault impedance and the distance-to-fault. The result is displayed in ohms, miles, kilometers or in percent of the line length. Parallel line and load current compensation is also available.

As an option for a line with two ends, a fault locator function with measurement at both ends of the line is available. Thanks to this feature, accuracy of measurement on long lines under high load conditions and high fault resistances is considerably increased.

Overvoltage protection, undervoltage protection (ANSI 59, 27)

A voltage rise can occur on long lines that are operating at no-load or are only lightly loaded. The 7SD52/53 contains a number of overvoltage measuring elements. Each measuring element is of two-stage design. The following measuring elements are available:

- Phase-to-earth overvoltage
- Phase-to-phase overvoltage
- Zero-sequence overvoltage The zero-sequence voltage can be connected to the 4th voltage input or be derived from the phase voltages.
- Positive-sequence overvoltage of the local end or calculated for the remote end of the line (compounding).
- Negative-sequence overvoltage

Tripping by the overvoltage measuring elements can be effected either at the local circuit-breaker or at the remote station by means of a transmitted signal.

The 7SD52/53 is fitted, in addition, with three two-stage undervoltage measuring elements:

- Phase-to-earth undervoltage
- Phase-to-phase undervoltage
- Positive-sequence undervoltage

The undervoltage measuring elements can be blocked by means of a minimum current criterion and by means of binary inputs.

Frequency protection (ANSI 810/U)

Frequency protection can be used for overfrequency and underfrequency protection. Unwanted frequency changes in the network can be detected and the load can be removed at a specified frequency setting. Frequency protection can be used over a wide frequency range (45 to 55, 55 to 65 Hz). There are four elements (selectable as overfrequency or underfrequency) and each element can be delayed separately.

Breaker failure protection (ANSI 50BF)

The 7SD52/53 relay incorporates a twostage breaker failure protection to detect the failure of tripping command execution, for example due to a defective ciruitbreaker. The current detection logic is phase-segregated and can therefore also be used in single-pole tripping schemes. If the fault current is not interrupted after a settable time delay has expired, a retrip command or a busbar trip command is generated. The breaker failure protection can be initiated by all integrated protection functions as well as by external devices via binary input signals.

Auto-reclosure (ANSI 79)

The 7SD52/53 relay is equipped with an auto-reclose function (AR). The function includes several operating modes:

- 3-pole auto-reclosure for all types of faults; different dead times are available depending the type of fault
- 1-pole auto-reclosure for 1-phase faults, no reclosing for multi-phase faults
- 1-pole auto-reclosure for 1-phase faults and for 2-phase faults without earth, no reclosing for multi-phase faults
- 1-pole auto-reclosure for 1-phase and 3-pole auto-reclosing for multi-phase faults
- 1-pole auto-reclosure for 1-phase faults and 2-phase faults without earth and 3-pole auto-reclosure for other faults
- Multiple-shot auto-reclosure
- Interaction with an external device for auto-reclosure via binary inputs and outputs
- Control of the integrated AR function by external protection
- Adaptive auto-reclosure. Only one line end is closed after the dead time. If the fault persists this line end is switched off. Otherwise the other line ends are closed via a command over the communication links. This avoids stress when heavy fault currents are fed from all line ends again.
- Interaction with the internal or an external synchro-check
- Monitoring of the circuit-breaker auxiliary contacts

In addition to the above-mentioned operating modes, several other operating principles can be employed by means of the integrated programmable logic (CFC).

Integration of auto-reclosure in the feeder protection allows evaluation of the line-side voltages. A number of voltagedependent supplementary functions are thus available:

• DLC

By means of <u>d</u>ead-<u>l</u>ine <u>c</u>heck, reclosure is effected only when the line is deenergized (prevention of asynchronous breaker closure).

• ADT

The <u>a</u>daptive <u>d</u>ead <u>time</u> is employed only if auto-reclosure at the remote station was successful (reduction of stress on equipment).

• RDT

<u>Reduced dead time is employed in conjunction with auto-reclosure where no</u> tele-protection method is employed: When faults within the zone extension, but external to the protected line, are switched off for rapid auto-reclosure (RAR), the RDT function decides on the basis of measurement of the return voltage from the remote station which has not tripped whether or not to reduce the dead time.

Synchronism check (ANSI 25)

Where two network sections are switched in by control command or following a 3-pole auto-reclosure, it must be ensured that both network sections are mutually synchronous. For this purpose, a synchronism-check function is provided. After verification of the network synchronism the function releases the CLOSE command. Alternatively, reclosing can be enabled for different criteria, e.g., checking that the busbar or line is not carrying a voltage (dead line or dead bus).

Thermal overload protection (ANSI 49)

A built-in overload protection with a current and thermal alarm stage is provided for the thermal protection of cables and transformers. The trip time characteristics are exponential functions according to IEC 60255-8. The preload is thus considered in the trip times for overloads. An adjustable alarm stage can initiate an alarm before tripping is initiated.

Monitoring and supervision functions

The 7SD52/53 relay provides comprehensive monitoring functions covering both hardware and software. Furthermore, the measured values are continuously checked for plausibility. Therefore the current and voltage transformers are also included in this monitoring system.

Current transformer / Monitoring functions

A broken wire between the CTs and relay inputs under load may lead to maloperation of a differential relay if the load current exceeds the differential setpoint. The 7SD52/53 provides fast broken wire supervision which immediatelly blocks all line ends if a broken wire condition is measured by a local relay. This avoids maloperation due to broken wire condition. Only the phase where the broken wire is detected is blocked. The other phases remain under differential operation.

Fuse failure monitoring

If any measured voltage is not present due to short-circuit or open circuit in the voltage transformer secondary circuit the distance protection would respond with an unwanted trip due to this loss of voltage. This secondary voltage interruption can be detected by means of the integrated fuse failure monitor. Immediate blocking of distance protection is provided for all types of secondary voltage failures.

Additional measurement supervision functions are

- Symmetry of voltages and currents
- Summation of currents and voltages

Trip circuit supervision (ANSI 74TC)

One or two binary inputs for each circuitbreaker pole can be used for monitoring the circuit-breaker trip coils including the connecting cables. An alarm signal is issued whenever the circuit is interrupted.

Lockout (ANSI 86)

All binary outputs can be stored like LEDs and reset using the LED reset key. The lockout state is also stored in the event of supply voltage failure. Reclosure can only be issued after the lockout state is reset.

Local measured values

The measured values are calculated from the measured current and voltage signals along with the power factor ($\cos \phi$), the frequency, the active and reactive power. Measured values are displayed as primary or secondary values or in percent of the specific line rated current and voltage. The relay uses a 20 bit high-resolution AD converter and the analog inputs are factorycalibrated, so a high accuracy is reached. The following values are available for measured-value processing:

- Currents 3 x I_{Phase}, 3 I₀, I_E, I_{E sensitive}
- Voltages 3 x V_{Phase-Ground, 3 x} V_{Phase-Phase}, 3 V₀, V_{en}, V_{SYNC}, V_{COMP}
- Symmetrical components *I*₁, *I*₂, *V*₁, *V*₂
- Real power *P* (Watt), reactive power *Q* (Var), apparent power *S* (VA)
- Power factor PF (= $\cos \phi$)
- Frequency *f*
- Differential and restraint current per phase
- Load impedances with directional indication
 - $3 \ge R_{\text{Phase-Ground}}, X_{\text{Phase-Ground}}$
 - $3 \ge R_{\text{Phase-Phase}}, X_{\text{Phase-Phase}}$
- Long term mean values 3 x *I*_{Phase}; *I*₁; *P*; *P*+; *P*-; *Q*; *Q*+; *Q*-; *S*
- Minimum/maximum memory 3 x I_{Phase}; I₁; 3 x V_{Phase-Ground} 3 x V_{Phase-Phase}, 3V₀; V₁; P+; P-; Q+; Q-; S; f; power factor (+); power factor (-); from mean values 3 x I_{Phase}; I₁; P; Q; S
- Energy meters W_{p+}; W_{p-}; W_{Q+}; W_{Q-}
- Availability of the data connection to the remote line ends per minute and per hour
- Regarding delay time measuring with the GPS-version the absolute time for transmit and receive path is displayed separately.

Limit value monitoring: Limit values are monitored by means of the CFC. Commands can be derived from these limit value indications.

Measured values at remote line ends

Every two seconds the currents and voltages are freezed at the same time at all line ends and transmitted via the communication link. At a local line end, currents and voltages are thus available with their amount and phases (angle) locally and remotely. This allows checking the whole configuration under load conditions. In addition, the differential and restraint currents are also displayed. Important communication measurements, such as delay time or faulty telegrams per minute/hour are also available as measurements. These measured values can be processed with the help of the CFC logic editor.

Commissioning

Special attention has been paid to commissioning. All binary inputs and outputs can be displayed and activated directly. This can simplify the wiring check significantly for the user. The operational and fault events and the fault records are clearly arranged.

Furthermore, all currents and optional voltages and phases are available via communication link at the local relay and are displayed in the relay, with DIGSI 4 or with the Web Monitor.

The operational and fault events and fault records from all line ends share a common time tagging which allows to compare events registered in the different line ends on a common time base.

WEB Monitor – Internet technology simplifies visualization

In addition to the universal DIGSI 4 operating program, the relay contains a WEB server that can be accessed via a telecommunication link using a browser (e.g. Internet Explorer). The advantage of this solution is to operate the unit with standard software tools and at the same time make use of the Intranet/Internet infrastructure. This program shows the protection topology and comprehensive measurements from local and remote line ends. Local and remote measurements are shown as phasors and the breaker positions of each line end are depicted. It is possible to check the correct connection of the current transformers or the correct vector group of a transformer.

Browser-aided commissioning: Phasor diagram

Fig. 7/57

Browser-aided commissioning: Differential protection tripping characteristic

Stability can be checked by using the operating characteristic as well as the calculated differential and restraint values in the browser windows. If the distance protection is active, then the

valid zone characteristic (quadrilateral/ mho) is displayed. Event log and trip log messages are also available. Remote control can be used, if the local front panel cannot be accessed.

Siemens SIP · Edition No. 6

Control and automation functions

Control

In addition to the protection functions, the SIPROTEC 4 units also support all control and monitoring functions that are required for operating medium-voltage or high-voltage substations.

The main application is reliable control of switching and other processes.

The status of primary equipment or auxiliary devices can be obtained from auxiliary contacts and communicated via binary inputs. Therefore it is possible to detect and indicate both the OPEN and CLOSED position or a fault or intermediate circuitbreaker or auxiliary contact position.

The switchgear or circuit-breaker can be controlled via:

- integrated operator panel
- binary inputs
- substation control and protection system
- DIGSI 4

Command processing

All the functionality of command processing is offered. This includes the processing of single and double commands with or without feedback, sophisticated monitoring of the control hardware and software, checking of the external process, control actions using functions such as runtime monitoring and automatic command termination after output. Here are some typical applications:

- Single and double commands using 1, 1 plus 1 common or 2 trip contacts
- User-definable bay interlocks
- Operating sequences combining several switching operations such as control of circuit-breakers, disconnectors and earthing switches
- Triggering of switching operations, indications or alarm by combination with existing information

Automation/user-defined logic

With integrated logic, the user can set, via a graphic interface (CFC), specific functions for the automation of switchgear or substation. Functions are activated via function keys, binary input or via communication interface.

Switching authority

Switching authority is determined according to parameters, communication or by key-operated switch (when available).

If a source is set to "LOCAL", only local switching operations are possible. The following sequence of switching authority is laid down: "LOCAL"; DIGSI PC program, "REMOTE"

Every switching operation and change of breaker position is kept in the status indication memory. The switch command source, switching device, cause (i.e. spontaneous change or command) and result of a switching operation are retained.

Assignment of feedback to command

The positions of the circuit-breaker or switching devices and transformer taps are acquired by feedback. These indication inputs are logically assigned to the corresponding command outputs. The unit can therefore distinguish whether the indication change is a consequence of switching operation or whether it is a spontaneous change of state (intermediate position).

Chatter disable

The chatter disable feature evaluates whether, in a configured period of time, the number of status changes of indication input exceeds a specified figure. If exceeded, the indication input is blocked for a certain period, so that the event list will not record excessive operations.

Filter time

All binary indications can be subjected to a filter time (indication suppression).

Indication filtering and delay

Indications can be filtered or delayed.

Filtering serves to suppress brief changes in potential at the indication input. The indication is passed on only if the indication voltage is still present after a set period of time. In the event of indication delay, there is a wait for a preset time. The information is passed on only if the indication voltage is still present after this time.

Indication derivation

A further indication (or a command) can be derived from an existing indication. Group indications can also be formed. The volume of information to the system interface can thus be reduced and restricted to the most important signals.

Transmission lockout

A data transmission lockout can be activated, so as to prevent transfer of information to the control center during work on a circuit bay.

Test operation

During commissioning, all indications can be passed to an automatic control system for test purposes.

With respect to communication, particular emphasis has been placed on high levels of flexibility, data integrity and utilization of standards common in energy automation. The design of the communication modules permits interchangeability on the one hand, and on the other hand provides openness for future standards (for example, Industrial Ethernet).

Local PC interface

The PC interface accessible from the front of the unit permits quick access to all parameters and fault event data. Of particular advantage is the use of the DIGSI 4 operating program during commissioning.

Rear-mounted interfaces

Two communication modules located on the rear of the unit incorporate optional equipment complements and readily permit retrofitting. They assure the ability to comply with the requirements of different communication interfaces.

The interfaces make provision for the following applications:

Service /modem interface
 By means of the RS232/RS485 or optical
 interface, it is possible to efficiently oper ate a number of protection units cen trally via DIGSI 4 or standard browser.
 Remote operation is possible on connec tion of a modem. This offers the advan tage of rapid fault clarification, especially
 in the case of unmanned power plants.
 With the optical version, centralized op eration can be implemented by means of
 a star coupler.

System interface

This interface is used to carry out communication with a control or protection and control system and supports a variety of communication protocols and interface designs, depending on the module connected.

Commissioning aid via a standard Web browser

In the case of the 7SD52/53, a PC with a standard browser can be connected to the local PC interface or to the service interface (refer to "Commissioning program"). The relays include a small Web server that sends its HTML pages to the browser via an established dial-up network connection.

Retrofitting: Modules for every type of communication

Communication modules for retrofitting are available for the entire SIPROTEC 4 unit range. These ensure that, where different communication interfaces (electrical or optical) and protocols (IEC 61850 Ethernet, IEC 60870-5-103, PROFIBUS-FMS/-DP, DNP 3.0, DIGSI, etc.) are required, such demands can be met.

Safe bus architecture

- RS485 bus
 - With this data transmission via copper conductors electromagnetic fault influences are largely eliminated by the use of twisted-pair conductors. Upon failure of a unit, the remaining system continues to operate without any disturbances.
- Fiber-optic double ring circuit The fiber-optic double ring circuit is immune to electromagnetic interference. Upon failure of a section between two units, the communication system continues to operate without disturbance.

It is generally impossible to communicate with a unit that has failed. If a unit were to fail, there is no effect on the communication with the rest of the system.

Fig. 7/58

IEC 60870-5-103 star-type RS232 copper conductor connection or fiber-optic connection

Fig. 7/59 Bus structure for station bus with Ethernet and IEC 61850

IEC 61850 Ethernet

The Ethernet-based IEC 61850 protocol is the worldwide standard for protection and control systems used by power supply corporations. Siemens was the first manufacturer to support this standard. By means of this protocol, information can also be exchanged directly between bay units so as to set up simple masterless systems for bay and system interlocking. Access to the units via the Ethernet bus is also possible with DIGSI.

IEC 60870-5-103

IEC 60870-5-103 is an internationally standardized protocol for the efficient communication in the protected area. IEC 60870-5-103 is supported by a number of protection device manufacturers and is used worldwide.

PROFIBUS-DP

PROFIBUS-DP is an industryrecognized standard for communications and is supported by a number of PLC and protection device manufacturers.

DNP 3.0

DNP 3.0 (Distributed Network Protocol Version 3) is a messagingbased communication protocol. The SIPROTEC 4 units are fully Level 1 and Level 2 compliant with DNP 3.0. DNP 3.0 is supported by a number of protection device manufacturers.

Fig. 7/60 RS232/RS485 electrical communication module

Fig. 7/61 PROFIBUS communication module, optical double-ring

Fig. 7/62 820 nm fiber-optic communication module

Fig. 7/63 Fiber-optic Ethernet communication module for IEC 61850 with integrated Ethernet switch

Fig. 7/64 System solution: Communications

System solutions for protection and station control

Together with the SICAM power automation system, SIPROTEC 4 can be used with PROFIBUS-FMS. Over the low-cost electrical RS485 bus, or interference-free via the optical double ring, the units exchange information with the control system.

Units featuring IEC 60870-5-103 interfaces can be connected to SICAM in parallel via the RS485 bus or radially by fiber-optic link. Through this interface, the system is open for the connection of units of other manufacturers (see Fig. 7/58).

Because of the standardized interfaces, SIPROTEC units can also be integrated into systems of other manufacturers or in SIMATIC. Electrical RS485 or optical interfaces are available. The optimum physical data transfer medium can be chosen thanks to opto-electrical converters. Thus, the RS485 bus allows low-cost wiring in the cubicles and an interference-free optical connection to the master can be established.

For IEC 61850, an interoperable system solution is offered with SICAM PAS. Via the 100 Mbits/s Ethernet bus, the units are linked with PAS electrically or optically to the station PC. The interface is standardized, thus also enabling direct connection of units of other manufacturers to the Ethernet bus. With IEC 61850, however, the units can also be used in other manufacturers' systems (see Fig. 7/59).

Via modem and service interface, the protection engineer has access to the protection devices at all times. This permits remote maintenance and diagnosis (cyclic testing).

Parallel to this, local communication is possible, for example, during a major inspection.

Serial protection data interface (R2R interface)

As an option, the 7SD52/53 provides one or two protection data interfaces to cover two up to six line end applications in ring or chain topology and hot standby communication between two line ends. In addition to the differential protection function, other protection functions can use this interface to increase selectivity and sensitivity as well as covering advanced applications.

- Fast phase-selective teleprotection signaling for distance protection, optionally with POTT or PUTT schemes
- Two and three-terminal line applications can be implemented without additional logic
- Signaling for directional ground(earth)fault protection – directional comparison for high-resistance faults in solidly earthed systems
- Echo function
- Interclose command transfer with the auto-reclosure "Adaptive dead time" (ADT) mode
- 28 remote signals for fast transfer of binary signals

Flexible utilization of the communication channels by means of the programmable CFC logic

The protection data interfaces have different options to cover new and existing communication infrastructures.

- FO5¹, OMA1² module: 820 nm fiber-optic interface with clock recovery/ST connectors for direct connection with multi-mode FO cable up to 1.5 km for the connection to a communication converter.
- FO6¹, OMA2² module: 820 nm fiber-optic interface/ST connectors for direct connection up to 3.5 km with multi-mode FO cable.

New fiber-optic interfaces, series FO1x

- FO17¹): For direct connection up to 24 km³, 1300 nm, for mono-mode fiber 9/125 μm, LC-Duplex connector
- FO18¹: For direct connection up to 60 km³, 1300 nm, for mono-mode fiber 9/125 μm, LC-Duplex connector
- FO19¹: For direct connection up to 100 km³, 1550 nm, for mono-mode fiber 9/125 μm, LC-Duplex connector
- FO30: 820 nm fiber-optic interface/ ST connectors for direct connection up to 1.5 km and for connections to a IEEE C37.94 multiplexer interface.

The link to a multiplexed communication network is made by separate communication converters (7XV5662). These have a fiber-optic interface with 820 nm and 2 ST connectors to the protection relay. The link to the communication network is optionally an electrical X21 or a G703/-E1/-T1 interface. Furthermore the IEEE C37.94 interface is supported by the FO30 module.

For operation via copper wire communication (pilot wires or twisted telephone pair), a modern communication converter for copper cables is available. This operates with both the two-wire and three-wire copper connections which were used by conventional differential protection systems before. The communication converter for copper cables is designed for 5 kV insulation voltage. An additional 20 kV isolation transformer can extend the field of applications of this technique into ranges with higher insulation voltage requirements. The connection via FO cable to the relay is interference-free. With SIPROTEC 4 and the communication converter for copper cables a digital follow-up technique is available for two-wire protection systems (typical 8 km) and all three-wire protection systems using existing copper communication links.

Different communication converters are listed under "Accessories".

Communication data:

- 32-bit CRC-check according to CCITT and ITU
- Each protection relay possesses a unique relay address
- Continuous communication link supervision: Individual faulty data telegrams do not constitute an immediate danger, if they occur only sporadically. The statistical availability, per minute and hour, of the serial protection data interface can be displayed.
- Supported network interfaces X21/RS422 with 64 or 128 or 512 kbit/s; or G703-64 kbit/s and G703-E1 (2,048 kbit/s) or G703-T1 (1,554 kbit/s).
- Max. channel delay time 0.1 ms to 30 ms (in steps of 0.1 ms) or IEEE C37.94.
- Protocol HDLC

2) For surface-mounting housing.

 For surface-mounting housing the internal FO module OMA1 will be delivered together with an external repeater.
Communication possibilities between relays

Fig. 7/65

Direct optical link up to 1.5 km/3.5 km, 820 nm

Fig. 7/67

Connection to a communication network CC-XG

Fig. 7/66

Direct optical link up to 25/60 km with 1300 nm or up to 100 km with 1550 nm

Fig. 7/68

Connection to a communication network CC-2M

Fig. 7/70 Connection to a pilot wire

Typical connection

Typical connection for current and voltage transformers

3 phase current transformers with neutral point in the line direction, I_4 connected as summation current transformer (=3 I_0): Holmgreen circuit

3 voltage transformers, without connection of the broken (open) delta winding on the line side; the $3V_0$ voltage is derived internally.

Note:

Voltage inputs are always available in the relay. But there is no need to connect it to voltage transformers for the differential protection function.

Alternative current measurement

The 3 phase current transformers are connected in the usual manner. The neutral point is in line direction. I_4 is connected to a separate neutral core-balance CT, thus permitting a high sensitive $3I_0$ measurement.

Note: Terminal Q7 of the I_4 transformer must be connected to the terminal of the core-balance CT pointing in the same direction as the neutral point of the phase current transformers (in this case in line direction). The voltage connection is effected in accordance with Fig. 7/71, 7/76 or 7/77.

Fig. 7/71 Example of connection for current and voltage transformers

Fig. 7/72

Alternative connection of current transformers for sensitive ground(earth)-current measuring with core-balance current transformers

Typical connection

Alternative current connection

3 phase current transformers with neutral point in the line direction, I_4 connected to a current transformer in the neutral point of a grounded (earthed) transformer for directional ground(earth)-fault protection. The voltage connection is effected in accordance with Fig. 7/71, 7/76 or 7/77.

Fig. 7/73 Alternative connection of current transformers for measuring neutral current of a grounded (earthed) power transformer

Alternative current connection

3 phase current transformers with neutral point in the line direction, I_4 connected to the summation current of the parallel line for parallel line compensation on overhead lines. The voltage connection is effected in accordance with Fig. 7/71, 7/76 or 7/77.

Fig. 7/74 Alternative connection of current transformers for measuring the ground (earth) current of a parallel line

Fig. 7/75 Connection of current transformer with restricted earth-fault protection (REF)

Typical connection

Alternative voltage connection

3 phase voltage transformers, V_4 connected to broken (open) delta winding (V_{en}) for additional summation voltage monitoring and ground(earth)-fault directional protection. The current connection is effected in accordance with Fig. 7/71, 7/72, 7/73 and 7/74.

Fig. 7/76 Alternative connection of voltage transformers for measuring the displacement voltage (e-n voltage)

Alternative voltage connection

3 phase voltage transformers, *V*₄ connected to busbar voltage transformer for synchro-check.

Note: Any phase-to-phase or phase-toground(earth) voltage may be employed as the busbar voltage. Parameterization is carried out on the unit. The current connection is effected in accordance with Fig. 7/71, 7/72, 7/73 and 7/74.

Fig. 7/77 Alternative connection of voltage transformers for measuring the busbar voltage

General unit data

Analog inputs

Rated frequency Rated current IN

Rated voltage

Power consumption In CT circuits with $I_N = 1$ A In CT circuits with $I_{\rm N} = 5$ A In VT circuits

Thermal overload capacity In CT circuits

In VT circuits

Dynamic overload capacity In CT circuits In the CT circuit for high sensitive earth-fault protection (refer to ordering code)

Auxiliary voltage

Rated voltage

	60 to 125 V DC ¹⁾ 110 to 250 V DC ¹⁾ and 115 V AC with 50/60 H
Permissible tolerance	-20 % to +20 %
Max. superimposed AC voltage (peak-to-peak)	≤ 15 %
Power consumption During normal operation During pickup with all inputs and outputs activated	Approx. 8 W Approx. 18 W
Bridging time during auxiliary voltage failure V _{aux} 110 V AC/DC	≥ 50 ms
Binary inputs	
Quantity Function can be assigned	8 or 16 or 24
Minimum permissible voltage Range is selectable with jumpers for each binary input	19 or 88 or 176 V DC, bipol (3 operating ranges)
Maximum permissible voltage	300 V DC
Current consumption, energized	Approx. 1.8 mA
Output relays	
Quantity Function can be assigned	16 or 24 or 32
Switching capacity Make Break Break (for resistive load) Break (for $\tau = L/R \le 50 \text{ ms}$)	1000 W /VA 30 VA 40 W 25 VA
Switching voltage	250 V

Permissible current

50 or 60 Hz (selectable) 1 or 5 A (selectable, controlled by firmware) 80 to 125 V (selectable)

Approx. 0.05 VA Approx. 0.30 VA Approx. 0.10 VA

500 A for 1 s 150 A for 10 s $4 \text{ x} I_{\text{N}}$ continuous 230 V, continuous per phase

1250 A (half cycle)

	24 to 48 V DC 60 to 125 V DC ¹⁾ 110 to 250 V DC ¹⁾ and 115 V AC with 50/60 Hz ¹⁾
e	-20 % to +20 %
AC voltage	≤ 15 %
n peration ith all inputs rated	Approx. 8 W Approx. 18 W
g auxiliary .10 V AC/DC	≥ 50 ms
assigned	8 or 16 or 24
ole voltage e with jumpers put	19 or 88 or 176 V DC, bipolar (3 operating ranges)
ble voltage	300 V DC
on, energized	Approx. 1.8 mA
assigned	16 or 24 or 32
ve load) R ≤ 50 ms)	1000 W /VA 30 VA 40 W 25 VA 250 V
	30 A for 0.5 s 5 A continuous

LEDs Quantity RUN (green) 1 ERROR (red) 1 Indication (red), function can be 14 assigned Unit design Housing 7XP20 See dimension drawings, part 15 1/2 x 19" or 1/1 x 19" Degree of protection acc. to EN 60529 Surface-mounting housing IP 51 Flush-mounting housing IP 50 Rear Front IP 51 For the terminals IP 2x with cover cap Weight Flush-mounting housing 6 kg 1/2 x 19" 10 kg 1/1 x 19" Surface-mounting housing 1/2 x 19" 11 kg 1/1 x 19" 19 kg Serial interfaces (front of unit)

Operating interface 1 for DIGSI 4 or browser Connection Front panel, non-isolated, RS232, 9-pin subminiature connector 4800 to 115200 baud Baud rate Time synchronization (rear of unit) IRIG-B/DCF77/SCADA or 1 sec pulse from GPS (format IRIG-B000) Connection 9-pin subminiature connector (SUB-D) Voltage levels 5 or 12 or 24 V Dielectric test 500 V/50 Hz Service interface (operating interface 2) for DIGSI 4 / modem / service Isolated RS232/RS485 9-pin subminiature connector Dielectric test 500 V/50 Hz Distance for RS232 Max. 15 m Distance for RS485, depends on Max. 1000 m the baud rate Fiber-optic Integrated ST connector Optical wavelength $\lambda = 820 \text{ nm}$ Permissible attenuation Max. 8 dB for glass-fiber 62.5/125 µm Distance Max. 1.5 km System interface (refer to ordering code) IEC 61850 Ethernet IEC 60870-5-103 PROFIBUS-FMS PROFIBUS-DP DNP 3.0 Isolated RS232/RS485 9-pin subminiature connector Baud rate 4800 to 38400 baud 500 V/50 Hz Dielectric test Distance for RS232 Max. 15 m Distance for RS485 Max. 1000 m

System interface, continued

PROFIBUS RS485 Dielectric test Baud rate Distance

PROFIBUS fiber-optic²⁾

Only for flush-mounting housing For surface-mounting housing Baud rate Optical wavelength Permissible attenuation Distance

 $\lambda = 820 \text{ nm}$

ST connectors

Protection data interface (R2R interface)

FO5¹⁾, OMA1²⁾: Fiber-optic interface For multi-mode fiber 62.5/125 µm, with clock recovery for direct connec- ST connectors tion up to 1.5 km or for connection to Permissible fiber attenuation 8 dB a communication converter, 820 nm

 $FO6^{1}$, $OMA2^{2}$: Fiber-optic interface For multi-mode fiber 62.5/125 μ m, for direct connection up to 3.5 km, 820 nm

New fiber-optic interfaces, series FO1x

FO17¹): for direct connection up to 24 km³⁾, 1300 nm

FO18¹): for direct connection up to 60 km³, 1300 nm

FO19¹): for direct connection up to 100 km³⁾, 1550 nm

Relay communication equipment

External communication converter 7XV5662-0AA00 for communication networks X21/G703-64 kbit/s

External communication converter to interface between the relays, optical 820 nm interface and the X21(RS422) G703-64 kbit/s interface of a communication device

X21/G703, RS422 selectable by jumpers. Baud rate selectable by jumpers

Input: fiber-optic 820 nm with clock recovery

Output: X21 (RS422) electrical interface on communication device

G703-64 kbit/s electrical interface on communication device

External communication converter to interface between the relays, optical 820 nm interface and G703-E1 or G703-T1 interface of a communication network.

Inputs: 2 fiber-optic inputs 820 nm, 1RS232 input

Output: G703.5 G703.6

Electrical interface on communication network

500 V/50 Hz Max. 12 Mbaud 1 km at 93.75 kB; 100 m at 12 MB

ST connector Optical interface with OLM²⁾ Max. 1.5 Mbaud Max. 8 dB for glass-fiber 62.5/125 µm 500 kB/s 1.6 km, 1500 kB/s 530 m

Permissible fiber attenuation 16 dB

For mono-mode fiber 9/125 µm,

Permissible fiber attenuation 13 dB

Permissible fiber attenuation 29 dB

Permissible fiber attenuation 29 dB

For mono-mode fiber 9/125 µm,

For mono-mode fiber 9/125 µm, LC-Duplex connector

LC-Duplex connector

LC-Duplex connector

External communication converter 7XV5662-0AC00 for pilot wires External communication converter

o interface between relays, optical 320 nm interface and a pilot wire or wisted telephone pair.	
Гуріcal distance	15 km
Fiber-optic 820 nm with clock recovery	Max. 1.5 km with 62.5/125 μm multi-mode FO cable
Pilot wire	Screw-type terminal 5 kV isolated
Permissible time delay (duration of d	<u>ata transmission)</u>
Delay of telegrams due to trans- nission for one unit to the other. Delay is constantly measured and Idjusted	Max. 30 ms per transmission path Permissible max. value can be selected
Electrical tests	
Specifications	
Standards	IEC 60255 (product standards) ANSI/IEEE C37.90.0/.1/.2 UL 508 For further standards see "Individual functions"
nsulation tests	
Standards	IEC 60255-5
Voltage test (100 % test) All circuits except for auxiliary supply, binary inputs and communication interfaces	2.5 kV (r.m.s.), 50/60 Hz
Auxiliary voltage and binary inputs (100 % test)	3.5 kV DC
RS485/RS232 rear side communi- cation interfaces and time synchronization interface (100 % test)	500 V (r.m.s.), 50/60 Hz
mpulse voltage test (type test) All circuits except for communi- cation interfaces and time syn- chronization interface, class III	5 kV (peak); 1.2/50 μs; 0.5 J 3 positive and 3 negative impulses at intervals of 5 s
EMC tests for noise immunity; type te	ests
Standards	IEC 60255-6, IEC 60255-22 (product standards) (type tests) EN 50082-2 (generic standard) DIN 57435 part 303

High frequency test IEC 60255-22-1, class III and VDE 0435 part 303, class III

Electrostatic discharge IEC 60255-22-2, class IV EN 61000-4-2, class IV

Irradiation with RF field, non-modulated

IEC 60255-22-3 (report), class III Irradiation with RF field,

amplitude-modulated IEC 61000-4-3, class III

1) For flush-mounting housing.

2) For surface-mounting housing.

3) For surface-mounting housing the internal FO module OMA1 will be delivered together with an external repeater.

2.5 kV (peak); 1 MHz; $\tau = 15$ ms;

8 kV contact discharge; 15 kV air

discharge; both polarities; 150 pF;

10 V/m; 27 to 500 MHz

10 V/m; 80 to 1000 MHz;

80 % AM; 1 kHz

400 surges per s;

test duration 2 s

 $R_{\rm i} = 330 \,\Omega$

Max. 1.5 km with 62.5/125 µm multi-mode FO cable to device side

64/128/512 kbit (selectable by jumper) max. 800 m, 15-pin connector

64 kbit/s, max. 800 m, screw-type terminal

External communication converter 7XV5662-0AD00 for communication networks with G703-E1 or G703-T1

Max. 1.5 km with 62.5/125µm

multi-mode 1 FO cable to device side

E1: 2,048 kbit/s T1: 1,554 kbit/s

max. 800 m, screw-type terminal

IEC 60255-21 and IEC 60068-2

5 to 8 Hz: \pm 7.5 mm amplitude;

Acceleration 15 g, duration 11 ms, 3 shocks each in both directions

Acceleration 10 g, duration 16 ms,

1000 shocks each in both directions

8 to 150 Hz: 2 g acceleration frequency sweep 1 octave/min 20 cycles in 3 orthogonal axes

Sinusoidal

Half-sinusoidal

of the 3 axes Half-sinusoidal

of the 3 axes

Irradiation with RF field, pulse-modulated IEC 61000-4-3/ ENV 50204, class III	10 V/m; 900 MHz; repetition frequency 200 Hz; duty cycle 50 %
Fast transients, bursts IEC 60255-22-4 and IEC 61000-4-4, class IV	4 kV; 5/50 ns; 5 kHz; burst length = 15 ms; repetition rate 300 ms; both polarities; $R_i = 50 \Omega$; test duration 1 min
High-energy surge voltages (SURGE) IEC 61000-4-5, installation class III Auxiliary supply	Common mode: 2 kV, 12 Ω, 9 μF Differential mode: 1 kV; 2 Ω, 18 μF
Measurements inputs, binary inputs, binary outputs	Common mode: 2 kV, 42 Ω , 0.5 μ F Differential mode: 1 kV; 42 Ω , 0.5 μ F
Line-conducted HF, amplitude-mod- ulated, IEC 61000-4-6, class III	10 V; 150 kHz to 80 MHz; 80 % AM; 1 kHz
Magnetic field with power frequency IEC 61000-4-8, class IV; IEC 60255-6	30 A/m continuous; 300 A/m for 3 s; 50 Hz; 0.5 mT; 50 MHz
Oscillatory surge withstand capability ANSI/IEEE C37.90.1	2.5 to 3 kV (peak); 1 to 1.5 MHz Damped wave; 50 surges per second; Duration 2 s; $R_i = 150 \Omega$ to 200 Ω
Fast transient surge withstand capability, ANSI/IEEE C37.90.1	4 to 5 kV; 10/150 ns; 50 surges per second; both polarities; duration 2 s; $R_i = 80 \Omega$
Radiated electromagnetic interfer- ence, IEEE C37.90.2	35 V/m; 25 to 1000 MHz amplitude and pulse-modulated
Damped oscillations IEC 60894, IEC 61000-4-12	2.5 kV (peak value), polarity alternating 100 kHz 1, 10 and 50 MHz, $R_i = 200 \Omega$
EMC tests for interference emission;	type test s
Standard	EN 50081-* (generic standard)
Conducted interference voltage on lines, only auxiliary supply, IEC-CISPR 22	150 kHz to 30 MHz Limit class B

Radio interference field strength IEC-CISPR 22

Mechanical dynamic tests

Vibration, shock stress and seismic vibration

During operation

Technical data

Standards Vibration IEC 60255-21-1, class 2 IEC 60068-2-6

Shock IEC 60255-21-2, class 1 IEC 60068-2-27

Seismic vibration IEC 60255-21-2, class 1 IEC 60068-3-3

IEC 60255-21 and IEC 60068-2 Sinusoidal 10 to 60 Hz: \pm 0.075 mm amplitude; 60 to 150 Hz: 1 g acceleration frequency sweep 1 octave/min 20 cycles in 3 othogonal axes Half-sinusoidal acceleration 5 g, duration 11 ms, 3 shocks each in both directions of the 3 axes Sinusoidal 1 to 8 Hz: \pm 3.5 mm amplitude (horizontal axis), 1 to 8 Hz: ± 1.5 mm amplitude (vertical axis), 8 to 35 Hz: 1 g acceleration (horizontal axis), 8 to 35 Hz: 0.5 g acceleration (vertical axis),

30 to 1000 MHz

Limit class B

frequency sweep 1 octave/min 1 cycle in 3 orthogonal axes 1) Ordering option with high-speed contacts required.

During transport Standards Vibration IEC 60255-21-1, class 2

IEC 60255-2-6

Shock IEC 60255-21-2, class 1 IEC 60068-2-27

Continuous shock IEC 60255-21-2, class 1 IEC 60068-2-29

Climatic stress tests

Temperatures Type-tested acc. to IEC 60068-2-1 -25 °C to +85 °C / -13 °F to +185 °F and -2, test Bd, for 16 h Temporarily permissible operating -20 °C to +70 °C / -4 °F to +158 °F temperature, tested for 96 h Recommended permanent operating -5 °C to +55 °C / +25 °F to +131 °F temperature acc. to IEC 60255-6 (Legibility of display may be impaired above +55 °C / +131 °F) Limiting temperature during -25 °C to +55 °C / -13 °F to 131 °F permanent storage Limiting temperature during -25 °C to +70 °C / -13 °F to +158 °F transport Humidity Permissible humidity stress

It is recommended to arrange the units in such a way, that they are not exposed to direct sunlight or pronounced temperature changes that could cause condensation.

Yearly average ≤ 75 % relative humidity; on 56 days in the year up to 93 % relative humidity; condensation is not permitted

Functions

Differential protection (ANSI 87L, 87T)

Sensitive normal trip stage IDiff> Setting range of IDiff > secondary 1 A 0.1 to 20 A (step 0.1) secondary 5 A 0.5 to 100 A 50 Hz Tripping time (three line ends) $I_{\text{Diff}} > 2.5 \times I_{\text{Diff}} > (\text{setting})$ Min. 27 ms Typ. 29 ms 60 Hz Min. 24 ms Typ. 26 ms Delay time of IDiff> trip stage Delay time 0 to 60 s (step 0.01 s) Capacitive current load compensation Restraint ratio 2 to 4 (steps 0.1) I_{C STAB} / I_{CN} High-set fast trip stage IDiff>> Setting range 0.8 to 100 A (step 0.1) IDiff>> secondary 1 A secondary 5 A 4 to 500 A (step 0.5) Min. 9 ms¹⁾ Tripping time (three line ends) Typ. 12 ms¹⁾ $I_{\text{Diff}} \ge 2.5 \times I_{\text{Diff}} >> (\text{setting})$

e differential zone

Vector group adaptation with trans	formers in the differenti
Adaptation of connection symbol	0 to 11 (x 30 °) (step 1)
Neutral point connection	Grounded (earthed) or (earthed) (for each wind
Inrush restraint	
Restraint ratio 2^{nd} harmonic I_{2fN}/I_{fN}	10 % to 45 % (step 1 %)
Max. current for restraint	1.1 A to 25 A ¹⁾ (step 0.1
Crossblock function	Can be switched on and
Max. operative time for crossblock $T_{\text{oper crossblk}}$	0 to 60 s (step 0.01 s) or deactivated (operating u
Distance protection (ANSI 21, 21N)	
Distance protection zones	6, 1 of which as controll zones can be set forward reverse
Time stages for tripping delay Setting range	6 for multi-phase faults 3 for single-phase faults 0 to 30 s or deactivated
Characteristic Selectable separately for phase and ground (earth) faults	(refer to ordering code) quadrilateral and/or Mho (only impedance p
Types of pickup	Overcurrent pickup (I > Voltage-dependent over pickup ($V < / I$ >); Voltage-dependent and gle-dependent overcurr ($V < / I$ > / φ >); Impedance pickup (Z <)
Types of tripping	Three-pole for all types Single-pole for single-pl otherwise three-pole;
	Single-pole for single-pl two-pole phase-to-phas

Time range Line angle $\varphi_{\rm L}$ Inclination angle for quadrilateral

characteristic Quadrilateral reactance reach X

Quadrilateral resistance reach R for phase-to-phase faults and phase-to-ground(earth) faults

Mho impedance reach ZR

Minimum phase current I

Overcurrent pickup I>> $(\text{for } I >>, V </I >, V </I >/\phi >)$

Minimum current pickup I> (for *V*</*I*>, *V*</*I*>/φ> and *Z*<) Minimum current pickup I_{φ} >

(for *V*</*I*>, *V*</*I*>/φ>)

Undervoltage pickup (for V</I> and $V < I > \phi >$ Vph-e< $V_{\rm ph-ph} <$

Load angle pickup (for $V < I > /\phi >$) Load angle $\boldsymbol{\phi}$ Load angle ϕ

(earthed) or not grounded for each winding) % (step 1 %) A¹⁾ (step 0.1 A) tched on and off ep 0.01 s) or (operating up to release) h as controlled zone, all e set forward or/and phase faults -phase faults deactivated (steps 0.01 s) dering code) al and/or impedance pickup) t pickup (I>);pendent overcurrent / *I*>); pendent and phase anent overcurrent pickup p>); pickup (Z <)for all types of faults; for single-phase faults / hree-pole; for single-phase faults and hase-to-phase faults / otherwise three-pole 0 to 30 s (step 0.01 s) or deactivated 30 ° to 89 ° (step 1 °) 30° to 90° (step 1°) 0.05 to 600 $\Omega_{(1A)}$ / 0.01 to 120 $\Omega_{(5A)}$ (step 0.001 Ω) 0.05 to 600 $\Omega_{(1A)}$ / 0.01 to 120 $\Omega_{(5A)}$ $(\text{step } 0.001\Omega)$ 0.05 to 200 $\Omega_{(1A)}$ / 0.01 to 40 $\Omega_{(5A)}$ (step 0.01 Ω) 0.05 to 4 A (1A) / 0.25 to 20 A (5A) (step 0.01 A) 0.25 to 10 A $_{(1A)}$ / 1.25 to 50 A $_{(5A)}$ (step 0.01 A) 0.05 to 4 A (1A) / 0.25 to 20 A (5A) (step 0.01 A) 0.1 to 8 A $_{\rm (1A)}$ / 0.5 to 40 A $_{\rm (5A)}$ (step 0.01 A) 20 to 70 V (step 1 V)

40 to 130 V (step 1 V) 30 ° to 80 ° 90° to 120°

Ground(earth)-fault pickup Neutral (residual) current $3I_0$ (Ground current) (step 0.01 A) Zero-sequence voltage $3V_0$ > for earthed networks for resonant-earthed networks Zero-sequence compensation Selectable input formats $R_{\rm E}/R_{\rm L}$ and $X_{\rm E}/X_{\rm L}$ k_0 and $\phi(k_0)$ Separately selectable for zones $\mathbf{Z1}$ -0.33 to 7 (step 0.01) $R_{\rm E}/R_{\rm L}$ and $X_{\rm E}/X_{\rm L}$ k_0 $\phi(k_0)$ -135 to 135 ° (step 0.01 °) Parallel line mutual compensation (refer to ordering code) $R_{\rm M}/R_{\rm L}$ and $X_{\rm M}/X_{\rm L}$ Phase reference on double earth-faults in resonant-earthed/ (selectable) non-earthed network Load encroachment Minimum load resistance Maximum load angle 20 to 60 ° (step 1 °) Directional decision for all types of faults voltage memory Directional sensitivity Tolerances Impedances (in conformity with DIN 57435, Part 303) Response values (in conformity with DIN 57435, Part 303) V and I Angle (ϕ) < 3 ° Timer tolerance Operating times Minimum trip time with fast relays Minimum trip time with high-speed relays Reset time Approx. 30 ms

0.05 to 4 A $_{(1A)}/0.25$ to 20 A $_{(5A)}$

1 to 100 V (step 1 V) or deactivated 10 to 200 V (step 1 V)

higher zones (Z1B, Z2 to Z5)

0 to 4 (step 0.001)

0.00 to 8 (step 0.01)

Phase preference or no preference

0.10 to 600 $\Omega_{(1A)}/0.02$ to 120 $\Omega_{(5A)}$ (step 0.001 Ω) or deactivated

With sound phase polarization and/or

Dynamically unlimited

For sinusodial quantities

 $\frac{\Delta X}{M} \le 5\%$ for 30 ° $\le \phi_{SC} \le 90$ °

 $\left|\frac{\Delta R}{R}\right| \le 5\%$ for $0^\circ \le \varphi_{SC} \le 60^\circ$

 $\left|\frac{\Delta Z}{Z}\right| \le 5\% \text{ for } -30^{\circ} \le (\varphi_{\text{SC}} - \varphi_{\text{ine}}) \le +30^{\circ}$

 \leq 5 % of setting value \pm 1 % of set value or 10 ms

Approx. 17 ms at 50 Hz Approx. 15 ms at 60 Hz Approx. 12 ms at 50 Hz Approx. 10 ms at 60 Hz

1) Secondary data for $I_{\rm N} = 1$ A; with $I_{\rm N} = 5$ A the values must be multiplied.

Power swing detection (ANSI 68, 68T)				
Power swing detection principle	Measurement of the rate of imped- ance vector change and monitoring of the vector path			
Max. detectable power swing fre- quency	Approx. 7 Hz			
Operating modes	Power swing blocking and/or power swing tripping (out-of-step tripping)			
Power swing blocking programs	All zones blocked Z1/Z1B blocked Z2 to Z5 blocked Z1, Z1B, Z2 blocked			
Detection of faults during power swing blocking	Reset of power swing blocking for all types of faults			
Tele (pilot) protection for distance p	rotection (ANSI 85-21)			
Modes of operation	PUTT (Z1B acceleration); DUTT PUTT (acceleration with pickup); POTT; Directional comparison; Reverse interlocking Pilot-wire comparison; Unblocking; Blocking			
Additional functions	Echo function (refer to weak-infeed function) Transient blocking for schemes with measuring range extension			
Transmission and reception signals	Phase-selective signals available for maximum selectivity with single-pole tripping; signals for 2 and 3-end- lines			
Direct transfer trip (DTT)				
Direct phase-selective tripping via binary input	Alternatively with or without auto-reclosure			
Trip time delay	0 to 30 s (step 0.01 s) or deactivated			
Timer tolerance	\pm 1 % of setting value or 10 ms			
Backup overcurrent protection (ANS	SI 50N, 51N)			
Operating modes	Active only with loss of data connection and voltage or always active			
Characteristics	3 definite-time stages / 1 inverse-time stage			
Definite-time stage (ANSI 50, 50N)				
Pickup definite time stage 1, phase current	0.1 to 25 A $_{\rm (1A)}$ / 0.5 to 125 A $_{\rm (5A)}$ (step 0.01 A) or deactivated			
Pickup definite-time stage 1, neutral (residual) current	0.5 to 25 A $_{\rm (1A)}$ / 0.25 to 125 A $_{\rm (5A)}$ (step 0.01 A) or deactivated			
Pickup definite-time stage 2, phase current	0.1 to 25 A $_{\rm (1A)}$ / 0.5 to 125 A $_{\rm (5A)}$ (step 0.01 A) or deactivated			
Pickup definite-time stage 2, neutral (residual) current	0.05 to 25 A $_{\rm (1A)}$ / 0.25 to 125 A $_{\rm (5A)}$ (step 0.01 A) or deactivated			
Pickup definite-time stage 3, phase current	0.1 to 25 A $_{\rm (1A)}$ / 0.5 to 125 A $_{\rm (5A)}$ (step 0.01 A) or deactivated			
Pickup definite-time stage 3, neutral (residual) current	0.05 to 25 A $_{\rm (1A)}$ / 0.25 to 125 A $_{\rm (5A)}$ (step 0.01 A) or deactivated			
Time delay for definite-time stages	0 to 30 s, (step 0.01 s) or deactivated			
Tolerances Current pickup Delay times Operating time	\leq 3 % of set value or 1 % of $I_{\rm N}$ \pm 1 % of set value or 10 ms Approx. 25 ms			

Inverse-time stage (ANSI 51, 51N)	
Phase current pickup	0.1 to 4 A $_{\rm (1A)}$ /0.5 to 20 A $_{\rm (5A)}$ (step 0.01 A) or deactivated
Neutral (residual) current pickup	0.05 to 4 A $_{\rm (1A)}$ /0.25 to 20 A $_{\rm (5A)}$ (step 0.01 A) or deactivated
Characteristics	
Characteristics according to IEC 60255-3	Normal inverse Very inverse Extremely inverse Long time inverse
Time multiplier	$T_{\rm p}$ = 0.05 to 3 s (step 0.01 s) or deactivated
Pickup threshold	Approx. 1.1 x <i>I</i> / <i>I</i> _p
Reset threshold	Approx. 1.05 x I / I_p
Tolerances Operating time for $2 \le I/I_p \le 20$	\leq 5 % of setpoint ± 15 ms
Characteristics according to ANSI/IEEE	Inverse Short inverse Long inverse Moderately inverse Very inverse Extremely inverse Definite inverse
Time dial	0.5 to 15 (step 0.01) or deactivated
Pickup threshold	Approx. 1.1 x M
Reset threshold	Approx. 1.05 x M
Tolerances Operating time for $2 \le M \le 20$	\leq 5 % of setpoint ± 15 ms
Instantaneous high-speed switch-o (ANSI 50HS)	nto-fault overcurrent protection
Instantaneous high-speed switch-o (ANSI 50HS) Operating mode	nto-fault overcurrent protection Active only after c.b. closing; instantaneous trip after pickup
Instantaneous high-speed switch-o (ANSI 50H5) Operating mode Characteristic	Active only after c.b. closing; instantaneous trip after pickup 2 definite-time stages
Instantaneous high-speed switch-o (ANSI 50HS) Operating mode Characteristic Pickup current I >>>	Active only after c.b. closing; instantaneous trip after pickup 2 definite-time stages 0.1 to 15 A (1A) /0.5 to 75 A (5A) (step 0.01 A) or deactivated
Instantaneous high-speed switch-o (ANSI 50HS) Operating mode Characteristic Pickup current I >>> Pickup current I >>>	Active only after c.b. closing; instantaneous trip after pickup 2 definite-time stages 0.1 to 15 A (1A) /0.5 to 75 A (5A) (step 0.01 A) or deactivated 1 to 25 A (1A)/5 to 125 A (5A) (step 0.01 A) or deactivated
Instantaneous high-speed switch-or (ANSI 50HS) Operating mode Characteristic Pickup current I >>> Pickup current I >>> Reset ratio	Active only after c.b. closing; instantaneous trip after pickup 2 definite-time stages 0.1 to 15 A (1A)/0.5 to 75 A (5A) (step 0.01 A) or deactivated 1 to 25 A (1A)/5 to 125 A (5A) (step 0.01 A) or deactivated Approx. 0.95
Instantaneous high-speed switch-o (ANSI 50H5) Operating mode Characteristic Pickup current I >>> Pickup current I >>> Reset ratio Tolerances	Active only after c.b. closing; instantaneous trip after pickup 2 definite-time stages 0.1 to 15 A $_{(1A)}/0.5$ to 75 A $_{(5A)}$ (step 0.01 A) or deactivated 1 to 25 A $_{(1A)}/5$ to 125 A $_{(5A)}$ (step 0.01 A) or deactivated Approx. 0.95 < 3 % of set value or 1 % of $I_{\rm N}$
Instantaneous high-speed switch-or (ANSI 50HS) Operating mode Characteristic Pickup current I >>> Pickup current I >>>> Reset ratio Tolerances Directional ground (earth)-fault over for high-resistance faults in systems (ANSI 50N, 51N, 67N)	Active only after c.b. closing; instantaneous trip after pickup 2 definite-time stages 0.1 to 15 A (1A)/0.5 to 75 A (5A) (step 0.01 A) or deactivated 1 to 25 A (1A)/5 to 125 A (5A) (step 0.01 A) or deactivated Approx. 0.95 < 3 % of set value or 1 % of I_N excurrent protection with earthed star point
Instantaneous high-speed switch-o (ANSI 50HS) Operating mode Characteristic Pickup current I >>> Pickup current I >>>> Reset ratio Tolerances Directional ground (earth)-fault over for high-resistance faults in systems (ANSI 50N, 51N, 67N) Characteristic	Active only after c.b. closing; instantaneous trip after pickup2 definite-time stages0.1 to 15 A (1A) /0.5 to 75 A (5A) (step 0.01 A) or deactivated1 to 25 A (1A) /5 to 125 A (5A) (step 0.01 A) or deactivatedApprox. 0.95< 3 % of set value or 1 % of I_N ercurrent protection with earthed star point3 definite-time stages / 1 inverse-time stage or 4 definite-time stages / 1 $V_{0invers}$ stage
Instantaneous high-speed switch-o (ANSI 50HS) Operating mode Characteristic Pickup current I >>> Pickup current I >>>> Reset ratio Tolerances Directional ground (earth)-fault over for high-resistance faults in systems (ANSI 50N, 51N, 67N) Characteristic Phase selector	Active only after c.b. closing; instantaneous trip after pickup 2 definite-time stages 0.1 to 15 A (1A) /0.5 to 75 A (5A) (step 0.01 A) or deactivated 1 to 25 A (1A)/5 to 125 A (5A) (step 0.01 A) or deactivated Approx. 0.95 < 3 % of set value or 1 % of <i>I</i> _N ercurrent protection with earthed star point 3 definite-time stages / 1 inverse-time stage or 4 definite-time stages or 3 definite-time stages / 1 <i>V</i> _{0invers.} stage Permits 1-pole tripping for single- phase faults or 3-pole tripping for multi-phase faults
Instantaneous high-speed switch-o (ANSI 50HS) Operating mode Characteristic Pickup current I >>> Pickup current I >>>> Reset ratio Tolerances Directional ground (earth)-fault over (ANSI 50N, 51N, 67N) Characteristic Phase selector Inrush restraint	Active only after c.b. closing; instantaneous trip after pickup 2 definite-time stages 0.1 to 15 A (1A) /0.5 to 75 A (5A) (step 0.01 A) or deactivated 1 to 25 A (1A) /5 to 125 A (5A) (step 0.01 A) or deactivated Approx. 0.95 < 3 % of set value or 1 % of <i>I</i> _N ercurrent protection with earthed star point 3 definite-time stages / 1 inverse-time stage or 4 definite-time stages or 3 definite-time stages / 1 Voinvers. stage Permits 1-pole tripping for single- phase faults or 3-pole tripping for multi-phase faults
Instantaneous high-speed switch-or (ANSI 50HS) Operating mode Characteristic Pickup current I >>> Pickup current I >>>> Reset ratio Tolerances Directional ground (earth)-fault over for high-resistance faults in systems (ANSI 50N, 51N, 67N) Characteristic Phase selector Inrush restraint Instantaneous trip after switch-onto-fault	Active only after c.b. closing; instantaneous trip after pickup 2 definite-time stages 0.1 to 15 A (1A) /0.5 to 75 A (5A) (step 0.01 A) or deactivated 1 to 25 A (1A)/5 to 125 A (5A) (step 0.01 A) or deactivated Approx. 0.95 < 3 % of set value or 1 % of I_N ercurrent protection with earthed star point 3 definite-time stages / 1 inverse-time stage or 4 definite-time stages or 3 definite-time stages / 1 $V_{0invers}$. stage Permits 1-pole tripping for single- phase faults or 3-pole tripping for multi-phase faults Selectable for every stage
Instantaneous high-speed switch-or (ANSI 50H5) Operating mode Characteristic Pickup current I >>> Pickup current I >>>> Reset ratio Tolerances Directional ground (earth)-fault over for high-resistance faults in systems (ANSI 50N, 51N, 67N) Characteristic Phase selector Instantaneous trip after switch-onto-fault Influence of harmonics Stages 1 and 2 (I>>> and I>>) Stages 3 and 4 (I> and inverse 4 th stage)	Active only after c.b. closing; instantaneous trip after pickup 2 definite-time stages 0.1 to 15 A (1A) /0.5 to 75 A (5A) (step 0.01 A) or deactivated 1 to 25 A (1A)/5 to 125 A (5A) (step 0.01 A) or deactivated Approx. 0.95 < 3 % of set value or 1 % of <i>I</i> _N ercurrent protection with earthed star point 3 definite-time stages / 1 inverse-time stage or 4 definite-time stages or 3 definite-time stages / 1 V _{0invers} . stage Permits 1-pole tripping for single- phase faults or 3-pole tripping for multi-phase faults Selectable for every stage Selectable for every stage 3 rd and higher harmonics are com- pletely suppressed by digital filtering 2 nd and higher harmonics are com- pletely suppressed by digital filtering

Definite-time stage (ANSI 50N)		Zero-sequence voltage protection V _{0inverse}	
Pickup value 3 <i>I</i> ₀ >>>	0.5 to 25 A $_{(1A)}$ / 2.5 to 125 A $_{(5A)}$		2 s
Pickup value $3I_0>>$	(step 0.01 A) 0.2 to 25 A _(1A) / 1 to 125 A _(5A)	Tripping characteristic	$t = \frac{V_0}{V_0 - V_{0inv \min}}$
	(step 0.01 A)		7
Pickup value $3I_0>$	$0.05 \text{ to } 25 \text{ A}_{(1\text{A})} / 0.25 \text{ to } 125 \text{ A}_{(5\text{A})}$	Direction decision (ANSI 67N)	
Pile I or the	Neutral (residual) current transformer with normal sensitivity (refer to ordering data, position 7); 0.003 to 25 A $_{(1A)}$ / 0.015 to 125 A $_{(5A)}$ (step 0.001 A) Neutral (residual) current transformer with high sensitivity (refer to ordering data, position 7)	Measured signals for direction deci- sion	$3I_0$ and $3V_0$ or $3I_0$ and $3V_0$ and I_Y (star point current of an earthed power transformer) or $3I_2$ and $3V_2$ (negative-sequence system) or zero-sequence power S_r or automatic selection of zero-sequence or negative-sequence quantities de- pendent on the magnitude of the com- ponent voltages
Pickup value 31 ₀ , 4 stage	0.05 to 25 A (1A) / 0.25 to 125 A (5A) (step 0.01 A)	Min. zero-sequence voltage $3V_0$	0.5 to 10 V (step 0.1 V) $$
	Neutral (residual) current transformer with normal sensitivity (refer to order-	Min. current I_Y (of grounded (earthed) transformers)	0.05 to 1 $A_{(1A)}$ / 0.25 to 5 $A_{(5A)}$ (step 0.01 A)
	ing data, position 7); 0.003 to 25 A (14) / 0.015 to 125 A (54)	Min. negative-sequence voltage $3V_2$	0.5 to 10 V (step 0.1 V)
	(step 0.001 A) Neutral (residual) current transformer	Min. negative-sequence current $3I_2$	0.05 to 1 $A_{(1A)}$ / 0.25 to 5 $A_{(5A)}$ (step 0.01 A)
	with high sensitivity (refer to ordering	Inrush current blocking, capable of bei	ng activated for each stage
Time delay for definite-time stages	0 to 30 s (step 0.01 s) or deactivated	Component of the 2 nd harmonic	10 to 45 % of the fundamental (step 1 %)
Tolerances Current pickup	\leq 3 % of setting value or 1 % $I_{\rm N}$	Max. current, which cancels inrush current blocking	0.5 to 25 A $_{\rm (1A)}$ / 2.5 to 125 A $_{\rm (5A)}$ (step 0.01 A)
Delay times $Command / pickup times 3I_0>>>$	1 % of setting value or 10 ms Approx, 30 ms	Tele (pilot) protection for directiona	l ground(earth)-fault overcurrent
and $3I_0 >>$	Treprom co mo	Operating modes	Directional comparison: Pickup
Command / pickup times $3I_0$ > and $3I_0$, 4 th stage	Approx. 40 ms	Operating modes	Directional comparison: Flexap Directional comparison: Blocking Directional comparison: Unblocking
Inverse-time stage (ANSI 51N)		Additional functions	Echo (see function "weak infeed");
Ground (earth)-current pickup $3I_{0P}$	0.05 to 4 A $_{\rm (1A)}$ / 0.25 to 20 A $_{\rm (5A)}$ (step 0.01 A)		transient blocking for schemes with parallel lines
	Neutral (residual) current transformer with normal sensitivity (refer to ordering data, position 7)	Transmission and reception signals	Phase-selective signals available for maximum selectivity with single-pole tripping: signals for 2 and 3-end-lines
	0.003 to 4 A $_{(1A)}$ / 0.015 to 20 A $_{(5A)}$	Weak-infeed protection with under	roltaae (ANSI 27WI)
	(step 0.001 A) Neutral (residual) current transformer	Operating modes with carrier	Echo
	with high sensitivity (refer to ordering	(signal) reception	Echo and trip with undervoltage
	data, position 7)	Undervoltage phase – ground	2 to 70 V (step 1 V)
Tripping characteristics acc. to IEC 60255-3	Normal inverse; very inverse; extremely inverse; long inverse	Time delay	0.00 to 30 s (step 0.01 s)
ANSI/IEEE tripping characteristic	Inverse: short inverse: long inverse:	Echo impulse	0.00 to 30 s (step 0.01 s)
(not for region DE, refer to ordering	moderately inverse; very inverse;	Tolerances	
data, position 10)	extremely inverse; definite inverse	Voltage threshold	\leq 5 % of set value or 0.5 V
Inverse logarithmic tripping charac- teristics (not for regions DE and US.	$t = T$ $-T$ $\ln \frac{310}{10}$	Timer	\pm 1 % of set value or 10 ms
refer to ordering data, position 10)	$310 \mathrm{pmax}$ $310 \mathrm{p}$	Output of the dictance to fault	X P (econdary) in Q
Pickup threshold	1.1 to 4.0 x I/I_p (step 0.1 s)	Sulput of the distance to fault	X, R (primary) in Ω
Time multiplier for IEC <i>T</i> characteristics	$T_{\rm p} = 0.05$ to 3 s (step 0.01 s)		Distance in kilometers or in % of line length
Time multiplier for ANSI <i>D</i> characteristics	$D_{\rm IOP} = 0.5$ to 15 s (step 0.01 s)	Start of calculation	With trip, with reset of pickup, with binary input
Pickup threshold	Approx. 1.1 x I/I_p (ANSI: $I/I_p = M$)	Reactance per unit length	0.005 to 6.5 $\Omega/km_{(1A)}$ / 0.001 to
Inverse logarithmic pickup threshold	1.1 to 4.0 x I/I_{0P} (step 0.1)		(step 0.0001 Ω/km)
Reset threshold	Approx. 1.05 x I/I_{0P} (ANSI: $I/I_p = M$)	Tolerance	For sinusoidal quantities
Tolerance Operating time for $2 \le I/I_p \le 20$	\leq 5 % of setpoint ± 15 ms		\leq 2.5 % line length for 30 ° \leq $\varphi_{SC} \leq$ 90 ° and $V_{SC}/V_{nom} > 0.1$

CB pole discrepancy monitoring

Approx. 15 ms, typical; 25 ms max.

 \leq 5 % of setting value or 1 % I_{nom}

Only 1-pole; only 3-pole, 1 or 3-pole

0 to 1800 s (step 0.01 s) or deactivated

0.01 to 300 s (step 0.01 s) or deactivated

1 % of setting value or 10 ms

DLC - dead-line check ADT - adaptive dead time

RDT - reduced dead time

0.5 to 300 s (step 0.01 s)

Up to 8

00	hh		00	17.
		cui		щи
100		Cui	u u	

Voltage protection (ANSI 59, 27)	
Operating modes	Local tripping or only indication
Overvoltage protection	
Pickup values V _{PH-Gnd} >>, V _{PH-Gnd} > (phase-ground (earth) overvoltage)	1 to 170 V (step 0.1 V) or deactivated
Pickup values <i>V</i> _{PH-PH} >>, <i>V</i> _{PH-PH} > (phase-phase overvoltage)	2 to 220 V (step 0.1 V) or deactivated
Pickup values $3V_0 >>, 3V_0 >$ ($3V_0$ can be measured via V4 transformers or calculated by the relay) (zero-sequence overvoltage)	1 to 220 V (step 0.1 V) or deactivated
Pickup values <i>V</i> ₁ >>, <i>V</i> ₁ > (positive-sequence overvoltage)	2 to 220 V (step 0.1 V) or deactivated
Measured voltage	Local positive-sequence voltage or calculated remote positive-sequence voltage (compounding)
Pickup values V ₂ >>, V ₂ > (negative-sequence overvoltage)	2 to 220 V (step 0.1 V) or deactivated
Reset ratio (settable)	0.5 to 0.98 (step 0.01)
Undervoltage protection	
Pickup values <i>V</i> _{PH-Gnd} <<, <i>V</i> _{PH-Gnd} < (phase-ground (earth) undervoltage)	1 to 100 V (step 0.1 V) or deactivated
Pickup values <i>V</i> _{PH-PH} <<, <i>V</i> _{PH-PH} < (phase-phase undervoltage)	1 to 175 V (step 0.1 V) or deactivated
Pickup values V1<<, V1< (positive-sequence undervoltage)	1 to 100 V (step 0.1 V) or deactivated
Blocking of undervoltage protection stages	Minimum current; binary input
Reset ratio	1.05
Time delays	
Time delay for all over- and undervoltage stages	0 to 100 s (steps 0.01 s) or deactivated
Command / pickup time	Approx. 30 ms
Tolerances Voltage limit values Time stages	\leq 3 % of setting value or 0.5 V 1 % of setting value or 10 ms
Frequency protection (ANSI 81)	
Number of frequency elements	4
Setting range	45.5 to 54.5 Hz (in steps of 0.01) at $f_{nom} = 50$ Hz 55.5 to 64.5 Hz (in steps of 0.01) at $f_{nom} = 60$ Hz
Delay times	0 to 600 s or ∞ (in steps of 0.01 s)
Operating voltage range	6 to 230 V (phase-to-ground (earth))
Pickup times	Approx. 80 ms
Dropout times Hysteresis Dropout condition	Approx. 80 ms Approx. 20 mHz Voltage = 0 V and current = 0 A
Tolerances Frequency Delay times	12 m Hz for V = 29 to 230 V 1 % of the setting value or 10 ms

Breaker failure protection (ANSI 50Bl	=)
Number of stages	2
Pickup of current element	$\begin{array}{l} 0.05 \text{ to } 20 \; A_{(1A)} \; / \; 0.25 \text{ to } 100 \; A_{(5A)} \\ (step \; 0.01 \; A) \end{array}$
Time delays T1 _{1phase} , T1 _{3phase} , T2	0 to 30 s (steps 0.01 s) or deactivated
Additional functions	End-fault protection

Reset time Tolerances Current limit value

Time stages Auto-reclosure (ANSI 79) Number of auto-reclosures

Operating mode Operating modes with line voltage check

Dead times T_{1-ph} , T_{3-ph} , T_{Seq} Action times Reclaim times Start-signal monitoring time Additional functions

Voltage limit values for DLC, ADT, RDT Healthy line voltage

Dead line Tolerances Time stages

Voltage limit values Synchro-check (ANSI 25)

Initiate options

Operating modes with auto-reclosure

For manual closure and control commands Permissible voltage difference Permissible frequency difference Permissible angle difference Max. duration of synchronization Release delay with synchronous networks Tolerances Time stages

Voltage limit values

0.01 to 300 s (step 0.01 s) Synchro-check request 3-phase intertripping InterCLOSE command to the remote end Check of CB ready state Blocking with manual CLOSE 30 to 90 V (step 1 V)

2 to 70 V (step 1 V)

1 % of setting value or 10 ms \leq 3 % of setting value or 0.5 V

Auto-reclosure; Manual CLOSE control Control commands

Synchro-check Line dead/busbar live Line live/busbar dead Line and busbar dead Bypassing

As for auto-reclosure 1 to 60 V (step 0.1 V) 0.03 to 2 Hz (step 0.01 Hz) 2 to 80 ° (step 1 °) 0.01 to 600 s (step 0.01 s) or deactivated 0 to 30 s (step 0.01 s)

1 % of setting value or 10 ms \leq 2 % of setting value or 2 V

Restricted earth-fau	It protection (AN	SI 87N)	
Multiple availability		2 times (option)	
Settings			
Differential current $I_{\text{REF}} > /I_{\text{Nobj}}$		0.05 to 2.00 (st	teps 0.01)
Limit angle	arphi ref	110 ° (fixed)	
Time delay	T_{REF}	0.00 to 60.00 s (st	teps 0.01 s)
The set times are pur	e delay times	of deactivated (in	, uip)
Operating times			
Pickup time (in ms) at frequency		50 Hz 60 Hz	
At $1.5 \cdot$ setting value I_{REF} >, approx. At $2.5 \cdot$ setting value I_{REF} >, approx.		30252824	
Dropout time (in n	ns), approx.	26 23	
Dropout ratio, appro	x.	0.7	
Overcurrent-time pr	otection for pha	se and residual cui	rrents
Multiple availability		3 times (option)	
Characteristics			
Definite-time stages	(DT)	$I_{\rm Ph}>>, 3I_0>>, I_{\rm Ph}$	$>, 3I_0 >$
Inverse-time stages (Acc. to IEC	IT)	<i>I</i> _P , 3 <i>I</i> _{0P} Inverse, very inver inverse, long-time	rse, extremely e inverse
Acc. to ANSI		Inverse, moderately inverse, very inverse, extremely inverse, definite inverse, short inverse, long inverse	
		Alternatively, user-specified trip and reset characteristics	
Reset characteristics	(IT)	Acc. to ANSI with	disk emulation
Current stages			
High-current stages	$I_{\rm Ph}>>$	0.10 to 35.00 A ¹⁾ or deactivated (sta	(steps 0.01 A) age ineffective)
	$T_{\rm IPh}>>$	0.00 to 60.00 s or deactivated (no	(steps 0.01 s) (strip)
	$3I_0 >>$	0.05 to 35.00 A ¹⁾ or deactivated (sta	(steps 0.01 A) age ineffective)
	$T_{3I0}>>$	0.00 to 60.00 s or deactivated (no	(steps 0.01 s) (strip)
Definite-time stages	$I_{\rm Ph}>$	0.10 to 35.00 A ¹⁾ (steps 0.0 or deactivated (stage ineffect	
	$T_{ m IPh}$	0.00 to 60.00 s or deactivated (no	(steps 0.01 s) (strip)
	3 <i>I</i> ₀ >	0.05 to 35.00 A ¹⁾ or deactivated (sta	(steps 0.01 A) age ineffective)
	$T_{3I0} >$	0.00 to 60.00 s or deactivated (no	(steps 0.01 s) (strip)
Inverse-time stages	I_{P}	0.10 to 4.00 A ¹⁾	(steps 0.01 A)
Acc. to IEC	T_{IP}	0.05 to 3.20 s or deactivated (no	(steps 0.01 s) (strip)
	$3I_{0P}$	0.05 to 4.00 A ¹⁾	(steps 0.01 A)
	T_{3I0P}	0.05 to 3.20 s or deactivated (no	(steps 0.01 s) (strip)
Inverse-time stages	$I_{\rm P}$	0.10 to 4.00 A ¹⁾	(steps 0.01 A)
Acc. to ANSI	D_{IP}	0.50 to 15.00 s or deactivated (no	(steps 0.01 s) (strip)
	$3I_{0P}$	0.05 to 4.00 A $^{1)}$	(steps 0.01 A)
	D_{3I0P}	0.50 to 15.00 s or deactivated (no	(steps 0.01 s) o trip)

Thermal overload protection (ANSI 4	9)
Setting ranges Factor k acc. to IEC 60255-8 Time constant τ	1 to 4 (steps 0.01) 1 to 999.9 min (steps 0.1 min)
Temperature alarm stage $\Theta_{alarm}/\Theta_{trip}$	50 to 100 % in relation to the trip temperature
Current alarm stage I _{alarm} Secondary 1 A Secondary 5 A	0.1 to 4 A (step 0.1) 0.5 to 20 A (step 0.1)
Trip time characteristic	$t = \tau \ln \frac{I^2 - I_{\text{pre}}^2}{I^2 - (k \cdot I_{\text{N}})^2}$
Reset ratios Θ / Θ_{alarm} Θ / Θ_{trip} I / I_{alarm} Tolerances	Approx. 0.99 Approx. 0.99 Approx. 0.99 Class 10 % acc. to IEC
Trip circuit supervision (ANSI 74TC)	
Number of supervisable trip circuits	Up to 3
Number of required binary inputs per trip circuit	l or 2
Indication relay	1 to 30 s (step 1 s)
Additional functions	
Operational measured values	
Representation	Primary, secondary and percentage referred to rated value
Currents	3 x I _{Phase} ; 3I ₀ ; I _{Gnd sensitve} ; I ₁ ; I ₂ ; I _Y ; 3 _{I0PAR} 3 x I _{Diff} , 3 x I _{Stab}
Tolerances	\leq 0.5 % of indicated measured value or 0.5 % $I_{\rm nom}$
Voltages	3 x V _{Phase-Ground} ; 3 x V _{Phase-Phase} ; 3V ₀ , V ₁ , V ₂ , V _{SYNC} , V _{en} , V _{COMP}
Tolerances	\leq 0.5 % of indicated measured value or 0.5 % $V_{\rm nom}$
Power with direction indication	P, Q, S
Tolerances P: for $ \cos \varphi = 0.7$ to 1 and V/V_{nom} , $I/I_{\text{nom}} = 50$ to 120 % Q: for $ \sin \varphi = 0.7$ to 1 and V/V_{nom} , $I/I_{\text{nom}} = 50$ to 120 % S: for V/V_{nom} , $I/I_{\text{nom}} = 50$ to 120 %	Typical ≤ 1 % Typical ≤ 1 % Typical ≤ 1 %
Frequency Tolerance	$f \le 20 \text{ mHz}$
Power factor	PF (cos ϕ)
Tolerance for $ \cos \varphi = 0.7$ to 1	Typical $\leq 3\%$
Load impedances with directional indication	3 x R _{Phase-Ground} , X _{Phase-Ground} 3 x R _{Phase-Phase} , X _{Phase-Phase}
Overload measured values	$\Theta / \Theta_{Trip} L1; \Theta / \Theta_{Trip} L2; \Theta / \Theta_{Trip} L3; \Theta / \Theta_{Trip}$
Long-term mean values	
Interval for derivation of mean value	15 min / 1 min; 15 min / 3 min; 15 min / 15 min
Synchronization instant	Every ¼ hour; every ½ hour; every hour
Values	3 x <i>I</i> _{Phase} ; <i>I</i> ₁ ; <i>P</i> ; <i>P</i> +; <i>P</i> -; <i>Q</i> ; <i>Q</i> +; <i>Q</i> -; <i>S</i>

Technical data			
Minimum/maximum memory		Further additional functions	
Indication Resetting	Measured values with date and time Cyclically Via binary input Via the keyboard Via serial interface	Measurement supervision	Current sum Current symmetry Voltage sum Voltage symmetry Voltage phase sequence Fuse failure monitor
Values Min./max. of measured values	3 x I_{Phase} ; I_1 ; 3 x $V_{\text{Phase-Ground}}$; 3 x $V_{\text{Phase-to-phase}}$; $3V_0$; V_1 ; P+; $P-$; $Q+$; $Q-$; S ; f ; power factor (+); power factor (-)	Annunciations Event logging Fault logging	Buffer size 200 Storage of signals of the last 8 faults, buffer size 800
Min./max. of mean values	$3 \ge I_{\text{Phase}}; I_1; P; Q; S$	Switching statistics	Number of breaking operations per c.b. pole
Four-quadrant meters Tolerance	W _{P+} ; W _{P-} ; W _{Q+} ; W _{Q-}		Sum of breaking current per phase Breaking current of last trip operation Max. breaking current per phase
for $ \cos \varphi > 0.7$ and $V > 50 \%$ V_{nom} and $I > 50 \% I_{\text{nom}}$	5 %	Circuit-breaker test	TRIP/CLOSE cycle 3-phase TRIP/CLOSE cycle per phase
Oscillographic fault recording		Setting range	0.00 to 30 s (step 0.01 s)
Analog channels	3 x I _{Phase} , 3I ₀ , 3I ₀ PAR, 3I ₀ Gnd sensitive, 3 x I _{Diff} , 3 x I _{Stab} 3 x V _{Phase} , 3V ₀ , V _{SYNC} , V _{en} , V _x	Dead time for CB TRIP/CLOSE cycle Commissioning support	0.00 to 30 s (step 0.01 s) Operational measured values
Max. number of available recordings	8, backed-up by battery if auxiliary voltage supply fails		Circuit-breaker test Read binary test
Sampling intervals	20 samplings per cycle		Set binary outputs
Total storage time	Approx. 15 s		Set serial interface outputs
Binary channels	Pickup and trip information; number and contents can be freely configured by the user		Lockout of a device Test mode ot the differential protection topology
Max. number of displayed binary	40		
channels		CE conformity	
Control		This product is in conformity with	the Directives of the European Commu-
Number of switching units	Depends on the number of binary / indication inputs and indication / command outputs	nities on the harmonization of the l electromagnetic compatibility (EM electrical equipment designed for u Directing 73/23/EE()	laws of the Member States relating to C Council Directive 89/336/EEC) and se within certain voltage limits (Council
Control commands	Single command / double command 1, 1 plus 1 common or 2 pole	This unit conforms to the international man standard DIN 57435/Part 303	onal standard IEC 60255, and the Ger- (corresponding to VDE 0435/Part 303)
Feed back	CLOSE, TRIP, intermediate position	Further applicable standards: ANSI	/IEEE C37 90.0 and C37 90.1.
Interlocking	Freely configurable	The unit has been developed and m	anufactured for application in an
Local control	Control via menu, function keys	industrial environment according t	o the EMC standards

Control protection, DIGSI, pilot wires

This conformity is the result of a test that was performed by Siemens AG in accordance with Article 10 of the Council Directive complying with the generic standards EN 50081-2 and EN 50082-2 for the EMC Directive and standard EN 60255-6 for the "low-voltage Directive".

Remote control

Selection and ordering data Description Order No. Short code 7SD5 combined multi-end line differential protection 7SD5 000 - 0000 - 0000 - 000 with distance protection Device type¹⁾ Two-terminal differential relay with 4-line display 2 2 Two-terminal differential relay with grapical display 3 2 Multi-terminal differential relay with 4-line display 23 see next page Multi-terminal differential relay with graphical display 3 3 Measurement input $I_{\rm ph} = 1 \, {\rm A}^{2}$, $I_{\rm e} = 1 \, {\rm A}^{2}$ $\frac{I_{ph} - I A^{2}}{I_{ph} = 1 A^{2}}, I_{e} = \text{sensitive (min.} = 0.005 \text{ A})$ $\frac{I_{ph} = 5 A^{2}}{I_{ph} = 5 A^{2}}, I_{e} = 5 A^{2}$ $I_{ph} = 5 A^{2}, I_{e} = \text{sensitive (min.} = 0.005 \text{ A})$ 2 5 6 Auxiliary voltage (Power supply, BI trigger level) 24 to 48 V DC, trigger level binary input 19 V 4) 2 60 to 125 V DC ³, trigger level binary input 19 V ⁴) 4 110 to 250 V DC³⁾, 115 V AC, trigger level binary input 88 V⁴⁾ 5 220 to 250 V DC³⁾, 115 V AC. trigger level binary input 176 V⁴⁾ 6 Binary / Signal / High Speed 6) Housing Flush-Flush-Surface-Fast relays⁵⁾ indication command trip outputs width mounting mounting mounting housing / outputs incl. referred housing/ housing / inputs to 19' onelive screw-type plug-in screw-type terminals terminals terminals contact 1/28 4 12 A Ε 8 4 12 1/24 12 1/2I 8 С 12 1/1 12 16 16 12 12 1/1 G 16 12 12 1/1L 15 1/1Ν 16 5 4 5 Q 16 4 15 1/116 4 15 5 1/1 S D 24 20 12 1/1Н 24 20 12 _ 1/1М 24 20 12 1/1_ Р 1/115 12 5 24 24 12 15 5 1/1R 24 12 15 5 1/1Т W 24 4 18 10 1/1Region-specific default/language settings and funtion versions

Region-specific default/language settings and funtion versionsRegion GE, German language (can be changed)ARegion world, English language (can be changed)BRegion US, US-English language (can be changed)CRegion world, French language (can be changed)DRegion world, Spanish language (can be changed)ERegion world, Italian language (can be changed)F

- Redundant prot. data interface for Hot-Standbyservice is possible with a two terminal differential relay (second prot. data interface is needed)
- 2) Rated current 1/5 A can be selected by the means of jumpers.
- 3) Transition between three auxiliary voltage ranges can be selected by means of jumpers.
- 4) The binary input thresholds are selectable in three stepy by means of jumpers.5) Fast relays are indentified in the terminal diagram.
- The time advantage compared to signal/command outputs is approx. 3 ms, mainly for protection commands
- 6) High-speed trip outputs are identified in the in the terminal diagram. The time advantage compared to fast relays is approx. 5 ms

election and ordering data	Description	Order No.	Short code
	7SD5 combined multi-end line differential protection with distance protection (continued)	7SD52 🗆 - 🗆 🗆 🗆]
	System interfaces No system interface	0	
	IEC protocol, electrical RS232	1	coo port
	IEC protocol, electrical RS485	2	page
	IEC protocol, optical 820 nm, ST-plug	3	page
	PROFIBUS FMS Slave, electrical RS485	4	
	PROFIBUS FMS Slave, optical 820 nm, twin-ring, ST	'-plug 6	
		1	
	Further protocols see supplement L	9	
	PROFIBUS DP slave, RS485		A
	PROFIBUS DP slave, optical 820 nm, double ring, ST	Connector 1)	В
	DNP 3.0, RS485		G
	DNP 3.0, optical 820 nm, ST connector ¹⁾		Н
	IEC 61850, 100 Mbit Etherrnet, electrical, double, RS	45 connector (EN100)	R
	IEC 61850, 100 Mbit Ethernet, with integrated switch	1	
	optical, double, LC-connector (EN100) ²⁾		S
	DIGSI/Modem interface (on rear of device) and prote	ction interface 1	
	See additional indication M	9	$M\Box\Box$
	DIGSI/Modem interface (on rear of device)		
	Without DIGSI-interface on rear		0
	DIGSI 4, electric RS232		1
	DIGSI 4, electric RS485		2
	DIGSI 4, optical 820 nm, ST plug		3
	Ducto stien data interface 1		
	FOS: Optical 820 pm 2 ST plugs line length up to 1	5 km	
	via multimode FO cable for communication converte	er or direct FO connection	n ³⁾ A
	FO6: Optical 820 nm. 2 ST-plugs, line length up to 3.	5 km	
	via multimode FO cable for direct FO connection		В
	FO17: Optical 1300 nm, LC-Duplex-plugs, line lengt	h up to 24 km	
	via monomode FO cable for direct FO connection ⁴)	1	G
	FO18: Optical 1300 nm, LC-Duplex-plugs, line lengt	h up to 60 km	
	via monomode FO cable for direct FO connection 4)5) -	Н
	FO19: Optical 1550 nm, LC-Duplex-plugs, line lengt	h up to 100 km	
	via monomode FO cable for direct FO connection ⁴⁾	6)	J
	FO30: Optical 820 nm, 2 ST-plugs, line length up to 1	1.5 km	
	via multimode FO cable for communication network IEFE C37.94 interface or direct FO connection 7)	ts with	с
	The US7.94 interface of direct FO connection "		3

1) Not possible for surface mounting housing (Order No. pos. 9 = E/G/H/Q/R). For the surface mounted version, please order a device with the appropriate electrical RS485 interface and an external FO-converter

- 2) Not possible for surface mounting housing (Order No. pos. 9 = E/G/H/Q/R) please order the relay with electrical interface and use a separate fiber-optic switch.
- 3) Communication converter 7XV5662, see Accessories.
- 4) Device for surface mounting housing (Order No. pos. 9 = E/G/H/Q/R) will be delivered with external repeater 7XV5461-0Bx00.

5) For distances less than 25 km a set of optical attenuators 7XV5107-0AA00 must be installed to avoid saturation of the receiver element

6) For distances less than 50 km a set of optical attenuators 7XV5107-0AA00 must be installed to avoid saturation of the receiver element

7) Only available in flush-mounting housing (Order No. pos. $9 \neq \frac{E/G}{H/Q/R}$).

Selection and ord

ta	Description	Order No.	Sh
	7SD5 combined r with distance pro	nulti-end line differential protection 7SD52 UU - UUUUU - L tection (continued)	
Functions	1 / Protection data	interface 2	
	Auto-reclos	ure (ANSI 79) Synchrocheck (ANSI 25)	see next
3-pole	without	without 0	Puge
3-pole	with	without 1	
1-/3-pole	without	without 2	
1-/3-pole	with	without 3	
3-pole	without	with 4	
3-pole	with	with 5	
1-/3-pole	without	with 6	
1-/3-pole	with	with 7	
Relays (Or	dNo. $6 = 2$) are a	vailable with a second protection data interface (Hot Standby) 9	N
	Auto-reclos	ure (ANSI 79) Synchrocheck (ANSI 25) without	
<u>3-pole</u>	with	without	
$\frac{3-\text{pole}}{1/2}$ pole	without	without	
$\frac{1-3-pole}{1-3-pole}$	with	without	
3-pole	without	with	
3-pole	with	with	
1-/3-pole	without	with	
$\frac{1}{1-/3-\text{pole}}$	with	with	
Protection FO5: Optic for commu FO6: Optic for direct F FO17: Optic for direct F	interface 2 cal 820 nm, 2 ST-p inication converte cal 820 nm, 2 ST-p CO connection ical 1300 nm, LC-1 ical 1300 nm, LC-1	lugs, line length up to 1.5 km via multimode FO cable r or direct FO connection ¹⁾ lugs, line length up to 3.5 km via multimode FO cable Duplex-plugs, line length up to 24 km via monomode FO cable	
FO18: Opt for direct F	ical 1300 nm, LC- ³ O connection ²⁾³⁾	Duplex-plugs, line length up to 60 km via monomode FO cable	
FO19: Opt for direct F	ical 1550 nm, LC- O connection ²⁾⁴⁾	Duplex-plugs, line length up to 100 km via monomode FO cable	
FO 30: Opt	tical 820 nm, 2 ST-	plugs, line length up to 1.5 km via multimode FO cable with $IEEE (37.94)$ interface or direct EO connection ⁵	

1) Communication converter 7XV5662, see Accessories.

2) Device for surface mounting housing (Order No. pos. 9 = E/G/H/Q/R) will be delivered with external repeater 7XV5461-0Bx00.

3) For distances less than 25 km a set of optical attenuators 7XV5107-0AA00 must be installed to avoid saturation of the receiver element

4) For distances less than 50 km a set of optical attenuators 7XV5107-0AA00 must be installed to avoid saturation of the receiver element

5) Only available in flush-mounting housing (Order No. pos. $9 \pm E/G/H/Q/R$).

Salaction	n and orderin	a data	Description		Ordor No	Short code
Selection	n and orderin	guuu	7SD5 combined	d multi-end line differential protection	7SD5 000 - 0000 - 1	
			with distance p	rotection (continued)		
Functions Time over Breaker fa	rcurrent prote iilure protecti Earth fault	ection/ on (ANSI 50, 1 protection (A Distance pro Power Swing	50N, 51, 51N, 50B NSI 67N) tection (Pickup Z< detection (ANSI 2 Distance p polygon, p	F) (, polygon, MHO, parallel line comp.) 21, 21N, 68, 68T) protection (<i>I</i> _{pickup} <i>I</i> >,- <i>VI</i> /φ, -Z<), varallel line comp. ²⁾ , power swing det. Earth fault detection for isolated/compensated networks ¹⁾	(ANSI 21, 21N, 68, 68T)	
with	without	without	without	without		С
with	without	without	with	without		D
with	without	with	without	without		E
with	with	without	without	without		F
with	with	without	with	without		G
with	with	with	without	without		H
with	without	without	without	with		J
with	without	without	with	with		K
with	with	without	without	with		L
with	with	without	with	with		Μ

Additional functions 1

4 Remote commands/24 Remote indications

Transformer expansions

	Transform	mer expansions			
	I.	Fault locator			
			Voltage p	rotection, frequence protection (ANSI 27, 50) Restricted earth fault low impedance (ANSI 87N) ²⁾	
with	without	1-side measuring	without	without	J
with	without	1-side measuring	with	without	K
with	without	2-side measuring	without	without	L
with	without	2-side measuring	with	without	М
with	with	1-side measuring	without	without	N
with	with	1-side measuring	with	without	Р
with	with	2-side measuring	without	without	Q
with	with	2-side measuring	with	without	R
with	with	1-side measuring	without	with	S
with	with	1-side measuring	with	with	Т
with	with	2-side measuring	without	with	U
with	with	2-side measuring	with	with	V

Additional fu Measured va	Additional functions 2 Measured values, extended, Min/Max values				
	External	GPS synchronization Capacitive current load compensation			
without	without	without	0		
without	with	without	1		
with	without	without	2		
with	with	without	3		
without	without	with	4		
without	with	with	5		
with	without	with	6		
with	with	with	7		

1) Only available with Order No. Pos. 7 = 2 or 6

2) Only available with Order No. Pos. 7 = 1 or 5

Accessories	Description	Order No.
	Opto-electric communication converter CC-XG (connection to communication network)	
	Converter to interface to X21 or RS422 or G703-64 kbit/s synchronous	
	communication interfaces	
	Connection via FO cable for $62.5 / 125 \mu\text{m}$ or $50 / 120 \mu\text{m}$ and 820nm	
	wavelength (multi-mode FO cable) with S1 connector, max. distance 1.5 km	
	Electrical connection via X21/RS422 or G/03-64 Rbit/s interface	7XV5662-0AA00
	Opto-electric communication converter CC-2M to G703-E1/-T1 communication networks	
	with 2,048/1,554 kbit/s	
	Converter to interface between optical 820 nm interface and G703-E1/-T1 interface of a communication network	
	Connection via FO cable for $62.5/125 \mu\text{m}$ or $50/120 \mu\text{m}$ and	
	820 nm wavelength (multi-mode FO cable) with ST connector, max. distance 1.5 km	
	Electrical connection via G703-E1/-T1 interface	7XV5662-0AD00
	Opto-electric communication converter (connection to pilot wire)	
	Converter to interface to a pilot wire or twisted telephone pair (typical 15 km length)	
	Connection via FO cable for $62.5/125 \mu\text{m}$ or $50/120 \mu\text{m}$ and 820nm	
	wavelength (multi-mode FO cable) with ST connector;	
	max. distance 1.5 km, screw-type terminals to pilot wire	7XV5662-0AC00
	Additional interface modules	
	Protection data interface mod. opt. 820 nm, multi-mode FO cable, ST connector, 1.5 km	C53207-A351-D651-1
	Protection data interface mod. opt. 820 nm, multi-mode FO cable, ST connector, 3.5 km	C53207-A351-D652-1
	Further modules	
	Protection data interface mod ont 1300 nm mono mode EQ cable	
	I C-Duplex connector 24 km	C53207-A351-D655-1
	Protection data interface mod opt 1300 nm mono-mode FO cable	C33207 71337 2033 7
	LC-Duplex connector, 60 km	C53207-A351-D656-1
	Protection data interface mod. opt. 1550 nm, mono-mode FO cable,	
	LC-Duplex connector, 100 km	C53207-A351-D657-1
	Optical repeaters Social amostor (2, sharmed), and 1200 nm, mana made EQ able	
	LC Dupley connector 24 km	7XV/5461_0RC00
	Serial repeater (2-channel) ont 1300 nm mono-mode FO cable	7705401 00000
	LC-Duplex connector, 60 km	7XV5461-0BH00
	Serial repeater (2-channel), opt. 1550 nm, mono-mode FO cable,	
	LC-Duplex connector, 100 km	7XV5461-0BJ00
	Time synchronizing unit with GPS output	
	GPS 1 sec pulse and time telegram IRIG B/DCF 77	7XV5664-0AA00
	Isolation transformer (20 kM for pilot wire communication	7VD0516
	ואסינגנטרו נימואסירוופי (20 גע) וסר פווטר שויפ כטרוודומחוכמנוטרו 	01 כצחא ז
	Voltage transformer miniature circuit-breaker	
	Rated current 1.6 A: thermal overload release 1.6 A: overcurrent trip 6 A	3RV1611-1AG14

A -			
40	 	147	-1-0

Description	Order No.
DIGSI 4	
Software for configuration and operation of Siemens protection units running under MS Windows (Windows 2000 or XP Professional) device templates, Comtrade Viewer, electronic manual included as well as "Getting started" manual on paper, connecting cables (copp	er)
Basis	
Full version with license for 10 computers, on CD-ROM	
(authorization by serial number)	7XS5400-0AA00
Professional	
DIGSI 4 Basis and additionally SIGRA (fault record analysis),	
CFC Editor (logic editor), Display Editor (editor for default	
and control displays) and DIGSI 4 Remote (remote operation)	7XS5402-0AA00
SIGRA 4	
(generally contained in DIGSI Professional, but can be ordered addition	nally)
Software for graphic visualization, analysis and evaluation of fault record	ds.
Can also be used for fault records of devices of other manufacturers	
(Comtrade format). Running under MS Windows (Windows 2000 or X	IP Professional).
Incl. templates, electronic manual with license for 10 PCs.	
Authorization by serial number. On CD-ROM.	7XS5410-0AA00
Connecting cable	
Cable between PC/notebook (9-nin connector)	
and protection unit (9 pin connector)	
(contained in DICSI 4, but can be ordered additionally)	721/5100-4
(contained in D1351 4, but can be ordered additionally)	7775700-4
Manual for 7SD522/523 V4.6	
English	C53000-G1176-C169

Fig. 7/78 Mounting rail for 19" rack

Fig. 7/80

3-pin connector

Fig. 7/79 2-pin connector

Fig. 7/81 Short-circuit link for current contacts

Fig. 7/82
Short-circuit link
for voltage
contacts/
indications
contacts

SP200

Description			Order No.	Size of package	Supplier	Fig.
Connector	2-pin		C73334-A1-C35-1	1	Siemens	7/79
	3-pin		C73334-A1-C36-1	1	Siemens	7/80
Crimp	CI2 0.5 t	to 1 mm ²	0-827039-1	4000	AMP ¹⁾	
connector			0-827396-1	1	AMP ¹⁾	
	CI2 1 to	2.5 mm ²	0-827040-1	4000	AMP ¹⁾	
			0-827397-1	1	$AMP^{(1)}$	
	Type III-	+ 0.75 to 1.5 mm^2	0-163083-7	4000	AMP ¹⁾	
71			0-163084-2	1	$AMP^{(1)}$	
Crimping	For Type	e III+	0-539635-1	1	AMP ¹⁾	
tool	and mat	ching female	0-539668-2		AMP ¹⁾	
	For CI2	-	0-734372-1	1	AMP $^{1)}$	
	and mat	ching female	1-734387-1		AMP ¹⁾	
19"-mounting	rail		C73165-A63-D200-1	1	Siemens	7/78
Short-circuit lin	nks	For current terminals	C73334-A1-C33-1	1	Siemens	7/81
		For other terminals	C73334-A1-C34-1	1	Siemens	7/82
Safety cover for	terminals	large	C73334-A1-C31-1	1	Siemens	
		small	C73334-A1-C32-1	1	Siemens	

1) Your local Siemens representative can inform you on local suppliers.

Connection diagram

Fig. 7/85

Additional setting by jumpers:

Separation of common circuit of BO8 to BO12 with jumpers X80, X81, X82. Switching of BO14, BO15 as NO contact or NC contact with jumpers X41, X42, X43.

Fig. 7/84 Serial interfaces

 Configuration of binary outputs until Hardware-version /EE. For advanced flexibility see Fig. 7/85. Surface-mounting housing

Connection diagram

Fig. 7/87

Additional setting by jumpers:

Separation of common circuit of BO8 to BO12 with jumpers X80, X81, X82. Switching of BO14, BO15 as NO contact or NC contact with jumpers X41, X42, X43.

- *) For unit version 7SD52xx-xN/S/Q high-speed contacts
- Configuration of binary outputs until Hardware-version /EE. For advanced flexibility see Fig. 7/87.

Connection diagram

Fig. 7/89

Additional setting by jumpers: Separation of common circuit of

BO8 to BO12 with jumpers X80, X81, X82. Switching of BO14, BO15 as NO contact or NC contact with jumpers X41, X42, X43.

Fig. 7/88 Maximum version in housing 1/1 x 19"

- *) For unit version 7SD52xx-xR/P/T high-speed contacts
- Configuration of binary outputs until Hardware-version /EE. For advanced flexibility see Fig. 7/89.

Transformer Differential Protection

SIPROTEC 4 7UT6 Differential Protection Relay for Transformers, Generators, Motors and Busbars

Page

8/3

SIPROTEC 4 7UT6 Differential Protection Relay for Transformers, Generators, Motors and Busbars

Description

The SIPROTEC 7UT6 differential protection relays are used for fast and selective fault clearing of short-circuits in transformers of all voltage levels and also in rotating electric machines like motors and generators, for short lines and busbars.

The protection relay can be parameterized for use with three-phase and single-phase transformers.

The specific application can be chosen by parameterization. In this way an optimal adaptation of the relay to the protected object can be achieved.

In addition to the differential function, a backup overcurrent protection for 1 winding/star point is integrated in the relay. Optionally, a low or high-impedance restricted earth-fault protection, a negativesequence protection and a breaker failure protection can be used. 7UT613 and 7UT633 feature 4 voltage inputs. With this option an overvoltage and undervoltage protection is available as well as frequency protection, reverse / forward power protection, fuse failure monitor and overexcitation protection. With external temperature monitoring boxes (thermo-boxes) temperatures can be measured and monitored in the relay. Therefore, complete thermal monitoring of a transformer is possible, e.g. hot-spot calculation of the oil temperature.

Siemens SIP · Edition No. 6

7UT613 and 7UT63x only feature full coverage of applications without external relays by the option of multiple protection functions e.g. overcurrent protection is available for each winding or measurement location of a transformer. Other functions are available twice: earth-fault differential protection, breaker failure protection and overload protection. Furthermore, up to 12 user-defined (flexible) protection functions may be activated by the customer with the choice of measured voltages, currents, power and frequency as input variables.

The relays provide easy-to-use local control and automation functions. The integrated programmable logic (CFC) allows the users to implement their own functions, e.g. for the automation of switchgear (interlocking). User-defined messages can be generated as well. The flexible communication interfaces are open for modem communication architectures with control system.

Function overview

- Differential protection for 2- up to 5-winding transformers (3-/1-phase)
- Differential protection for motors and generators
- Differential protection for short 2 up to 5 terminal lines
- Differential protection for busbars up to 12 feeders (phase-segregated or with summation CT)

Protection functions

- Differential protection with phasesegregated measurement
- Sensitive measuring for low-fault currents
- Fast tripping for high-fault currents
- Restraint against inrush of transformer
- Phase /earth overcurrent protection
- Overload protection with or without temperature measurement
- Negative-sequence protection
- Breaker failure protection
- Low/high-impedance restricted earth fault (REF)
- Voltage protection functions (7UT613/633)

Control functions

- Commands for control of circuitbreakers and isolators
- 7UT63x: Graphic display shows position of switching elements, local/remote switching by key-operated switch
- Control via keyboard, binary inputs, DIGSI 4 or SCADA system
- User-defined logic with CFC

Monitoring functions

- Self-supervision of the relay
- Trip circuit supervision
- Oscillographic fault recording
- Permanent differential and restraint current measurement, extensive scope of operational values

Communication interfaces

- PC front port for setting with DIGSI 4
- System interface IEC 61850 Ethernet IEC 60870-5-103 protocol, PROFIBUS-FMS/-DP, MODBUS or DNP 3.0
- Service interface for DIGSI 4 (modem)/ temperature monitoring (thermo-box)
- Time synchronization via IRIG-B/DCF 77

8/3

Application

The numerical protection relays 7UT6 are primarily applied as differential protection on

 transformers 	
7UT612:	2 windings
7UT613/633:	2 up to 3 windings
7UT635:	2 up to 5 windings,

- generators
- motors
- short line sections
- small busbars
- parallel and series reactors.

The user selects the type of object that is to be protected by setting during configuration of the relay. Subsequently, only those parameters that are relevant for this particular protected object need to be set. This concept, whereby only those parameters relevant to a particular protected object need to be set, substantially contributed to a simplification of the setting procedure. Only a few parameters must be set. Therefore the new 7UT6 relays also make use of and extend this concept. Apart from the protected plant objects defined in the 7UT6, a further differential protection function allows the protection of

- single busbars with up to 12 feeders.

The well-proven differential measuring algorithm of the 7UT51 relay is also used in the new relays, so that a similar response with regard to short-circuit detection, tripping time saturation detection and inrush restraint is achieved.

Fig. 8/2 Function diagram

Application

Protection functions	ANSI No.	7UT612	7UT613/33	7UT635	Three-phase transformer	Single-phase transformer	Auto- transformer	Generator/ Motor	Busbar, 3-phase	Busbar, 1-phase
Differential protection	87T/G/M/L	1	1	1	Х	Х	Х	Х	Х	Х
Earth-fault differential protection	87 N	1	2	2	Х	Х	X*)	Х	-	-
Overcurrent-time protection, phases	50/51	1	3	3	Х	Х	Х	Х	Х	-
Overcurrent-time protection $3I_0$	50/51N	1	3	3	Х	-	Х	Х	Х	-
Overcurrent-time protection, earth	50/51G	1	2	2	Х	Х	Х	Х	Х	Х
Overcurrent-time protection, single-phase		1	1	1	Х	Х	Х	Х	Х	Х
Negative-sequence protection	46	1	1	1	Х	-	Х	Х	Х	-
Overload protection IEC 60255-8	49	1	2	2	Х	Х	Х	Х	Х	-
Overload protection IEC 60354	49	1	2	2	Х	Х	Х	Х	Х	-
Overexcitation protection *) V/Hz	24	_	1	_	Х	Х	Х	Х	Х	Х
Overvoltage protection *) V>	59	_	1	-	Х	Х	Х	Х	-	-
Undervoltage protection *) V<	27	_	1	-	Х	Х	Х	Х	-	-
Frequency protection *) f>, f<	81	-	1	-	Х	Х	Х	Х	-	-
Reverse power protection *) -P	32R	-	1	_	Х	Х	Х	Х	-	-
Forward power protection*) P>, P<	32F	-	1	_	Х	Х	Х	Х	-	-
Fuse failure protection	60FL	_	1	_	Х	Х	Х	Х	_	-
Breaker failure protection	50 BF	1	2	2	Х	Х	Х	Х	Х	-
External temperature monitoring (thermo-box)	38	Х	Х	Х	Х	Х	Х	Х	Х	Х
Lockout	86	Х	Х	Х	Х	Х	Х	Х	Х	Х
Measured-value supervision		Х	Х	Х	Х	Х	Х	Х	Х	Х
Trip circuit supervision	74 TC	Х	Х	Х	Х	Х	Х	Х	Х	Х
Direct coupling 1		Х	Х	Х	Х	Х	Х	Х	Х	Х
Direct coupling 2		Х	Х	Х	Х	Х	Х	Х	Х	Х
Operational measured values		Х	Х	Х	Х	Х	Х	Х	X	Х
Flexible protection functions	27, 32, 47, 50, 55, 59, 81	-	12	12	X	Х	Х	Х	Х	Х

X Function applicable

- Function not applicable in this application

*) Only 7UT613/63x

Construction

The 7UT6 is available in three housing widths referred to a 19" module frame system. The height is 243 mm.

- 1/3 (7UT612),
- 1/2 (7UT613),
- 1/1 (7UT633/635) of 19"

All cables can be connected with or without cable ring lugs. Plug-in terminals are available as an option, it is thus possible to employ prefabricated cable harnesses. In the case of surface mounting on a panel, the connection terminals are located above and below in the form of screw-type terminals. The communication interfaces are located on the same sides of the housing. For dimensions please refer to the dimension drawings (part 15).

Fig. 8/3 Rear view with screw-type terminals

Differential protection for transformers (ANSI 87T)

When the 7UT6 is employed as fast and selective short-circuit protection for transformers the following properties apply:

- Tripping characteristic according to Fig. 8/4 with normal sensitive *I*_{DIFF}> and high-set trip stage *I*_{DIFF}>>
- Vector group and ratio adaptation
- Depending on the treatment of the transformer neutral point, zero-sequence current conditioning can be set with or without consideration of the neutral current. With the 7UT6, the star-point current at the star-point CT can be measured and considered in the vector group treatment, which increases sensitivity by one third for single-phase faults.
- Fast clearance of heavy internal transformer faults with high-set differential element *I*_{DIFF}>>.
- Restrain of inrush current with 2nd harmonic. Cross-block function that can be limited in time or switched off.
- Restrain against overfluxing with a choice of 3rd or 5th harmonic stabilization is only active up to a settable value for the fundamental component of the differential current.
- Additional restrain for an external fault with current transformer saturation (patented CT-saturation detector from 7UT51).
- Insensitivity to DC current and current transformer errors due to the freely programmable tripping characteristic and fundamental filtering.
- The differential protection function can be blocked externally by means of a binary input.

3-winding transformers (1 or 3-phase)

Sensitive protection by measurement of star-point current (see Fig. 8/6) (ANSI 87N/87GD)

Apart from the current inputs for detection of the phase currents on the sides of the protected object, the 7UT6 also contains normal sensitivity IE and high sensitivity I_{EE} current measuring inputs. Measurement of the star-point current of an earthed winding via the normal sensitivity measuring input, and consideration of this current by the differential protection, increases the sensitivity during internal single-phase faults by 33 %. If the sum of the phase currents of a winding is compared with the star-point current measured with the normal sensitivity input $I_{\rm F}$, a sensitive earth current differential protection can be implemented (REF).

This function is substantially more sensitive than the differential protection during faults to earth in a winding, detecting fault currents as small as 10 % of the transformer rated current.

Furthermore, this relay contains a high-impedance differential protection input. The sum of the phase currents is compared with the star-point current. A voltage-dependent resistor (varistor) is applied in shunt (see Fig. 8/6). Via the sensitive current measuring input IEE, the voltage across the varistor is measured; in the milli-amp range via the external resistor. The varistor and the resistor are mounted externally. An earth fault results in a voltage across the varistor that is larger than the voltage resulting from normal current transformer errors. A prerequisite is the application of accurate current transformers of the class 5P (TPY) which exhibit a small measuring error in the operational and overcurrent range. These current transformers may not be the same as used for the differential protection, as the varistor may cause rapid saturation of this current transformers.

Both high-impedance and low-impedance REF are each available twice (option) for transformers with two earthed windings. Thus separate REF relays are not required.

Differential protection for single-phase busbars (see Fig. 8/7) (ANSI 87L)

The short-circuit protection is characterized by the large number of current measuring inputs. The scope of busbar protection ranges from a few bays e.g. in conjunction with one and a half circuit-breaker applications, to large stations having up to more than 50 feeders. In particular in smaller stations, the busbar protection arrangements are too expensive. With the 7UT6 relays the current inputs may also be used to achieve a cost-effective busbar protection system for up to 12 feeders (Fig. 8/7). This busbar protection functions as a phase-selective protection with 1 or 5 A current transformers, whereby the protected phase is connected. All three phases can therefore be protected by applying three relays. Furthermore a single-phase protection can be implemented by connecting the three-phase currents via a summation transformer. The summation transformer connection has a rated current of 100 mA.

The selectivity of the protection can be improved by monitoring the current magnitude in all feeders, and only releasing the differential protection trip command when the overcurrent condition is also met. The security measures to prevent maloperation resulting from failures in the current transformer secondary circuits can be improved in this manner. This overcurrent release may also be used to implement a breaker failure protection. Should the release signal not reset within a settable time, this indicates that a breaker failure condition is present, as the short-circuit was not switched off by the bay circuit-breaker. After expiry of the time delay the circuitbreakers of the infeeds to the busbar may be tripped.

Differential protection for generators and motors (see Fig. 8/8) (ANSI 87G/M)

Equal conditions apply for generators, motors and series reactors. The protected zone is limited by the sets of current transfomers at each side of the protected object.

Fig. 8/7 Simple busbar protection with phase-selective configuration 7UT612: 7 feeders 7UT613/633: 9 feeders 7UT635: 12 feeders

Fig. 8/8 Generator/motor differential protection

Backup protection functions

Overcurrent-time protection (ANSI 50, 50N, 51, 51N)

Backup protection on the transformer is achieved with a two-stage overcurrent protection for the phase currents and $3I_0$ for the calculated neutral current. This function may be configured for one of the sides or measurement locations of the protected object. The high-set stage is implemented as a definite-time stage, whereas the normal stage may have a definite-time or inverse-time characteristic. Optionally, IEC or ANSI characteristics may be selected for the inverse stage. The overcurrent protection $3I_0$ uses the calculated zero-sequence current of the configured side or measurement location.

Multiple availability: 3 times (option)

Overcurrent-time protection for earth (ANSI 50/51G)

The 7UT6 feature a separate 2-stage overcurrent-time protection for the earth. As an option, an inverse-time characteristic according to IEC or ANSI is available. In this way, it is possible to protect e.g. a resistor in the transformer star point against thermal overload, in the event of a single-phase short-circuit not being cleared within the time permitted by the thermal rating.

Multiple availability: 3 times (option)

Phase-balance current protection (ANSI 46) (Negative-sequence protection)

Furthermore a negative-sequence protection may be defined for one of the sides or measurement locations. This provides sensitive overcurrent protection in the event of asymmetrical faults in the transformer. The set pickup threshold may be smaller than the rated current.

Breaker failure protection (ANSI 50BF)

If a faulted portion of the electrical circuit is not disconnected upon issuing of a trip command, another command can be initiated using the breaker failure protection which operates the circuit-breaker, e.g., of an upstream (higher-level) protection relay.

Multiple availability: 2 times (option)

Overexcitation protection Volt/Hertz (ANSI 24) (7UT613/633 only)

The overexcitation protection serves for detection of an unpermissible high induction (proportional to *V/f*) in generators or transformers, which leads to a thermal overloading. This may occur when starting up, shutting down under full load, with weak systems or under isolated operation. The inverse characteristic can be set via seven points derived from the manufacturer data.

In addition, a definite-time alarm stage and an instantaneous stage can be used.

Trip circuit supervision (ANSI 74TC)

One or two binary inputs can be used for monitoring the circuit-breaker trip coil including its incoming cables. An alarm signal occurs whenever the circuit is interrupted.

Lockout (ANSI 86)

All binary outputs (alarm or trip relays) can be stored like LEDs and reset using the LED reset key. The lockout state is also stored in the event of supply voltage failure. Reclosure can only occur after the lockout state is reset.

External trip coupling

For recording and processing of external trip information via binary inputs. They are provided for information from the Buchholz relay or specific commands and act like a protective function. Each input initiates a fault event and can be individually delayed by a timer.

Undervoltage protection (ANSI 27) (7UT613/633 only)

The undervoltage protection evaluates the positive-sequence components of the voltages and compares them with the threshold values. There are two stages available.

The undervoltage function is used for asynchronous motors and pumped-storage stations and prevents the voltage-related instability of such machines.

The function can also be used for monitoring purposes.

Overvoltage protection (ANSI 59) (7UT613/633 only)

This protection prevents insulation faults that result when the voltage is too high.

Either the maximum line-to-line voltages or the phase-to-earth voltages (for low-voltage generators) can be evaluated. The measuring results of the line-to-line voltages are independent of the neutral point displacement caused by earth faults. This function is implemented in two stages.

Frequency protection (ANSI 81) (7UT613/633 only)

The frequency protection prevents impermissible stress of the equipment (e.g. turbine) in case of under or overfrequency. It also serves as a monitoring and control element.

The function has four stages; the stages can be implemented either as underfrequency or overfrequency protection. Each stage can be delayed separately.

Even in the event of voltage distortion, the frequency measuring algorithm reliably identifies the fundamental waves and determines the frequency extremely precisely. Frequency measurement can be blocked by using an undervoltage stage.

Reverse-power protection (ANSI 32R) (7UT613/633 only)

The reverse-power protection monitors the direction of active power flow and picks up when the mechanical energy fails. This function can be used for operational shutdown (sequential tripping) of the generator but also prevents damage to the steam turbines. The reverse power is calculated from the positive-sequence systems of current and voltage. Asymmetrical power system faults therefore do not cause reduced measuring accuracy. The position of the emergency trip valve is injected as binary information and is used to switch between two trip command delays. When applied for motor protection, the sign (\pm) of the active power can be reversed via parameters.

Forward-power protection (ANSI 32F) (7UT613/633 only)

Monitoring of the active power produced by a generator can be useful for starting up and shutting down generators. One stage monitors exceeding of a limit value, while another stage monitors falling below another limit value. The power is calculated using the positive-sequence component of current and voltage. The function can be used to shut down idling motors.

Flexible protection functions (7UT613/63x only)

For customer-specific solutions up to 12 flexible protection functions are available and can be parameterized. Voltages, currents, power and frequency from all measurement locations can be chosen as inputs. Each protection function has a settable threshold, delay time, blocking input and can be configured as a 1-phase or 3-phase unit.

Monitoring functions

The relay comprises high-performance monitoring for the hardware and software.

The measuring circuits, analog-digital conversion, power supply voltages, battery, memories and software sequence (watch-dog) are all monitored.

The fuse failure function detects failure of the measuring voltage due to short-circuit or open circuit of the wiring or VT and avoids overfunction of the undervoltage elements in the protection functions. (7UT613/633 only)

Fig. 8/9

Temperature measurement and monitoring with external thermo-boxes

Thermal monitoring of transformers

The importance of reducing the costs of transmitting and distributing energy by optimizing the system load has resulted in the increased importance of monitoring the thermal condition of transformers. This monitoring is one of the tasks of the monitoring systems, designed for medium and large transformers. Overload protection based on a simple thermal model, and using only the measured current for evaluation, has been integrated in differential protection systems for a number of years.

The ability of the 7UT6 to monitor the thermal condition can be improved by serial connection of a temperature monitoring box (also called thermo-box or RTDbox) (Fig. 8/9). The temperature of up to 12 measuring points (connection of 2 boxes) can be registered. The type of sensor (Pt100, Ni100, Ni120) can be selected individually for each measuring point. Two alarm stages are derived for each measuring point when the corresponding set threshold is exceeded.

Alternatively to the conventional overload protection, the relay can also provide a hotspot calculation according to IEC 60345. The hot-spot calculation is carried out separately for each leg of the transformer and takes the different cooling modes of the transformer into consideration. The oil temperature must be registered via the thermo-box for the implementation of this function. An alarm warning stage and final alarm stage is issued when the maximum hot-spot temperature of the three legs exceeds the threshold value.

For each transformer leg a relative rate of ageing, based on the ageing at 98 °C is indicated as a measured value. This value can be used to determine the thermal condition and the current thermal reserve of each transformer leg. Based on this rate of ageing, a remaining thermal reserve is indicated in % for the hottest spot before the alarm warning and final alarm stage is reached.

Measured values

The operational measured values and statistic value registering in the 7UT6, apart from the registration of phase currents and voltages (7UT613/633 only) as primary and secondary values, comprises the following:

- Currents 3-phase *I*_{L1}, *I*_{L2}, *I*_{L3}, *I*₁, *I*₂, 3*I*₀ for each side and measurement location
- Currents 1-phase *I*₁ to *I*₁₂ for each feeder and further inputs *I*_{x1} to *I*_{x4}
- Voltages 3-phase *V*_{L1}, *V*_{L2}, *V*_{L3}, *V*_{L1L2}, *V*_{L2L3}, *V*_{L3L1}, *V*₁, *V*₂, *V*₀ and 1-phase *V*_{EN}, *V*₄
- Phase angles of all 3-phase/ 1-phase currents and voltages
- Power Watts, Vars, *VA/P*, *Q*, *S* (*P*, *Q*: total and phase selective)
- Power factor $(\cos \varphi)$,
- Frequency
- Energy ± kWh, ± kVarh, forward and reverse power flow
- Min./max. and mean values of V_{PH-PH}, V_{PHE}, V_E, V₀, V₁, V₂, I_{PH}, I₁, I₂, 3I₀, I_{DIFF}, I_{RESTRAINT}, S, P, Q, cos φ, f
- Operating hours counter
- Registration of the interrupted currents and counter for protection trip commands
- Mean operating temperature of overload function
- Measured temperatures of external thermo-boxes
- Differential and restraint currents of differential protection and REF

Metered values

For internal metering, the unit can calculate an energy metered value from the measured current and voltage values.

The 7UT6 relays may be integrated into monitoring systems by means of the diverse communication options available in the relays. An example for this is the connection to the SITRAM transformer monitoring system with PROFIBUS-DP interface.

Commissioning and operating aids

Commissioning could hardly be easier and is fully supported by DIGSI 4. The status of the binary inputs can be read individually and the state of the binary outputs can be set individually. The operation of switching elements (circuit-breakers, disconnect devices) can be checked using the switch-

Fig. 8/10

Commissioning via a standard Web browser: Phasor diagram

Fig. 8/11

Commissioning via a standard Web browser: Operating characteristic

ing functions of the bay controller. The analog measured values are represented as wide-ranging operational measured values. To prevent transmission of information to the control center during maintenance, the bay controller communications can be disabled to prevent unnecessary data from being transmitted. During commissioning, all indications with test marking for test purposes can be connected to a control and protection system.

All measured currents and voltages (7UT613/633 only) of the transformer can

be indicated as primary or secondary values. The differential protection bases its pickup thresholds on the rated currents of the transformer. The referred differential and stabilising (restraint) currents are available as measured values per phase. If a thermo-box is connected, registered temperature values may also be displayed. To check the connection of the relay to the primary current and voltage transformers, a commissioning measurement is provided.

This measurement function works with only 5 to 10 % of the transformer rated current and indicates the current and the angle between the currents and voltages (if voltages applied). Termination errors between the primary current transformers and input transformers of the relay are easily detected in this manner.

The operating state of the protection may therefore be checked online at any time. The fault records of the relay contain the phase and earth currents as well as the calculated differential and restraint currents. The fault records of the 7UT613/633 relays also contain voltages.

Browser-based commissioning aid

The 7UT6 provides a commissioning and test program which runs under a standard internet browser and is therefore independent of the configuration software provided by the manufacturer.

For example, the correct vector group of the transformer may be checked. These values may be displayed graphically as vector diagrams.

The stability check in the operating characteristic is available as well as event log and trip log messages. Remote control can be used if the local front panel cannot be accessed.

Control and automation functions

Control

In addition to the protection functions, the SIPROTEC 4 units also support all control and monitoring functions that are required for operating medium-voltage or highvoltage substations.

The main application is reliable control of switching and other processes.

The status of primary equipment or auxiliary devices can be obtained from auxiliary contacts and communicated via binary inputs. Therefore it is possible to detect and indicate both the OPEN and CLOSED position or a fault or intermediate circuitbreaker or auxiliary contact position.

The switchgear or circuit-breaker can be controlled via:

- integrated operator panel
- binary inputs
- substation control and protection system
- DIGSI 4

Command processing

All the functionality of command processing is offered. This includes the processing of single and double commands with or without feedback, sophisticated monitoring of the control hardware and software, checking of the external process, control actions using functions such as runtime monitoring and automatic command termination after output. Here are some typical applications:

- Single and double commands using 1, 1 plus 1 common or 2 trip contacts
- User-definable bay interlocks
- Operating sequences combining several switching operations such as control of circuit-breakers, disconnectors and earthing switches
- Triggering of switching operations, indications or alarm by combination with existing information

Automation / user-defined logic

With integrated logic, the user can set, via a graphic interface (CFC), specific functions for the automation of switchgear or substation. Functions are activated via function keys, binary input or via communication interface.

Switching authority

Switching authority is determined according to parameters, communication or by key-operated switch (when available).

If a source is set to "LOCAL", only local switching operations are possible. The following sequence of switching authority is laid down: "LOCAL"; DIGSI PC program, "REMOTE"

Every switching operation and change of breaker position is kept in the status indication memory. The switch command source, switching device, cause (i.e. spontaneous change or command) and result of a switching operation are retained.

Assignment of feedback to command

The positions of the circuit- breaker or switching devices and transformer taps are acquired by feedback. These indication inputs are logically assigned to the corresponding command outputs. The unit can therefore distinguish whether the indication change is a consequence of switching operation or whether it is a spontaneous change of state (intermediate position).

Chatter disable

The chatter disable feature evaluates whether, in a configured period of time, the number of status changes of indication input exceeds a specified figure. If exceeded, the indication input is blocked for a certain period, so that the event list will not record excessive operations.

Filter time

All binary indications can be subjected to a filter time (indication suppression).

Indication filtering and delay

Indications can be filtered or delayed.

Filtering serves to suppress brief changes in potential at the indication input. The indication is passed on only if the indication voltage is still present after a set period of time. In the event of indication delay, there is a wait for a preset time. The information is passed on only if the indication voltage is still present after this time.

Indication derivation

A further indication (or a command) can be derived from an existing indication. Group indications can also be formed. The volume of information to the system interface can thus be reduced and restricted to the most important signals.

Transmission lockout

A data transmission lockout can be activated, so as to prevent transfer of information to the control center during work on a circuit bay.

Test operation

During commissioning, all indications can be passed to an automatic control system for test purposes.

With respect to communication, particular emphasis has been placed on high levels of flexibility, data integrity and utilization of standards common in energy automation. The design of the communication modules permits interchangeability on the one hand, and on the other hand provides openness for future standards (for example, Industrial Ethernet).

Local PC interface

The PC interface accessible from the front of the unit permits quick access to all parameters and fault event data. Of particular advantage is the use of the DIGSI 4 operating program during commissioning.

Rear-mounted interfaces

Two communication modules located on the rear of the unit incorporate optional equipment complements and readily permit retrofitting. They assure the ability to comply with the requirements of different communication interfaces.

The interfaces make provision for the following applications:

- 8
- Service interface (Port C/Port D¹⁾) In the RS485 version, several protection units can be centrally operated with DIGSI 4. On connection of a modem, remote control is possible. Via this interface communication with thermo-boxes is executed.
- System interface (Port B) This interface is used to carry out communication with a control or protection and control system and supports a variety of communication protocols and interface designs, depending on the module connected.

Commissioning aid via a standard Web browser

In the case of the 7UT6, a PC with a standard browser can be connected to the local PC interface or to the service interface (refer to "Commissioning program"). The relays include a small Web server and send their HTML-pages to the browser via an established dial-up network connection.

Retrofitting: Modules for every type of communication

Communication modules for retrofitting are available for the entire SIPROTEC 4 unit range. These ensure that, where different communication interfaces (electrical or optical) and protocols (IEC 61850 Ethernet, IEC 60870-5-103, PROFIBUS-FMS/-DP, MODBUS RTU, DNP 3.0, DIGSI, etc.) are required, such demands can be met.

Safe bus architecture

• RS485 bus

With this data transmission via copper conductors electromagnetic fault influences are largely eliminated by the use of twisted-pair conductor. Upon failure of a unit, the remaining system continues to operate without any disturbances.

 Fiber-optic double ring circuit The fiber-optic double ring circuit is immune to electromagnetic interference. Upon failure of a section between two units, the communication system continues to operate without disturbance.

It is generally impossible to communicate with a unit that has failed. If a unit were to fail, there is no effect on the communication with the rest of the system.

Fig. 8/12 IEC 60870-5-103 star-type RS232 copper conductor connection or fiber optic connec

conductor connection or fiber-optic connection

Fig. 8/13

Bus structure for station bus with Ethernet und IEC 61850, fiber-optic ring

IEC 61850 Ethernet

The Ethernet-based IEC 61850 protocol is the worldwide standard for protection and control systems used by power supply corporations. Siemens was the first manufacturer to support this standard. By means of this protocol, information can also be exchanged directly between bay units so as to set up simple masterless systems for bay and system interlocking. Access to the units via the Ethernet bus is also possible with DIGSI.

IEC 60870-5-103

IEC 60870-5-103 is an internationally standardized protocol for the efficient communication in the protected area. IEC 60870-5-103 is supported by a number of protection device manufacturers and is used worldwide.

PROFIBUS-DP

PROFIBUS-DP is an industry-recognized standard for communications and is supported by a number of PLC and protection device manufacturers.

MODBUS RTU

MODBUS RTU is an industry-recognized standard for communications and is supported by a number of PLC and protection device manufacturers.

DNP 3.0

DNP 3.0 (Distributed Network Protocol Version 3) is a messaging-based communication protocol. The SIPROTEC 4 units are fully Level 1 and Level 2 compliant with DNP 3.0.

DNP 3.0 is supported by a number of protection device manufacturers.

Fig. 8/14 RS232/RS485 electrical communication module

Fig. 8/16 PROFIBUS communication module, optical double-ring

Fig. 8/17 Optical Ethernet communication module for IEC 61850 with integrated Ethernet switch

System solutions for protection and station control

Together with the SICAM power automation system, SIPROTEC 4 can be used with PROFIBUS-FMS. Over the low-cost electrical RS485 bus, or interference-free via the optical double ring, the units exchange information with the control system.

Units featuring IEC 60870-5-103 interfaces can be connected to SICAM in parallel via the RS485 bus or radially by fiber-optic link. Through this interface, the system is open for the connection of units of other manufacturers (see Fig. 8/12).

Because of the standardized interfaces, SIPROTEC units can also be integrated into systems of other manufacturers or in SIMATIC. Electrical RS485 or optical interfaces are available. The optimum physical data transfer medium can be chosen thanks to opto-electrical converters. Thus, the RS485 bus allows low-cost wiring in the cubicles and an interference-free optical connection to the master can be established.

For IEC 61850, an interoperable system solution is offered with SICAM PAS. Via the 100 Mbits/s Ethernet bus, the units are linked with PAS electrically or optically to the station PC. The interface is standardized, thus also enabling direct connection of units of other manufacturers to the Ethernet bus. With IEC 61850, however, the units can also be used in other manufacturers' systems (see Fig. 8/13).

Fig. 8/18

System solution: Communications

8/14

8

Fig. 8/20 Connection to a transformer with neutral current measurement

8

Fig. 8/21

Connection of transformer differential protection with high impedance REF (I_{s}) and neutral current measurement at I_7

Fig. 8/23

Connection example to a single-phase power transformer with only one current transformer (right side)

8

Fig. 8/24 Connection to a three-phase auto-transformer

with current transformer between starpoint and earthing point

8

Fig. 8/25 Generator or motor protection

Fig. 8/27

Connection 7UT612 as busbar protection for feeders, connected via external summation current transformers (SCT) – partial illustration for feeders 1, 2 and 7

8

Fig. 8/28 Connection example 7UT613 for a three-winding power transformer

Fig. 8/29

Connection example 7UT613 for a three-winding power transformer with current transformers between starpoint and earthing point, additional connection for high-impedance protection; I_{X3} connected as high-sensitivity input

8

Fig. 8/30

Connection example 7UT613 for a three-phase auto-transformer with three-winding and current transformer between starpoint and earthing point

Fig. 8/31

Connection example 7UT635 for a three-winding power transformer with 5 measurement locations (3-phase) and neutral current measurement

Fig. 8/32 Voltage transformer connection to 3 star-connected voltage transformers (7UT613 and 7UT633 only)

8

Fig. 8/33

Voltage transformer connection to 3 star-connected voltage transformers with additional delta winding (e-n-winding) (7UT613 and 7UT633 only)

General unit data Analog inputs Rated frequency 50 or 60 Hz (selectable) Rated current 0.1 or 1 or 5 A (selectable by jumper, 0.1 A) Power consumption 7UT In CT circuits 612 613 with $I_N = 1$ A; in VA approx. 0.02 0.05 with $I_{\rm N}$ = 5 A; in VA approx. 0.2 0.3 with $I_{\rm N} = 0.1$ A; in VA approx. 0.001 0.001 sensitive input; in VA approx. 0.05 0.05 Overload capacity $I_{\rm N}$ In CT circuits Thermal (r.m.s.) $100 I_{\rm N}$ for 1 s 30 I_N for 10 s 4 I_N continuous Dynamic (peak value) 250 I_N (half cycle) In CT circuits for highly sensitive input IEE 300 A for 1 s Thermal 100 A for 10 s 15 A continuous Dynamic 750 A (half cycle) 80 to 125 V Rated voltage (7UT613/633 only) Power consumption per phase $\leq 0.1 \text{ VA}$ at 100 V Overload capacity Thermal (r.m.s.) 230 V continuous Auxiliary voltage Rated voltage 24 to 48 V DC 60 to 125 V DC 110 to 250 V DC and 115 V AC (50/60 Hz), 230 V AC Permissible tolerance -20 to +20 % Superimposed AC voltage $\leq 15\%$ (peak-to-peak) Power consumption (DC/AC) 7UT 612 613 Quiescent; in W approx. 5 6/12 Energized; in W approx. 7 12/19 depending on design Bridging time during failure of the auxiliary voltage $V_{\rm aux} \ge 110 \ {\rm V}$ $\geq 50 \text{ ms}$ **Binary** inputs Functions are freely assignable Quantity marshallable 7UT 612 613 3 5 Rated voltage range 24 to 250 V, bipolar Minimum pickup threshold 19 or 88 V DC (bipolar) Ranges are settable by means of jumpers for each binary input 300 V DC Maximum permissible voltage Current consumption, energized Approx. 1.8 mA Output relay Command / indication / alarm relay Quantity 7UT each with 1 NO contact 612 613 (marshallable) 4 8 1 alarm contact, with 1 NO or

633

0.05

0.3

0.001

0.05

633

6/12

20/28

633

633

24

635

24

21

635

6/12

20/28

635

29

635

0.05

0.3

0.001

0.05

Switching capacity Make Break Break (with resistive load) Break (with L/R ≤ 50 ms)	1000 V 30 VA 40 W 25 W	W / VA		
Switching voltage	250 V			
Permissible total current	30 A fe 5 A co	or 0.5 secontinuous	onds	
Operating time, approx. NO contact NO/NC contact (selectable) Fast NO contact High-speed ^{*)} NO trip outputs	8 ms 8 ms 5 ms < 1 ms	5		
LEDs				
Quantity	7UT 612	613	633	635
RUN (green)	1	1	1	1
ERROR (red)	1	1	1	1
LED (red), function can be assigned	7	14	14	14
Unit design				
Housing 7XP20	For di to dim	mensions lension di	please re	efer oart 15
Degree of protection acc. to IEC 60529 For the device in surface-mounting housing in flush-mounting housing front	IP 51 IP 51			
For personal safety	IP 2x	with close	ed protec	ction cover
Housing	7UT			
0	612	613	633	635
Size, referred to 19" frame	1/3	1/2	1/1	1/1
Weight, in kg Flush-mounting housing Surface-mounting housing	5.1 9.6	8.7 13.5	13.8 22.0	14.5 22.7
Sorial interfaces				
Operating interface 1 for DIGSI 4 o	r browse			
Connection	Front 9-pin	side, non subminia	-isolated ture con	, RS232, nector
Transmission rate in kbaud Setting as supplied: 38.4 kbaud, parity 8E1	(30B- 7UT61 7UT61	D) 12: 4.8 to 13/633/63	38.4 kba 5: 4.8 to	ud 115 kbaud
Distance, max.	15 m			
Time synchronization DCF77 / IRIG	-B sianal	/IRIG-B0	00	
Connection	Rear si conne surface	ide, 9-pin ctor (SUI e-mounti	submin 3-D) (ter ng housi	iature minals with ng)
Voltage levels	5, 12 c	or 24 V (o	ptional)	
Service interface (operating interfe	ace 2) for	DIGSI 4 /	modem	/ service
Isolated RS232/RS485/FO Dielectric test Distance for RS232 Distance for RS485	9-pin : (SUB- 500 V Max. 1 Max. 1	subminia D) / 50 Hz 15 m / 49. 1000 m / 3	ture con: 2 ft 3300 ft	nector
Distance for FO	1.5 km	(1 mile)		

*) With high-speed contacts all operating times are reduced by 4.5 ms.

NC contact (not marshallable)

System interface

Test voltage

Distance

IEC 61850

Ethernet, electrical (EN 100) for IEC 61850 and DIGSI

Connection for flush-mounting case

Transmission Speed

for surface-mounting case

Rear panel, mounting location "B", two RJ45 connector, 100 Mbit acc. to IFFF802.3 At bottom part of the housing 500 V; 50 Hz 100 Mbits/s 20 m/66 ft

Not available

 $\lambda = 1350 \text{ nm}$

glass fiber 50/125 µm or

glass fiber 62/125µm

Max. 800 m/0.5 mile

4800 to 19200 baud

9-pin subminiature connector

100 Mbits/s

(SUB-D)

500 V/50 Hz

Max. 1000 m

ST connector

 $\lambda = 820 \text{ nm}$

Max. 1.5 km

9-pin subminiature

connector (SUB-D)

Max. 1000 m (3300 ft)

Optical interface with OLM¹⁾

1500 kbaud 530 m (0.33 miles)

Max. 1.5 Mbaud

at \leq 93.75 kbaud

500 V / 50 Hz

ST connector

 $\lambda = 820 \text{ nm}$

Max. 1.5 Mbaud

Max. 19200 baud

Max. 1000 m (3300 ft)

500 V / 50 Hz

ST connector

1.5 km (1 mile)

 $\lambda = 820 \text{ nm}$

Max. 15 m

Ethernet, optical (EN 100) for IEC 61850 and DIGSI

Connection for flush-mounting case

for surface-mounting case Optical wavelength Transmission Speed Laser class 1 acc. to EN 60825-1/-2

Permissible path attenuation Distance

IEC 60870-5-103

Isolated RS232/RS485/FO

Baud rate Dielectric test Distance for RS232 Distance for RS485

For fiber-optic cable Connector type Optical wavelength Permissible attenuation Distance

PROFIBUS RS485 (-FMS/-DP) Connector type

Baud rate Dielectric test Distance

PROFIBUS fiber optic (-FMS/-DP) Only for flush-mounting housing For surface-mounting housing Baud rate Optical wavelength Permissible attenuation Distance

DNP 3.0 RS485 / MODBUS RS485 Connector type Baud rate Dielectric test Distance

DNP 3.0 Optical/MODBUS FO Connector type Optical wavelength Permissible attenuation Distance

1) Conversion with external OLM For fiber-optic interface please complete Order No. at 11th position with 4 (FMS RS485) or 9 (DP RS485) and Order code LOA and additionally order: For single ring: SIEMENS OLM 6GK1502-3AB10 For double ring: SIEMENS OLM 6GK1502-4AB10

Electrical tests Specifications Standards IEC 60255 (Product standards) ANSI/IEEE C37.90.0/.1/.2 UL 508 Insulation tests Standards IEC 60255-5 and 60870-2-1 Voltage test (100 % test) All circuits except for auxiliary 2.5 kV (r.m.s.), 50 Hz / 60 Hz supply, binary inputs and communication interfaces Auxiliary voltage and binary 3.5 kV DC inputs (100 % test) Rear panel, mounting location "B", RS485/RS232 rear side 500 V (r.m.s.), 50 Hz / 60 Hz LC connector receiver/transmitter communication interfaces and time synchronization interface (100 % test) Impulse voltage test (type test) All circuits except for 5 kV (peak); 1.2/50 µs; 0.5 J Max. 5 dB for glass fiber 62.5/125µm communication interfaces 3 positive and 3 negative impulses and time synchronization at intervals of 5 s interface, class III EMC tests for interference immunity IEC 60255-6, 60255-22 Standards (product standards) EN 6100-6-2 (generic standard) DIN 57435 / Part 303 High frequency test 2.5 kV (peak); 1 MHz; $\tau = 15$ ms; IEC 60255-22-1, class III and 400 surges per s; test duration 2 s; DIN 57435 / Part 303, class III $R_{\rm i} = 200 \,\Omega$ Electrostatic discharge 8 kV contact discharge; 15 kV air Max. 8 dB, for glass-fiber 62.5/125 µm IEC 60255-22-2 class IV discharge; both polarities; EN 61000-4-2, class IV 150 pF; $R_i = 330 \Omega$ 10 V/m; 80 to 1000 MHz; Irradiation with RF field, frequency sweep, 80 % AM; 1 kHZ IEC 60255-22-3, IEC 61000-4-3 class III Irradiation with RF field, amplitude-10 V/m; 80, 160, 450, 900 MHz, modulated, single frequencies, 80 % AM; duration > 10 s IEC 60255-22-3, IEC 61000-4-3, class III Irradiation with RF field, pulse-10 V/m; 900 MHz; repetition modulated, single frequencies, frequency 200 Hz; IEC 60255-22-3, IEC 61000-4-3/ duty cycle 50 % PM ENV 50204, class III Max. 8 dB, for glass-fiber 62.5/125 µm Fast transients interference, bursts 4 kV; 5/50 ns; 5 kHz; 500 kbaud 1.6 km (0.99 miles) IEC 60255-22-4 and burst length = 15 ms; repetition rate 300 ms; both IEC 61000-4-4, class IV polarities: $R_i = 50$; test duration 1 min 9-pin subminiatur connector (SUB-D) High-energy surge voltages Impulse: 1.2/50 µs (SURGE), IEC 61000-4-5, installation class III Auxiliary supply Common (longitudinal) mode: 2kV; 12 Ω, 9 μF Differential (transversal) mode: 1kV; 2 Ω, 18 µF Max. 8 dB, for glass-fiber 62.5/125 µm Common (longitude) mode: Analog inputs, binary inputs, binary outputs 2kV; 42 Ω, 0.5 µF Differential (transversal) mode: 1kV; 42 Ω, 0.5 µF Line-conducted HF, amplitude-10 V; 150 kHz to 80 MHz; 80 % AM; modulated IEC 61000-4-6, class III 1 kHz

Electrical tests (cont'd)

EMC tests for interference immunity (cont'd)

· · · · · · · · · · · · · · · · · · ·				
Magnetic field with power frequency IEC 61000-4-8, IEC 60255-6 class IV	30 A/m continuous; 300 A/m for 3 s; 50 Hz, 0.5 mT; 50 Hz			
Oscillatory surge withstand capability, ANSI/IEEE C37.90.1	2.5 kV (peak); 1 MHz; $\tau = 15 \mu$ s; Damped wave; 400 surges per second; duration 2 s; $R_i = 200 \Omega$			
Fast transient surge withstand capability, ANSI/IEEE C37.90.1	4 kV; 5/50 ns; 5 kHz; burst 15 ms; repetition rate 300 ms; both polarities; duration 1 min.; $R_i = 80 \Omega$			
Damped oscillations IEC 60894, IEC 61000-4-12	2.5 kV (peak value), polarity alternating 100 kHz, 1 MHz, 10 MHz and 50 MHz, R_i = 200 Ω			
EMC tests for interference emission (type test)				
Standard	EN 50081-* (generic standard)			

Conducted interference, only auxiliary supply IEC-CISPR 22 Radio interference field strenght IEC-CISPR 22 150 kHz to 30 MHz Limit class B 30 to 1000 MHz Limit class B

Mechanical stress tests

Vibration, shock stress and seismic vibration

During operation Standards Vibration IEC 60255-21-1, class 2 IEC 60068-2-6

Shock IEC 60255-21-2, class 1 IEC 60068-2-27

Seismic vibration IEC 60255-21-2, class 1 IEC 60068-3-3

During transport

Standards

Vibration IEC 60255-21-1, class 2 IEC 60255-2-6

Shock IEC 60255-21-2, class 1 IEC 60068-2-27

Continuous shock IEC 60255-21-2, class 1 IEC 60068-2-29 IEC 60255-21 and IEC 60068 Sinusoidal 10 to 60 Hz: \pm 0.075 mm amplitude; 60 to 150 Hz: 1 g acceleration frequency sweep 1 octave/min. 20 cycles in 3 orthogonal axes Half-sinusoidal acceleration 5 g, duration 11 ms, 3 shocks each in both directions of the 3 axes Sinusoidal 1 to 8 Hz: ± 3.5 mm amplitude (horizontal axis) 1 to 8 Hz: \pm 1.5 mm amplitude (vertical axis) 8 to 35 Hz: 1 g acceleration (horizontal axis) 8 to 35 Hz: 0.5 g acceleration (vertical axis) frequency sweep 1 octave/min 1 cycle in 3 orthogonal axes IEC 60255-21 and IEC 60068 Sinusoidal 5 to 8 Hz: \pm 7.5 mm amplitude; 8 to 150 Hz: 2 g acceleration frequency sweep 1 octave/min 20 cycles in 3 orthogonal axes Half-sinusoidal acceleration 15 g, duration 11 ms, 3 shocks each in both directions of the 3 axes

Half-sinusoidal acceleration 10 g, duration 16 ms, 1000 shocks on each of the 3 axes in both directions

c	1:	atic	ctuac	e toet
u	1111	auc	stres	s iesi

Temperatures

-	
Type-tested acc. to IEC 60068-2-1 and -2, test Bd, for 16 h	-25 °C to +85 °C / -13 °F to +185 °F
Temporarily permissible operating temperature, tested for 96 h	-20 °C to +70 °C / -4 °F to +158 °F
Recommended permanent operating temperature acc. to IEC 60255-6 (Legibility of display may be impaired above +55 °C / +131 °F)	-5 °C to +55 °C / +25 °F to +131 °F
 Limiting temperature during permanent storage 	-25 °C to +55 °C / -13 °F to +131 °F
 Limiting temperature during transport 	-25 °C to +70 °C / -13 °F to +158 °F
Humidity	
Permissible humidity stress It is recommended to arrange the units in such a way that they are not exposed to direct sunlight or pronounced temperature changes	Yearly average \leq 75 % relative humidity; on 56 days in the year up to 93 % relative humidity; condensation not permitted

CE conformity

that could cause condensation.

This product is in conformity with the Directives of the European Communities on the harmonization of the laws of the Member States relating to electromagnetic compatibility (EMC Council Directive 89/336/EEC) and electrical equipment designed for use within certain voltage limits ("Low voltage" Council Directive 73/23/EEC).

This unit conforms to the international standard IEC 60255, and the German standard DIN 57435/Part 303 (corresponding to VDE 0435/Part 303).

Further applicable standards: ANSI/IEEE C37.90.0 and C37.90.1.

This conformity is the result of a test that was performed by Siemens AG in accordance with Article 10 of the Council Directive complying with the generic standards EN 50081-2 and EN 50082-2 for the EMC Directive and standard EN 60255-6 for the "low-voltage Directive".

Functions		
Differential protection		
General		
Pickup values		
Differential current $I_{DIFF} > /I_{Nobj}$	0.05 to 2.00 (steps 0.01)	
High-current stage $I_{DIFF} >> /I_{Nobj}$	0.5 to 35.0 (steps 0.1) or deactivated (stage ineffective)	
Pickup on switch-on (factor of <i>I</i> _{DIFF} >)	1.0 to 2.0 (steps 0.1)	
Add-on stabilization on external fault ($I_{\text{STAB}} > \text{set value}$) $I_{\text{add-on}}/I_{\text{Nobj}}$ action time	2.00 to 15.00(steps 0.01)2 to 250 cycles(steps 1 cycle)or deactivated(effective until dropoff)	
Tolerances (at preset parameters) <i>I</i> _{DIFF} > stage and characteristic <i>I</i> _{DIFF} >> stage	5 % of set value 5 % of set value	
Time delays		
Delay of I_{DIFF} > stage $T_{\text{I-DIFF}}$ >	0.00 to 60.00 s (steps 0.01 s) or deactivated (no trip)	
Delay of $I_{\text{DIFF}} >> \text{stage}$ $T_{\text{I-DIFF}} >>$	0.00 to 60.00 s (steps 0.01 s) or deactivated (no trip)	
Time tolerance	1 % of set value or 10 ms	
The set times are pure delay times		
Transformers		
Harmonic stabilization		
Inrush restraint ratio $(2^{nd} \text{ harmonic})$ I_{2fN}/I_{fN}	10 to 80 % (steps 1 %)	
Stabilization ratio further (n-th) harmonic (optional 3^{rd} or 5^{th}) I_{nfN}/I_{fN}	10 to 80 % (steps 1 %)	
Crossblock function max. action time for crossblock	Can be activated / deactivated 2 to 1000 AC cycles (steps 1 cycle) or 0 (crossblock deactivated) or deactivated (active until dropout)	
Operating times		
Pickup time/dropout time with sin- gle-side infeed		
Pickup time (in ms) at frequency	50 Hz 60 Hz	
<u>7UT 612</u> I _{DIFF} >, min. I _{DIFF} >>, min.	38 35 19 17	
Dropout time (in ms), approx.	35 30	
<u>7UT 613/63x</u>		
I_{DIFF} >, min.	30 27	
<i>I</i> _{DIFF} >>, min.		
Dropout time (in ms), approx.	54 46	
Dropout ratio, approx.	0.7	
Current matching for transformers		
Vector group adaptation	0 to 11 (x 30 °) (steps 1)	
Star-point conditioning	Earthed or non-earthed (for each winding)	

Generators, motors, reactors	
Operating times	
Pickup time/dropout time with sin- gle-side infeed	
Pickup time (in ms) at frequency	50 Hz 60 Hz
<u>7UT 612</u>	
$I_{\rm DIFF}$ >, min.	38 35
$I_{\text{DIFF}} >>$, min.	19 17
Dropout time (in ms), approx.	35 30
<u>7UT 613/63x</u>	
I _{DIFF} >, min.	30 27
IDIFF >>, IIIII.	
Dropout time (in ms), approx.	54 46
Dropout ratio, approx.	0.7
Busbars, short lines	
Differential current monitor	
Steady-state differential	0.15 to 0.80 (steps 0.01)
current monitoring	
IDIFF mon/INobj	
Delay of blocking with differential	1 to 10 s (steps 1 s)
Feeder current avard	
Trip release Imard/INabi	0.20 to 2.00 (steps 0.01)
by feeder current guard	or 0 (always released)
Operating times	· · ·
Pickup time/dropout time with sin-	
gle-side infeed	
Pickup time (in ms) at frequency	50 Hz 60 Hz
7UT 612	
$\overline{I_{\text{DIFE}}}$, min.	25 25
<i>I</i> _{DIFF} >>, min.	19 17
Dropout time (in ms), approx.	30 30
7UT 613/63x	
$\overline{I_{\text{DIFF}}}$ >, min.	11 11
$I_{\text{DIFF}} >>$, min.	11 11
Dropout time (in ms), approx.	54 46
Dropout ratio, approx.	0.7

Restricted earth-fau	lt protection			Curre
Multiple availability		2 times (option)		Tolera
Settings				Defi
Differential current	t $I_{\rm REF}$ >/ $I_{\rm Nobj}$	0.05 to 2.00 (s	teps 0.01)	T
Limit angle	arphi ref	110 ° (fixed)		mve
Time delay	$T_{\rm REF}$	0.00 to 60.00 s (s	teps 0.01 s)	Acc.
The est time of any more	a dalar tim aa	or deactivated (n	o trip)	
The set times are pur	e delay times			
Operating times				
Pickup time (in ms	s) at frequency	50 HZ 60 HZ	<u> </u>	Acc
At $1.5 \cdot$ setting value	$P_{\text{DEE}} > approx.$	40 38		1100.
At 2.5 · setting value	$e I_{\text{REF}} >$, approx.	37 32		
Dropout time (in r	ns), approx.	40 40		
<u>7UT 613/63x</u>				These
At 1.5 · setting value	eI_{REF} >, approx.	35 30		1110 50
At 2.5 · setting value	$e I_{\text{REF}} >$, approx.	33 29		Operc
Dropout time (in r	ns), approx.	26 23		Picku
Dropout ratio, appro	ox.	0.7		
Overcurrent-time pr	otection for pha	se and residual cu	rrents	<u>/U</u>
Multiple availability		3 times (option)		W1
Characteristics				Wi
Definite-time stages	(DT)	$I_{\rm Ph} >>, 3I_0 >>, I_{\rm Ph}$	$p_{\rm h} >, 3I_0 >$	Dro
Inverse-time stages (IT)	IP, 3IOP	waa avtromaliy	<u>/U</u>
Acc. to IEC		inverse, long-tim	e inverse	W1
Acc. to ANSI		Inverse, moderat	elv inverse, verv	W1
		inverse, extremel	y inverse, definite	Dro
		inverse, short inv	erse, long inverse	Pickuj
		Alternatively, use	r-specified	Pic
	(177)	trip and reset cha	racteristics	<u>70</u>
Reset characteristics	(11)	Acc. to ANSI with	h disk emulation	W1
Current stages	T. SS	0.10 + 25.00 + 1)	(-t0.01.A)	Wi
righ-current stages	Iph >>	or deactivated (st	(steps 0.01 A)	Dro
	$T_{\rm IPh} >>$	0.00 to 60.00 s	(steps 0.01 s)	<u>70</u>
		or deactivated (n	o trip)	W1
	$3I_0 >>$	0.05 to 35.00 A ¹⁾	(steps 0.01 A)	W1
	T	or deactivated (st	age ineffective)	Dro
	$T_{3I0} >>$	0.00 to 60.00 s	(steps 0.01 s)	Dropo
Definite-time stages	$I_{\rm Ph} >$	0.10 to 35.00 A ¹⁾	(steps 0.01 A)	Curre
Dennite time stuges	1117	or deactivated (st	age ineffective)	Inrusł
	$T_{\rm IPh}$	0.00 to 60.00 s	(steps 0.01 s)	Inrusł
		or deactivated (n	o trip)	$(2^{nd}h$
	$3I_0 >$	0.05 to 35.00 A ⁻¹	(steps 0.01 A)	Lower
		0.00 to 60.00 s	(steps 0.01 s)	Max.
	1 310 >	or deactivated (n	o trip)	Cross
Inverse-time stages	$I_{\rm P}$	0.10 to 4.00 A ¹⁾	(steps 0.01 A)	max. a
Acc. to IEC	T_{IP}	0.05 to 3.20 s	(steps 0.01 s)	
		or deactivated (n	o trip)	
	3 <i>I</i> _{0P}	0.05 to 4.00 A ¹⁾	(steps 0.01 A)	
	T_{3I0P}	0.05 to 3.20 s	(steps 0.01 s)	
Inverse times stars	In .	or deactivated (n $0.10 \text{ to } 4.00 \text{ A}^{-1}$)	(stops 0.01.4)	
Acc to ANSI	Dm	0.10 to 4.00 A	(steps 0.01 A)	
ACC. 10 AINSI		or deactivated (n	o trip)	
	3 <i>I</i> _{0P}	0.05 to 4.00 A ¹⁾	(steps 0.01 A)	
			-	

0.50 to 15.00 s (steps 0.01 s) or deactivated (no trip)

Current stages (cont	′d)			
Tolerances				
Definite time	Currents Times	3 % of set v 1 % of set v	alue or value or	1 % of rated current 10 ms
Inverse time	Currents	Pickup	at 1.05 or 1.05	$\leq I/I_{\rm P} \leq 1.15;$ $\leq I/3I_{\rm OP} \leq 1.15$
Acc. to IEC	Times	$5\% \pm 15$ m for $2 \le I/$ and $T_{\rm IP}/s$ or $2 \le I/2$ and $T_{\rm 3IOP}$	hs at f_N $I_P \leq 20$ $I_P \leq 1$; $I_{0P} \leq 2$ $I_{0P} \leq 2$ $I_{0P} \leq 2$	= 50/60 Hz) 20
Acc. to ANSI	Times	$5 \% \pm 15 \text{ m}$ for $2 \le I_{\ell}$ and $D_{\text{IP}/\text{S}}$ or $2 \le I_{\ell}$ and $D_{3\text{IOF}}$	hs at f_N $I_P \le 20$ $s \ge 1$; $3I_{0P} \le 2$ $p/s \ge 1$	= 50/60 Hz) 20
The set definite times	s are pure delay ti	mes.		
Operatina times of t	he definite-time	staaes		
Pickup time/dropout	time phase curre	ent stages		
Pickup time (in m	s) at frequency	50 Hz	60 Hz	
7UT612				
Without inrush re	straint, min.	20	18	
With inrush restra	int, min.	40	35	
Dropout time (in	ms), approx.	30	30	
7UT613/6x	// II			
Without inrush re	straint, min.	11	11	
With inrush restra	int, min.	33	29	
Dropout time (in	ms), approx.	35	35	
Pickup time/dropout	time residual cu	rrent stages		
Pickup time (in m	s) at frequency	50 Hz	60 Hz	
7UT 612	· · · /			
Without inrush re	straint, min.	40	35	
With inrush restra	iint, min.	40	35	
Dropout time (in	ms), approx.	30	30	
<u>7UT613/6x</u>				
Without inrush re	straint, min.	21	19	
With inrush restra	iint, min.	31	29	
Dropout time (in	ms), approx.	45	43	
Dropout ratios				
Current stages		Approx, 0.9	95 for <i>I</i> /	$I_{\rm N} \ge 0.5$
Inrush blocking		11		
Inrush blocking ratio		10 to 45.04		(steps 1.%)
(2 nd harmonic)	$I_{2\rm fN}/I_{\rm fN}$	10 10 45 %		(steps 1 %)
Lower operation lim	it	$I > 0.2 \text{ A}^{(1)}$		
Max. current for bloc	cking	0.30 to 25.0	00 A ¹⁾	(steps 0.01 A)
Crossblock function max. action time for	between phases crossblock	Can be acti 0.00 to 180	ivated/d s	leactivated (steps 0.01 A)

1) Secondary values based on $I_{\rm N}$ = 1 A; for $I_{\rm N}$ = 5 A they must be multiplied by 5.

Siemens SIP · Edition No. 6

D_{3I0P}

Technical data

Technical data			
Overcurrent-time n	rotection for eart	h current	
Multiple availability	olection for cart	3 times (option)	
Characteristics		e times (option)	
Definite-time stages	(DT)	$I_{\rm E}>>, I_{\rm E}>$	
Inverse-time stages Acc. to IEC	(IT)	<i>I</i> _{EP} Inverse, very inverse, e inverse, long-time inve	extremely erse
Acc. to ANSI		Inverse, moderately in inverse, extremely inverse, inverse, short inverse,	verse, very erse, definite long inverse
		Alternatively, user-spe reset characteristics	cified trip and
Reset characteristics	(IT)	Acc. to ANSI with disk	c emulation
Current stages			
High-current stage	$I_{\rm E} >>$	0.05 to 35.00 A ¹⁾ (stee or deactivated (stage in	eps 0.01 A) neffective)
	$T_{\rm IE}>>$	0.00 to 60.00 s (ste or deactivated (no trip	eps 0.01 s) o)
Definite-time stage	$I_{\rm E}$ >	0.05 to 35.00 A ¹⁾ (stee or deactivated (stage in	eps 0.01 A) neffective)
	$T_{\rm IE}$ >	0.00 to 60.00 s (ste or deactivated (no trip	eps 0.01 s) o)
Inverse-time stages	$I_{\rm EP}$	0.05 to 4.00 A ¹⁾ (ste	eps 0.01 A)
Acc. to IEC	$T_{\rm IEP}$	0.05 to 3.20 s (ste or deactivated (no trip	eps 0.01 s))
Inverse-time stages	$I_{\rm EP}$	0.05 to 4.00 A ¹⁾ (ste	eps 0.01 A)
Acc. to ANSI	D_{IEP}	0.50 to 15.00 s (ste or deactivated (no trip	eps 0.01 s))
Tolerances Definite time	Currents	3 % of set value or 1 %	6 of rated
	Times	1 % of set value or 10	ms
Inverse time Acc. to IEC	Currents Times	Pickup at $1.05 \le I/I_{EP}$ 5 % ± 15 ms at $f_N = 50$	≤ 1.15)/60 Hz
Acc. to ANSI	Times	tor $2 \le I/I_{\text{EP}} \le 20$ ar $5 \% \pm 15$ ms at $f_{\text{N}} = 50$ for $2 \le I/I_{\text{EP}} \le 20$ ar	nd $T_{\text{IEP}}/s \ge 1$)/60 Hz nd $D_{\text{IEP}}/s \ge 1$
The set definite time	s are pure delay t	imes.	

Operating times of the definite-time stages

	Pickup time/dropout time			
	Pickup time (in ms) at frequency	50 Hz	60 Hz	
	<u>7UT 612</u>			
	Without inrush restraint, min.	20	18	
	With inrush restraint, min.	40	35	
	Dropout time (in ms), approx.	30	30	
	<u>7UT613/63x</u>			
	Without inrush restraint, min.	11	11	
	With inrush restraint, min.	33	29	
	Dropout time (in ms), approx.	35	35	
	Dropout ratios			
Current stages		Approx. 0.	95 for <i>I/I</i> N	≥ 0.5
	Inrush blocking			
	Inrush blocking ratio $(2^{\text{nd}} \text{ harmonic})$ $I_{2\text{fN}}/I_{\text{fN}}$	10 to 45 %		(steps 1 %)
	Lower operation limit	I > 0.2 A ¹⁾		
	Max. current for blocking	0.30 to 25.	00 A ¹⁾	(steps 0.01 A)

Dynamic cold-loo	ad pickup for overci	ırrent-time protection
Time control		
Start criterion		Binary input from circuit-breaker auxiliary contact or current criterion (of the assigned side)
CB open time	$T_{\rm CB \ open}$	0 to 21600 s (= 6 h) (steps 1 s)
Active time	T _{Active time}	1 to 21600 s (= 6 h) (steps 1 s)
Accelerated drop	out time $T_{ m Stop \ time}$	1 to 600 s (= 10 min) (steps 1 s) or de activated (no accelerated dropout)
Setting ranges ar	nd changeover valu	es
Dynamic parame pickup and delay multipliers	ters of current times or time	Setting ranges and steps are the same as for the functions to be influenced
Single-phase ove	ercurrent-time prote	ection
Current stages		
High-current stag	ge I>>	0.05 to 35.00 A ¹⁾ (steps 0.01 A) 0.003 to 1.500 A ²⁾ (steps 0.001 A) or deactivated (stage ineffective)
	$T_{\rm T}>>$	0.00 to 60.00 s (steps 0.01 s) or deactivated (no trip)
Definite-time stag	ge <i>I</i> >	0.05 to 35.00 A ¹⁾ (steps 0.01 A) 0.003 to 1.500 A ²⁾ (steps 0.001 A) or deactivated (stage ineffective)
	$T_{\rm I}$ >	0.00 to 60.00 s (steps 0.01 s) or deactivated (no trip)
Tolerances	Currents	3 % of set value or 1 % of rated current at $I_N = 1$ A or 5 A 5 % of set value or 3 % of rated current at $I_N = 0.1$ A
	Times	1 % of set value or 10 ms
The set definite ti	mes are pure delay t	imes.
Operatina times	1 /	
Pickup time/dror	out time	
Pickup time (ii	n ms) at frequency	50 Hz 60 Hz
7UT612	in mo) ut nequency	
Minimum		20 18
Dropout time	(in ms), approx.	30 27
<u>7UT613/63x</u>		
Minimum		14 13
Dropout time	(in ms), approx.	25 22
Dropout ratios		
Current stages		Approx. 0.95 for $I/I_{\rm N} \ge 0.5$

1) Secondary values based on $I_{\rm N}$ = 1 A; for $I_{\rm N}$ = 5 A they must be multiplied by 5.

input

2) Secondary values for high-sensitivity current input *I*₈, independent of rated current.

Unbalanced load protection (Negative-sequence protection)

Characteristics

Definite-time stages	(DT)	$I_2 >>, I_2 >$	
Inverse-time stages Acc. to IEC	(IT)	<i>I</i> _{2P} Inverse, very inverse, extremely inverse	
Acc. to ANSI		Inverse, moderately inverse, very inverse, extremely inverse	
Reset characteristics	(IT)	Acc. to ANSI with	disk emulation
Operating range		0.1 to 4 A ¹⁾	
Current stages			
High-current stage	$I_2 >> T_{12} >>$	0.10 to 3.00 A ¹⁾ 0.00 to 60.00 s or deactivated (no	(steps 0.01 A) (steps 0.01 s) trip)
Definite-time stage	$\begin{array}{l}I_2 > \\T_{12} > \end{array}$	0.10 to 3.00 A ¹⁾ 0.00 to 60.00 s or deactivated (no	(steps 0.01 A) (steps 0.01 s) trip)
Inverse-time stages Acc. to IEC	I _{2P} T _{I2P}	0.10 to 2.00 A ¹⁾ 0.05 to 3.20 s or deactivated (no	(steps 0.01 A) (steps 0.01 s) trip)
Inverse-time stages Acc. to ANSI	I _{2P} D _{I2P}	0.10 to 2.00 A ¹⁾ 0.50 to 15.00 s or deactivated (no	(steps 0.01 A) (steps 0.01 s) trip)
Tolerances			
Definite-time	Currents Times	3 % of set value or 1 % of rated curren 1 % of set value or 10 ms Pickup at $1.05 \le III_{\rm EP} \le 1.15$ 5 % ± 15 ms at $f_{\rm N} = 50/60$ Hz for $2 \le III_{\rm EP} \le 20$ and $T_{\rm IEP}/s \ge 1$ 5 % ± 15 ms at $f_{\rm N} = 50/60$ Hz for $2 \le III_{\rm EP} \le 20$ and $D_{\rm IEP}/s \ge 1$	
Inverse time Acc. to IEC	Currents Times		
Acc. to ANSI	Times		

The set definite times are pure delay times.

Operating times of the definite-time stages

Pickup time/dropout time

r iekup unie/uropout unie				
Pickup time (in ms) at frequency	50 Hz	60 Hz		
<u>7UT612</u>				
Minimum	50	45		
Dropout time (in ms), approx.	30	30		
<u>7UT613/63x</u>				
Minimum	41	34		
Dropout time (in ms), approx.	23	20		
Dropout ratios				
Current stages	Approx. 0	.95 for <i>I</i> ₂ / <i>I</i>	$V_{\rm N} \ge 0.5$	
Thermal overload protection				
Overload protection using a thermal	replica			
Multiple availability	2 times (o	2 times (option)		
Setting ranges				
Factor k acc. IEC 60255-8	0.10 to 4.0	00	(steps 0.01)	
Time constant $ au$	1.0 to 999	.9 min	(steps 0.1 min)	
Cooling down factor at motor				
stand-still (for motors) K τ -factor	1.0 to 10.0)	(steps 0.1)	
Thermal alarm stage $\Theta_{alarm}/\Theta_{trip}$	50 to 100 % referred to trip			
	temperatu	ire rise	(steps 1 %)	
Current-based alarm stage	0.10 to 4.0	00 A ¹⁾	(steps 0.01 A)	
I _{alarm}				
Start-up recognition	0.60 to 10	.00 A ¹⁾	(steps 0.01 A)	
(for motors) Istart-up	or deactiv	ated .		
	(no start-	up recogni	tion)	
Emergency start run-on time	10 to 1500	00 s	(steps 1 s)	
(tor motors) True on				

Overload protection using a thermal replica (cont'd) Tripping characteristics

 $\mathbf{t} = \tau \cdot I_{\mathbf{n}} \frac{\left(\frac{I}{\mathbf{k} \cdot I_{N}}\right)^{2} - \left(\frac{I_{\text{pre}}}{\mathbf{k} \cdot I_{N}}\right)^{2}}{\left(\frac{I}{\mathbf{k} \cdot \mathbf{k}}\right)^{2} - 1}$ Tripping characteristic for $I/(\mathbf{k} \cdot I_{\mathrm{N}}) \leq 8$ Tripping time t Heating-up time constant τ I Actual load current Ipre Preload current Setting factor IEC 60255-8 k *I*_N Rated current of the protected object Dropout ratios Θ/Θ_{trip} Dropout at Θ_{alarm} Θ/Θ_{alarm} Approx. 0.99 I/Ialarm Approx. 0.97 Tolerances (with one 3-phase measuring location) 3 % or 10 mA ¹⁾; Referring to k · IN class 3 % acc. IEC 60255-8 3 % or 1 s at $f_{\rm N}$ = 50/60 Hz Referring to tripping time for $I/(k \cdot I_N) > 1.25$ Frequency influence referring to $k \cdot I_N$ In the range $0.9 \le f/f_N \le 1.1$ 1 % at $f_{\rm N} = 50/60$ Hz Hot-spot calculation and determination of the ageing rate Thermo-box (temperature monitoring box) Number of measuring points From 1 thermo-box (up to 6 temperature sensors) or from 2 thermo-boxes (up to 12 temperature sensors) For hot spot calculation one temperature sensor must be connected. Cooling Cooling method ON (oil natural) OF (oil forced) OD (oil directed) 1.6 to 2.0 Oil exponent Y (steps 0.1) Hot spot to top-oil gradient H_{gr} 22 to 29 (steps 1) Annunciation thresholds Warning temperature hot spot 98 to 140 °C (steps 1 °C) 208 to 284 °F (steps 1 °F) 98 to 140 °C (steps 1 °C) Alarm temperature hot spot (steps 1 °F) 208 to 284 °F Warning ageing rate 0.125 to 128.000 (steps 0.001) Alarm ageing rate 0.125 to 128.000 (steps 0.001)

1) Secondary values based on $I_{\rm N} = 1$ A; for $I_{\rm N} = 5$ A they must be multiplied by 5.

Thermo-boxes for overload protection	n	
Thermo-boxes (connectable)	1 or 2	
Number of temperature sensors per thermo-box	Max. 6	
Measuring type	Pt 100 Ω or Ni 100 Ω or Ni 120 Ω	
Annuciation thresholds		
For each measuring point:		
Warning temperature (stage 1)	-50 to 250 °C (steps 1 °C) -58 to 482 °F (steps 1 °F) or deactivated (no warning)	
Alarm temperature (stage 2)	-50 to 250 °C (steps 1 °C) -58 to 482 °F (steps 1 °F) or deactivated (no alarm)	
Breaker failure protection		
Multiple availability	2 times (option)	
Setting ranges		
Current flow monitoring	0.04 to 1.00 A ¹⁾ (steps 0.01 A) for the respective side	
Dropoff to pickup ratio	Approx. 0.9 for $I \ge 0.25 \text{ A}^{(1)}$	
Pickup tolerance	5 % of set value or 0.01 A $^{1)}$	
Breaker status monitoring	Binary input for CB auxiliary contact	
Starting conditions		
For breaker failure protection	Internal trip External trip (via binary input)	
Times		
пскир шие	Approx. 2 ms (701615/65x) and approx. 3 ms (70T612) with measured quantities present; Approx. 20 ms after switch-on of measured quantities, $f_N = 50/60$ Hz	
Reset time	50 Hz 60 Hz	
(incl. output relay), approx.		
<u>7UT612</u>	30 ms 30 ms	
<u>7UT613/63x</u>	25 ms 25 ms	
Delay times for all stages	0.00 to 60.00 s; deactivated (steps 0.01 s)	
Time tolerance	1 % of setting value or 10 ms	
Overexitation protection (Volt / Hertz	r) (701613 / 633 only)	
Setting ranges Pickup threshold alarm stage Pickup threshold V/f>>-stage Time delays T Characteristic values of V/f and assigned times t (V/f) Cooling down time T _{Cooling}	1 to 1.2 (steps 0.01) 1 to 1.4 (steps 0.01) 0 to 60 s (steps 0.01 s) or deactivated 1.05/1.1/1.15/1.2/1.25/1.3/1.35/1.4 0 to 20000 s (steps 1 s) 0 to 20000 s (steps 1 s)	
Times (in ms) (alarm and V/f>>-stage) Pickup times at 1.1 of set value, approx. Drop-off times, approx.	50 Hz 60 Hz 36 31 28 23	
Drop-off ratio (alarm, trip)	0.95	
Tolerances <i>Vlf</i> -Pickup Time delays <i>T</i> Thermal characteristic (time)	3 % of set value 1 % or 10 ms 5 % rated to <i>V/f</i> or 600 ms	

Undervoltage protection (definite-time and inverse-time function) (ANSI 27)

Setting range Undervoltage pickup V<, V<<, Vp< (positive sequence as phase-	10 to 125 V (steps 0.1 V)
to-phase values) Time delays T Time multiplier T _M	0 to 60 s (steps 0.01 s) or indefinite 0.1 to 5 s (steps 0.01 s)
Times Pickup time V<, V<< Drop-off time V<, V<<	Approx. 50 ms Approx. 50 ms
Drop-off ratio V<, V<<, V _p <	1.01 or 0.5 V
Tolerances Voltage limit values Time delays <i>T</i>	1 % of set value or 0.5 V 1 % or 10 ms
Inverse-time characteristic	1 % of measured value of voltage
Overvoltage protection (ANSI 59)	
Setting ranges Overvoltage pickup V>, V>> (maximum phase-to-phase voltage or phase-to-earth-voltage) Time delays T	30 to 170 V (steps 0.1 V) 0 to 60 s (steps 0.01 s) or indefinite
Times	
Pickup times V>, V>> Drop-off times V>, V>>	Approx. 50 ms Approx. 50 ms
Drop-off ratio V>, V>>	0.9 to 0.99 (steps 0.01)
Tolerances Voltage limit value Time delays T	1 % of set value 0.5 V 1 % or 10 ms
Frequency protection (ANSI 81)	1 /0 01 10 110
Setting ranges	
Steps; selectable <i>f</i> >, <i>f</i> < Pickup values <i>f</i> >, <i>f</i> < Time delays <i>T</i>	4 40 to 65 Hz (steps 0.01 Hz) 3 stages 0 to 100 s, 1 stage up to 600 s
Undervoltage blocking $V_1 <$	(steps 0.01 s) 10 to 125 V (steps 0.1 V)
Times	
Pickup times <i>f</i> >, <i>f</i> < Drop-off times <i>f</i> >, <i>f</i> <	Approx. 100 ms Approx. 100 ms
Drop-off difference Δf Drop-off ratio $V_1 <$	Approx. 20 mHz Approx. 1.05
Tolerances	
Frequency Undervoltage blocking Time delays T	10 mHz (at V> 0.5 V _N) 1 % of set value or 0.5 V 1 % or 10 ms
Reverse-power protection (ANSI 32R)	
Setting ranges	
Reverse power $P_{\text{Rev.}} > /S_{\text{N}}$ Time delays T	- 0.5 to - 30 % (steps 0.01 %) 0 to 60 s (steps 0.01 s) or indefinite
Times Pickup time	Approx. 360 ms (50 Hz);
Drop-off time	Approx. 360 ms (50 Hz); Approx. 360 ms (50 Hz); Approx. 300 ms (60 Hz)
Drop-off ratio P _{Rev.} >	Approx. 0.6
Tolerances	
Reverse power $P_{\text{Rev.}}$	$0.25 \% S_{\rm N} \pm 3 \%$ set value

1) Secondary values based on $I_{\rm N}$ = 1 A; for $I_{\rm N}$ = 5 A they must be multiplied by 5.

Setting ranges

Forward-power protection (ANSI 32F)

Forward power PForw.</SN Forward power PForw.>/SN Time delays T Times Pickup time (accurate measuring) Pickup time (fast measuring) Drop-off time (accurate measuring) Drop-off time (fast measuring) Drop-off ratio P_{Forw.}< Drop-off ratio P_{Forw}> Tolerances Active power PForw.<, PForw.>

Time delays T

External trip commands

Binary inputs		
Number of binary inputs for direct tripping	2	
Operating time	Approx. 12.5 ms min. Approx. 25 ms typical	
Dropout time	Approx. 25 ms	
Delay time	0.00 to 60.00 s (steps 0.01 s	
Expiration tolerance	1 % of set value or 10 ms	

The set definite times are pure

Transformer annunciations

External annunciations

Measured quantities supervision

Current symmetry (for each measurement location) BAL. FAKT. I BAL. I LIMIT Voltage symmetry (if voltages applied) Voltage sum (if voltages applied) Current phase sequence

Voltage phase sequence (if voltages applied)

Broken wire

Fuse failure monitor

0.5 to 120 % (steps 0.1 %) 1 to 120 % (steps 0.1 %) 0 to 60 s (steps 0.01 s) or indefinite

Approx. 360 ms (50 Hz); Approx. 300 ms (60 Hz) Approx. 60 ms (50 Hz); Approx. 50 ms (60 Hz) Approx. 360 ms (50 Hz); Approx. 300 ms (60 Hz) Approx. 60 ms (50 Hz); Approx. 50 ms (60 Hz) 1.1 or 0.5 % of S_N Approx. 0.9 or -0.5 % of S_N

 $0.25 \% S_N \pm 3 \%$ of set value at $Q < 0.5 S_N$ at accurate measuring $0.5 \% S_{\rm N} \pm 3 \%$ of set value at $Q < 0.5 S_{\rm N}$ at fast measuring 1 % or 10 ms

	Approx. 12.5 ms min. Approx. 25 ms typical		
	Approx. 25 ms		
	0.00 to 60.00 s	(steps	
	1 % of set value or 10 i	ns	
e delay times.			

Buchholz warning Buchholz tank Buchholz tripping

$ I_{\min} / I_{\max} < BAL. F$	AKT. I
0.10 to 0.90	(steps 0.01)
0.10 to 1.00 A ¹⁾	(steps 0.01 A)
$ V_{\min} / V_{\max} < BAL.$ If $ V_{\max} > BALANCE$	FAKT. <i>V-</i> LIMIT
$ \underline{V}_{L1+} \underline{V}_{L2+} \underline{V}_{L3-} kV \cdot \underline{V}_{E}$	N > 25 V
I_{L1} before I_{L2} before I_{L2}	3 (clockwise)
or	
I_{L1} before I_{L3} before I_{L}	.2
(counter-clockwise)	
if $ \underline{I}_{L1} $, $ \underline{I}_{L2} $, $ \underline{I}_{L3} > 0.5 I$	I _N
\underline{V}_{L1} before \underline{V}_{L2} before	<u>V</u> L3
(clockwise) or	
\underline{V}_{L1} before \underline{V}_{L3} before	\underline{V}_{L2}
(counter-clock)	. /
if $ V_{L1} $, $ V_{L2} $, $ V_{L3} > 40$	0 V/V3
Unexpected instantan	eous current
value and current inte	erruption or
missing zero crossing	

detects failure of the measured voltage

Tri	n circi	iit su	nervi	ision
III	p circu	iii suj	pervi	SIOI

Trip circuits Number of supervised trip circuits 1 Operation of each trip circuit With 1 binary input or with 2 binary inputs Flexible protection functions (ANSI 27, 32, 47, 50, 55, 59,81) N°. of selectable stages 12 Operating modes / measuring Measurement location or side quantities selectable $I, I_1, I_2, 3I_0, V, V_1, V_2, V_0, P, Q, \cos \varphi$ 3-phase 1-phase I, $I_{\rm E}$, $I_{\rm E \, sens.}$, V, P, Q, $\cos \varphi$ Without fixed phase relation f, binary input Pickup when Exceeding or falling below threshold value Setting ranges Current I, I1, I2, 3I0, IE 0.05 to 35 A (steps of 0.01 A) Sens. earth curr. IE sens. 0.001 to 1.5 A (steps of 0.001 A) Voltages V, V₁, V₂, V₀ 1 to 170 V (steps of 0.1 V) Displacement voltage VE 1 to 200 V (steps of 0.1 V) 1.6 to 3000 W (steps of 0.1 W) Power P, QPower P, Q (side) 0.01 to 17 *P/S*_N, *Q/S*_N, (steps of 0.01) -0.99 to +0.99 (steps of 0.01) Power factor $(\cos \varphi)$ $f_{\rm N} = 50/60 \; {\rm Hz}$ Frequency 10 to 66 Hz (steps of 0.01 Hz) Pickup delay time 0 to 60 s (steps of 0.01 s) Trip delay time 0 to 3600 s (steps of 0.01 s) Dropout delay time 0 to 60 s (steps of 0.01 s) Times On request (see Manual) Dropout times On request (see Manual) Tolerances On request (see Manual) Additional functions **Operational measured values** Operational measured values $I_{L1}; I_{L2}; I_{L3}$ of currents, 3-phase for each side in A primary and secondary and measurement location and % of I_N Tolerance at $I_{\rm N} = 1$ or 5 A 1 % of measured value or 1 % of $I_{\rm N}$ Tolerance at $I_{\rm N} = 0.1$ A 2 % of measured value or 2 % of IN Operational measured values 3*I*₀; *I*₁; *I*₂ of currents, 3-phase for each side in A primary and secondary and measurement location and % of IN Tolerance 2 % of measured value or 2 % of IN Operational measured values of currents 1-phase for each measurement in A primary and secondary location and % of $I_{\rm N}$ 1 % of measured value or 1 % of $I_{\rm N}$ Tolerance at $I_N = 1$ or 5 A Tolerance at $I_{\rm N} = 0.1$ A 2 % of measured value or 2 % of $I_{\rm N}$ For high-sensitivity inputs in A primary and secondary Tolerance 1 % of measured value or 2 mA High-sensitivity Feeder Further 7UT612 I1 to I7 I_7 to I_8 I_8 7UT613 I1 to I9 I_{x1} to I_{x3} I_{x3} 7UT633 I1 to I9 I_{x1} to I_{x3} I_{x3} 7UT635 I_1 to I_{12} I_{x1} to I_{x4} I_{x3}, I_{x4} Phase angles of currents, $\varphi(I_{L1}); \varphi(I_{L2}); \varphi(I_{L3}) \text{ in }^{\circ},$ 3-phase for each measurement referred to φ (I_{L1}) location Tolerance 1° at rated current

Operational measured values (cont'd)

Phase angles of currents, 7UT612 7UT613 7UT633 7UT635 1-phase for each measurement location

Tolerance Operational measured values of voltages (7UT613/633 only)

3-phase (if voltage applied)

Tolerance

- Tolerance 1-phase (if voltage applied) Tolerance
- Phase angles of voltages (7UT613/633 only, if voltages applied) Tolerance
- Operational measured values of frequency Range Tolerance
- Operational measured values of power

S (apparent power) P (active power)

Q (reactive power)

- Operational measured value of power factor
- Overexcitation

Tolerance

- Operational measured values for thermal value
- Operational measured values (Overload protection acc. to IEC 60354)
- Measured values of differential protection

Tolerance (with preset values)

Measured values of restricted earth-fault protection Tolerance (with preset values) $\varphi(I_1)$ to $\varphi(I_8)$ φ (*I*₁) to φ (*I*₉), φ (*I*_{x1}) to φ (*I*_{x3}) $\varphi(I_1)$ to $\varphi(I_9), \varphi(I_{x1})$ to $\varphi(I_{x4})$ $\varphi(I_1)$ to $\varphi(I_{12}), \varphi(I_{x1})$ to $\varphi(I_{x4})$

in °, referred to φ (*I*₁) 1° at rated current in kV primary and V secondary and % of V_N VL1-E, VL2-E, VL3-E, VL1-L2, VL2-L3, VL3-L1, 0.2 % of measured value or \pm 0.2 V $V_1, V_2, V_0,$ 0.4 % of measured value or \pm 0.4 V $V_{\rm EN}$ or V_4 0.2 % of measured value or \pm 0.2 V φ (V_{L1-E)}), φ (V_{L2-E}), φ (V_{L3-E)}), φ

1° at rated voltage

 $(V_4), \varphi(V_{\rm EN})$

in Hz and % of f_N 10 to 75 Hz 1 % within range $f_{\rm N} \pm 10$ % and $I \ge I_{\rm N}$

	<u>S</u>	Р	Q
7UT612	x	_	_
7UT613	x	x	x
7UT633	x	x	х
7UT635	х	-	-
Applied or	rated vo	oltage	
Only if volt 7UT613/63	age app 3 only	lied,	
Only if volt 7UT613/63 in kVA; MV	age app 3 only, VA; GV	lied, A primar	у
$\cos \varphi$ (p.f.) Only if volt 7UT613/63	age app 3 only	lied,	
<i>V f</i> Only if volt 7UT613/63 2 % of mea	age app 3 only sured v	lied, alue	
$\Theta_{L1}; \Theta_{L2}; \Theta_{L$	Đ _{L3} ; Θ _{re} tripping e rise Θ	s, g trip	
Θ _{thermo-box} in °C or °F load reserve	$_{1}$ to Θ_{th} relative	ermo-box12 aging rat	e,
$I_{\text{DIFF L1}}; I_{\text{DI}}$ $I_{\text{REST L1}}; I_{\text{RF}}$ in % of ope 2 % of mea 2 % of I_{N} (2 3 % of mea	FF L2; <i>I</i> D ST L2; <i>I</i> R erationa sured va 50/60 H sured va	IFF L3; EST L3 l rated cu alue or z) alue or	rrent

IDIFFREF; IRestREF in % of operational rated current 2 % of measured value or 2 % of I_N (50/60 Hz) 3 % of measured value or 3 % of I_N (16.7 Hz)

viax. / iviin. / iviean report			
Report of measured values	With date and time from all sides and measurement locations		
Reset, automatic	Time of day adjustable (in minutes, 0 to 1439 min) Time frame and starting time adjust- able (in days, 1 to 365 days, and ∞)		
Reset, manual	Using binary input, using keypad, via communication		
Min./max./mean values for current	I_{L1} , I_{L2} , I_{L3} , I_1 (positive-sequence component) I_2 (negative-sequence component), $3I_0$, I_{DIFF} [1, I_{DIFF} [2, I_{DIFF} [3, I_{DESTP} 1, I_{DESTP} 12, I_{DESTP} 13		
Min./max./mean values for voltages	VL1-E, VL2-E, VL3-E V1 (positive-sequence component) V2 (negative-sequence component) V0, VE, VL1-L2, VL2-L3, VL3-L1		
Min./max./mean values for power	S, P, Q, $\cos \varphi$, frequency		
Min./max. for mean values	see above		
Fault event log			
Storage of the messages of the last 8 faults	With a total of max. 200 messages		
Fault recording			
Number of stored fault records	Max. 8		
Storage period (start with pickup or trip)	Max. 5 s for each fault, Approx. 5 s in total 7UT		
	612 613 633 635		
Sampling rate at $f_N = 50 \text{ Hz}$ Sampling rate at $f_N = 60 \text{ Hz}$	600 Hz800 Hz800 Hz800 Hz720 Hz960 Hz960 Hz960 Hz		
Switching statistics			
Number of trip events caused by 7UT6			
Total of interrupted currents caused by 7UT6	Segregated for each pole, each side and each measurement location		
Operating hours Criterion	Up to 7 decimal digits Excess of current threshold		
Real-time clock and buffer battery			
Resolution for operational messages	1 ms		
Resolution for fault messages Buffer battery	1 ms 3 V/1 Ah, type CR 1/2 AA		
	Self-discharging time approx. 10 years		
Time synchronization			
Operating modes:			
Internal IEC 60870-5-103 Fime signal IRIG B	Internal via RTC External via system interface (IEC 60870-5-103) External via IRIG B		
Fime signal DCF77 Fime signal synchro-box Pulse via binary input	(IEC 60870-5-103) External via IRIG B External, via time signal DCF77 External, via synchro-box External with pulse via binary input		

Selection and ordering data	Description	Order No.	Order Code
	7UT612 differential protection relay for transformers, generators, motors and busbars Housing 1/3 x 19"; 3 Bl, 4 BO, 1 live status contact, 7 I, I_{EE} ¹⁾	7UT612□-□□□□-□	
	$Rated current$ $I_{N} = 1 A$ $I_{N} = 5 A$		
	Rated auxiliary voltage (power supply, binary inputs)24 to 48 V DC, binary input threshold 17 V 2)60 to 125 V DC 3), binary input threshold 17 V 2)110 to 250 V DC, 115/230 V AC, binary input threshold 73 V 2)	<u>2</u> <u>4</u> 5	
	<i>Unit design</i> For panel surface mounting, two-tier terminals on top and bottor For panel flush mounting, plug-in terminals (2/3-pole AMP conn For panel flush mounting, screw-type terminals, (direct wiring/rin	n B lector) D ng lugs) F	
	Region-specific default settings/function and language settings Region DE, 50/60 Hz, IEC/ANSI, language German; selectable	<u>A</u>	
	Region World, 50/60 Hz, IEC/ANSI, language English (GB); selectable Region US, 60/50 Hz, ANSI/IEC, language English (US);	<u> </u>	
	selectable Region World, 50/60 Hz, IEC/ANSI, language Spanish; selectable	C	
	System interface (Port B) on rear No system interface	0	
	IEC 60870-5-103 protocol, electrical RS232	1	
	IEC 60870-5-103 protocol, electrical RS485	2	
	IEC 60870-5-103 protocol, optical 820 nm, ST connector	3	
	PROFIBUS-FMS Slave, electrical RS485	4	
	PROFIBUS-FMS Slave, optical, single loop, ST connector ⁴⁾	5	
	PROFIBUS-FMS Slave, optical, double loop, ST connector ⁴⁾	6	
	PROFIBUS-DP Slave, electrical RS485	9	L 0 A
	PROFIBUS-DP Slave, optical 820 nm, double loop, ST connector	⁴⁾ 9	L 0 B
	MODBUS, electrical RS485	9	L 0 D
	MODBUS, optical 820 nm, ST connector ⁴⁾	9	LOE
	DNP 3.0, electrical RS485	9	L 0 G
	DNP 3.0, optical 820 nm, ST connector ⁴⁾	9	LOH
	IEC 61850, 100 Mbit Ethernet, electrical, double, RJ45 connector	(EN 100) 9	LOR
	IEC 61850, 100 Mbit Etherent, optical, double, LC connector (EN	(100) ⁵⁾ 9	LOS

- 1) Sensitivity selectable normal/high.
- 2) The binary input thresholds are selectable in two stages by means of jumpers.
- 3) Transition between the two auxiliary voltage ranges can be selected by means of jumpers.
- 4) With surface-mounting housing: only RS485 interface available.
- 5) If position 9 = "B" (surface-mounting housing), please order relay with electrical Ethernet interface and use a separate FO switch.

Selection and ordering data

7UT612 differential protection relay for transformers, generators, motors and busbars

Description

Order No. *7UT612* - □□□□-□□A0

No DIGSI 4 port	0
DIGSI 4/browser, electrical RS232	1
DIGSI 4/browser or temperature monitoring box ¹⁾ , electrical RS485	2
DIGSI 4/browser or temperature monitoring box ¹⁾ , 820 nm fiber optic, ST connector	3
Functions	
Measured values/monitoring functions	
Basic measured values	
Basic measured values, transformer monitoring functions	
(connection to thermo-box/hot spot acc. to IEC, overload factor)	
Differential protection + basic functions	
Differential protection for transformer, generator, motor, busbar (87)	
Overload protection for one winding (49), Lockout (86)	
Overcurrent-time protection $(50/51)$: $I >$, $I >$, I_P (inrush stabilization)	
Overcurrent-time protection (50N/51N): $3I_0$ >, $3I_0$ >, $3I_{0P}$ (inrush stabilization)	
Overcurrent-time protection earth $(50G/51G)$: $I_E >$, $I_E >$, $I_E >$, investigation)	

Restricted earth fault protection, low impedance (87N) Restricted earth fault protection, high impedance (87N without resistor and varistor), O/C 1-phase Trip circuit supervision (74TC), breaker failure protection (50BF), unbalanced load protection (46)

¹⁾ External temperature monitoring box required.

7Uf613 differential protection relay7Uf613 D-DDDDD-DDDDDDDDDDDDDDDDDDDDDDDDDDDDD	Selection and ordering data	Description	Order No.	Order Code
Housing 1/2 x 19°,5 Bl, 8 BO, 1 live status contact, 11 / LivRated current $l_N = 1 A$ 1 $l_N = 5 A$ 5Rated auxiliary voltage (power supply, binary inputs)24 to 48 V DC, binary input threshold 17 V ³ 260 to 125 V DC ³ , binary input threshold 17 V ³ 210 to 250 V DC ³ , 115/230 V AC, binary input threshold 73 V ³ 5110 to 250 V DC ³ , 115/230 V AC, binary input threshold 154 V ²⁰ 6Unit designSurface-mounting housing with two-tier terminalsRegion-specific default settings/fonguage settingsRegion Specific default settings/fonguage settingsRegion Vorld, 50(60 Hz, IEC/ANSI, language German, selectableARegion World, 50(60 Hz, IEC/ANSI, language English (GB); selectableDRegion World, 50(60 Hz, IEC/ANSI, language Spanish; selectableDReport Solution Stave, optical, double ring, ST connector ⁴⁰ PROFIBUS-FMS Slave, optical, single ring, ST connector ⁴⁰ PROFIBUS-FMS Slave, optical, double ring, ST connector ⁴⁰ <		7UT613 differential protection relay for transformers, generators, motors and busbars	7UT613 □ -□□□□□	-00000000
Rated current $N_n = 1 A$ 1 $N_n = 5 A$ 5Reded auxiliary voltage (power supply, binary input)24 to 48 V DC, binary input threshold 17 V ²¹ 260 to 125 V DC ² , 115/230 V AC, binary input threshold 73 V ²¹ 5110 to 250 V DC ¹ , 115/230 V AC, binary input threshold 154 V ²¹ 6Unit designSurface-mounting housing with two-tier terminalsBFlush-mounting housing with two-tier terminalsBFlush-mounting housing with screw-type terminalsCRegion-specific default settings/fonguage settingsRegion World, 5060 Hz, IEC/ANSI, language English (CB); selectableARegion World, 5060 Hz, IEC/ANSI, language Franch; selectableCRegion World, 5060 Hz, IEC/ANSI, language Franch; selectableCRegion World, 50760 Hz, IEC/ANSI, language Spanish; selectableCRegion World, Sore, electrical RS4852IEC 60870-5-103 protocol, electrical RS4852IEC 60870-5-103 protocol, electrical RS4854PROFIBUS-FNMS Slave, optical, angle ring, ST connector ⁴¹ 6PROFIBUS-FNMS Slave, optical, angle ring, ST connector ⁴⁰ 9PROFIBUS-FNMS Slave, optical, angle ring, ST connector ⁴¹ 9PROFIBUS-FNMS Slave, optical, angle ring,		Housing $1/2 \times 19^{7}$; 5 Bl, 8 BO, 1 live status contact, 11 I, I_{EE}^{11}		
$\frac{I_{N} = 1 A}{I_{N} = 5 A}$ $\frac{1}{I_{N} = 5 O^{1}(0 L_{1} L_{2}^{2}(3 V A C, binary input threshold 17 V^{21} 4$ $\frac{1}{I_{N} = 5 O^{1}(0 L_{1}^{2}(3 V A C, binary input threshold 154 V^{21} 6$ $\frac{1}{I_{N} = 5 O^{1}(0 L_{1}^{2}(3 V A C, binary input threshold 154 V^{21} 6$ $\frac{1}{I_{N} = 5 O^{1}(0 L_{1}^{2}(3 V A C, binary input threshold 154 V^{21} 6$ $\frac{1}{I_{N} = 5 O^{1}(0 L_{1}^{2}(3 V A C, binary input threshold 154 V^{21} 6$ $\frac{1}{I_{N} = 5 O^{1}(0 L_{1}^{2}(3 V A C, binary input threshold 154 V^{21} 6$ $\frac{1}{I_{N} = 5 O^{1}(0 L_{1}^{2}(4 N S), language settings)$ $Region Def, 50(60 Hz, IEC/ANSI, language formary, selectable A Region World, 50(60 Hz, IEC/ANSI, language frem dry, selectable A Region World, 50(60 Hz, IEC/ANSI, language French; selectable D Region World, 50(60 Hz, IEC/ANSI, language French; selectable D Region World, 50(60 Hz, IEC/ANSI, language French; selectable E System interface (Port B) or near$ No system interface O IEC 60870-5-103 protocol, electrical R5485 2 IEC 60180S, electrical R5485 9 IEC 0 I A PROFIBUS-FMS Slave, optical, double ring, ST connector ⁴ 5 PROFIBUS-PD Slave, optical 820 nm, ST connector ⁴ 5 IEC 61880, 100 Mbit Etherent, electrical, double, IZ 6 connector (EN 100) $\frac{1}{I_{0}} L_{0} D$ $\frac{1}{I_{0}} D$ $\frac{1}{I_{0}} D$ $\frac{1}{I_{0}} L_{0} D$		Rated current	$\land \land $	
$I_{\rm R} = 5 {\rm A}$ 5Rated auxiliary voltage (power supply, binary inputs) 24 to 48 V DC, binary input threshold 17 V ⁻⁰ 2 60 to 125 V DC ¹ , 115/230 V AC, binary input threshold 17 V ⁻¹ 4 110 to 250 V DC ¹ , 115/230 V AC, binary input threshold 17 V ⁻¹ 6Unit design Surface-mounting housing with two-tier terminals Flush-mounting housing with two-tier terminals Flush-mounting housing with screw-type terminals B Flush-mounting housing with screw-type terminals E Region DE, 50/60 Hz, EC/ANSI, language settings Region US, 60/50 Hz, EC/ANSI, language English (GB); selectable Region World, 50/60 Hz, EC/ANSI, language English (GB); selectable E System interface PROFIBUS-FMS Slave, electrical RS232 T EC 60870-5-103 protocol, electrical RS232 EC 60870-5-103 protocol, electrical RS485PROFIBUS-FMS Slave, optical, double ring, ST connector ⁻⁰ G PROFIBUS-FMS Slave, optical, double ring, ST connector ⁻⁰ PROFIBUS-FMS Slave, optical RS485 G L $O R$ PROFIBUS-FMS Slave, optical RS485 G L $O R$ PROFIBUS-FMS Slave, optical RS485PROFIBUS-FMS Slave, optical RS485 G L $O R$ PROFIBUS-FMS Slave, optical RS485 G L $O R$ PROFIBUS-FMS Slave, optical RS485PROFIBUS-FMS Slave, optical RS485 G L $O R$ PROFIBUS-FMS Slave, optical RS485 G L $O R$ PROFIBUS-FMS Slave, optical RS485PROFIBUS-FMS Slave, optical RS485 G L $O R$ PROFIBUS-FMS Slave, optical RS485 G L $O R$ PROFIBUS-FMS Slave, optical RS485PROFIBUS-FMS Slave, optical RS485 G L $O R$ PROFIBUS-FMS Slave, optical RS485 G 		$I_{\rm N} = 1 \text{ A}$	1	
Rated dualidary voltage (power supply, binary input 17^{20} 224 to 48 V DC, binary input threshold 17 V^{21} 260 to 125 V DC ²¹ , 115/230 V AC, binary input threshold 73 V^{21} 4110 to 250 V DC ²¹ , 115/230 V AC, binary input threshold $154 V^{21}$ 6Unit designSurface-mounting housing with two-tier terminalsPlush-mounting housing with plug-in terminalsDFlush-mounting housing with screw-type terminalsERegion Specific default settings/anguage settingsRegion US, 60/50 Hz, IEC/ANSI, language Fernar, selectableRegion US, 60/50 Hz, IEC/ANSI, language Fernar, selectableDRegion World, 50/60 Hz, IEC/ANSI, language Fernar, selectableDRegion World, 50/60 Hz, IEC/ANSI, language Franch; selectableESystem interfaceOIEC 60870-5-103 protocol, electrical R54854PROFIBUS-FMS Slave, optical 4820 nm, ST connector ⁴⁰ GPROFIBUS-FMS Slave, optical 4820 min, ST connector ⁴⁰ GPROFIBUS-FDY Slave, optical 4820 min, double ring, ST connector ⁴⁰ GPROFIBUS		$I_{\rm N} = 5 \text{ A}$	5	
Note: Supply, bindy, npts)24 to 48 V DC, binary input threshold 17 V^{21} 4110 to 250 V DC ³ , 115/230 V AC, binary input threshold 73 V^{21} 5110 to 250 V DC ¹ , 115/230 V AC, binary input threshold 154 V^{21} 6Unit designSurface-mounting housing with two-tier terminalsPlush-mounting housing with serve-type terminals0Flush-mounting housing with serve-type terminals0Region-specific default settings/language settingsARegion World, 50/60 Hz, IEC/ANSI, language English (GB) selectableARegion World, 50/60 Hz, IEC/ANSI, language English (GB) selectable0Region World, 50/60 Hz, IEC/ANSI, language French; selectable0Region World, 50/60 Hz, IEC/ANSI, language French; selectable0Region World, 50/60 Hz, IEC/ANSI, language Spanish; selectable0Region World, 50/60 Hz, IEC/ANSI, language State Sta				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Rated auxiliary voltage (power supply, binary inputs)	2	
$\frac{100 \text{ to } 250 \text{ To } \text{CP}^{1}, 115/230 \text{ VAC}, binary input threshold 73 \text{ V}^{3} \text{ 5}}{110 \text{ to } 250 \text{ V } \text{DC}^{1}, 115/230 \text{ V AC}, binary input threshold 154 \text{ V}^{21} \text{ 6}}$ $\frac{101 \text{ to } 250 \text{ V } \text{DC}^{1}, 115/230 \text{ V AC}, binary input threshold 154 \text{ V}^{21} \text{ 6}}{\text{ 6}}$ $\frac{101 \text{ to } 250 \text{ V } \text{DC}^{1}, 115/230 \text{ V AC}, binary input threshold 154 \text{ V}^{21} \text{ 6}}{\text{ 6}}$ $\frac{101 \text{ to } 250 \text{ V } \text{DC}^{1}, 115/230 \text{ V AC}, binary input threshold 154 \text{ V}^{21} \text{ 6}}{\text{ 6}}$ $\frac{101 \text{ to } 250 \text{ V } \text{DC}^{1}, 115/230 \text{ V AC}, binary input threshold 154 \text{ V}^{21} \text{ 6}}{\text{ 6}}$ $\frac{101 \text{ to } 250 \text{ V } \text{DC}^{1}, 115/230 \text{ V AC}, binary input threshold 154 \text{ V}^{21} \text{ 6}}{\text{ 6}}$ $\frac{101 \text{ to } 250 \text{ V } \text{DC}^{1}, 115/230 \text{ V AC}, binary input threshold 154 \text{ V}^{21} \text{ 6}}{\text{ 6}}$ $\frac{101 \text{ to } 250 \text{ V } \text{ DC}^{1}, 115/230 \text{ V AC}, binary input threshold 154 \text{ V}^{21} \text{ 6}}{\text{ 6}}$ $\frac{101 \text{ to } 250 \text{ V } \text{ DC}^{1}, 115/230 \text{ V AC}, binary input threshold 154 \text{ V}^{21} \text{ 6}}{\text{ 6}}$ $\frac{101 \text{ to } 250 \text{ V } \text{ DC}^{1}, 115/230 \text{ V AC}, binary input threshold 154 \text{ V}^{21} \text{ 6}}{\text{ 6}}$ $\frac{101 \text{ to } 250 \text{ V } \text{ DC}^{1}, 115/230 \text{ V AC}, binary input threshold 154 \text{ V}^{21} \text{ 6}}{\text{ 1}}$ $\frac{101 \text{ to } 250 \text{ V } \text{ DC}^{1}, 115/230 \text{ V AC}, binary input threshold 154 \text{ V}^{21} \text{ 6}}{\text{ 1}}$ $\frac{101 \text{ to } 250 \text{ V } \text{ DC}^{1}, 115/230 \text{ V AC}, binary input threshold 154 \text{ V}^{21} \text{ 6}}{\text{ 1}}$ $\frac{100 \text{ to } 250 \text{ V } \text{ DC}^{1}, 115/230 \text{ V AC}, binary input threshold 154 \text{ V}^{21} \text{ 6}}{\text{ 1}}{\text{ 1}$		24 to 48 V DC, binary input threshold 17 V 60 to 125 V DC ³ binary input threshold 17 V ²	<u> </u>	
$\frac{100 \text{ U} \text{ C} \text{ V} \text{ C} ^{1}, 115/230 \text{ VAC}, \text{ binary input threshold 154 V}^{2} ^{$		$\frac{10000125770C}{110000000000000000000000000000000000$	5	
Trote of the function of the func		$110 \text{ to } 250 \text{ V DC}^{-1}$ $115/230 \text{ V AC}$, binary input threshold 154 V^2) 6	
Unit design B Surface-mounting housing with plug-in terminals D Flush-mounting housing with screw-type terminals D Flush-mounting housing with screw-type terminals E Region-Specific default settings/language settings A Region Uorid, 50/60 Hz, IEC/ANSI, language English (GB); selectable A Region World, 50/60 Hz, IEC/ANSI, language English (GB); selectable C Region World, 50/60 Hz, IEC/ANSI, language English (US); selectable D Region World, 50/60 Hz, IEC/ANSI, language Spanish; selectable D Region World, 50/60 Hz, IEC/ANSI, language Spanish; selectable C No system interface 0 IEC 60870-5-103 protocol, electrical R5232 1 IEC 60870-5-103 protocol, electrical R5485 2 IEC 60870-5-103 protocol, electrical R5485 4 PROFIBUS-EMS Slave, optical, single ring, ST connector ⁴⁰ 5 PROFIBUS-ENS Slave, optical, double ring, ST connector ⁴⁰ 6 PROFIBUS-DP Slave, optical 820 nm, double ring, ST connector ⁴⁰ 9 PROFIBUS-DP Slave, optical 820 nm, ST connector ⁴⁰ 9 L 0 PROFIBUS-DP Slave, optical 820 nm, ST connector ⁴⁰ 9 L 0 D <				
Surface-mounting housing with two-tier terminals B Flush-mounting housing with plug-in terminals D Flush-mounting housing with screw-type terminals E Region-specific default settings/anguage settingsRegion DE, 50/60 Hz, IEC/ANSI, language English (GB); selectable A Region World, 50/60 Hz, IEC/ANSI, language English (GB); selectable B Region World, 50/60 Hz, IEC/ANSI, language English (GB); selectable D Region World, 50/60 Hz, IEC/ANSI, language English (US); selectable D Region World, 50/60 Hz, IEC/ANSI, language Spanish; selectable D Region World, 50/60 Hz, IEC/ANSI, language Spanish; selectable D Region World, 50/60 Hz, IEC/ANSI, language Spanish; selectable D Region World, 50/60 Hz, IEC/ANSI, language Spanish; selectable D Region World, 50/60 Hz, IEC/ANSI, language Spanish; selectable D Region World, 50/60 Hz, IEC/ANSI, language Spanish; selectable D Region World, 50/60 Hz, IEC/ANSI, language Spanish; selectable D Region World, 50/60 Hz, IEC/ANSI, language Spanish; selectable D Region World, 50/60 Hz, IEC/ANSI, language Spanish; selectable D Region World, 50/60 Hz, IEC/ANSI, language Spanish; selectable E System interface O IEC 60870-5-103 protocol, electrical R5485 1 PROFIBUS-FMS Slave, optical 820 nm, ST connector ⁴⁰ 5 PROFIBUS-FMS Slave, optical 820 nm, double ring, ST connector ⁴⁰ 6 PROFIBUS-PD Slave, electrical R5485 9 L MODBUS, electrical R5485 9 L <		Unit design		
Flush-mounting housing with plug-in terminalsDFlush-mounting housing with screw-type terminalsERegion-specific default settings/language settingsRegion Uorld, 50/60 Hz, IEC/ANSI, language German; selectableARegion World, 50/60 Hz, IEC/ANSI, language English (GB); selectableBRegion World, 50/60 Hz, IEC/ANSI, language English (GB); selectableCRegion World, 50/60 Hz, IEC/ANSI, language English (GB); selectableCRegion World, 50/60 Hz, IEC/ANSI, language Spanish; selectableDRegion World, 50/60 Hz, IEC/ANSI, language Spanish; selectableCRegion World, 50/60 Hz, IEC/ANSI, language Spanish; selectableDRegion World, 50/60 Hz, IEC/ANSI, language Spanish; selectableCRegion World, 50/60 Hz, IEC/ANSI, language Spanish; selectableESystem interface0IEC 60870-5-103 protocol, electrical RS4852IEC 60870-5-103 protocol, electrical RS4854PROFIBUS-FMS Slave, optical, single ring, ST connector ⁴⁰ 5PROFIBUS-FMS Slave, optical RS4859PROFIBUS-PN Slave, optical 820 nm, ST connector ⁴⁰ 6PROFIBUS-DP Slave, optical 820 nm, double ring, ST connector ⁴¹ 9PROFIBUS-DP Slave, optical 820 nm, ST connector ⁴¹ 9MODBUS, optical 820 nm, ST connector ⁴¹ 9MODBUS, optical 820 nm, ST connector ⁴¹ 9DNP 3.0, electrical RS4859DNP 3.0, optical 820 nm, ST connector ⁴¹ 9DNP 3.0, optical 820 nm, ST connector ⁴¹ 9DNP 3.0, optical 820 nm, ST connector ⁴¹ 9DNP 3.0, op		Surface-mounting housing with two-tier terminals	В	
Flush-mounting housing with screw-type terminals E Region-specific default settings/language settingsRegion DE, 50/60 Hz, IEC/ANSI, language German; selectableARegion World, 50/60 Hz, IEC/ANSI, language English (CB); selectableBRegion World, 50/60 Hz, IEC/ANSI, language French; selectableCRegion World, 50/60 Hz, IEC/ANSI, language French; selectableDRegion World, 50/60 Hz, IEC/ANSI, language Spanish; selectableDSystem interface0IEC 60870-5-103 protocol, electrical RS485PROFIBUS-FMS Slave, optical, soulde ring, ST connector ⁴⁰ PROFIBUS-FMS Slave, optical, soulde ring, ST connector ⁴⁰ PROFIBUS-DP Slave, electrical RS485PROFIBUS-DP Slave, electrical RS485PROFIBUS-DP Slave, optical 820 nm, ST connector ⁴⁰ PROFIBUS-DP Slave, optical 820 nm, ST connector ⁴⁰ PN 3.0, eptical 820 nm, ST connector ⁴⁰ PON 3.0, electrical RS485		Flush-mounting housing with plug-in terminals	D	
Region-specific default settings/language settings Region DE, 50/60 Hz, IEC/ANSI, language English (GB); selectable Region World, 50/60 Hz, IEC/ANSI, language English (US); selectable Region World, 50/60 Hz, IEC/ANSI, language English (US); selectable C Region World, 50/60 Hz, IEC/ANSI, language French; selectable D Region World, 50/60 Hz, IEC/ANSI, language French; selectable D Region World, 50/60 Hz, IEC/ANSI, language French; selectable D Region World, 50/60 Hz, IEC/ANSI, language Spanish; selectable D System interface (Pot B) on rear No system interface No system interface PROFIBUS-FMS Slave, electrical RS485 2 IEC 60870-5-103 protocol, optical 820 nm, ST connector ⁴⁰ PROFIBUS-FMS Slave, optical, double ring, ST connector ⁴⁰ PROFIBUS-FMS Slave, optical 820 nm, double ring, ST connector ⁴¹ PROFIBUS-DP Slave, optical 820 nm, double ring, ST connector ⁴¹ MDDBUS, optical 820 nm, ST connector ⁴¹ <		Flush-mounting housing with screw-type terminals	<u> </u>	
Region Specific defour settings Region DE, 50/60 Hz, IEC/ANSI, language German; selectableA Region World, 50/60 Hz, IEC/ANSI, language English (GB); selectableB B 				
Region D2, 500 Hz, HC/HW, HC/HW, Ingage Chain, Kreak11Region World, 50(60 Hz, LEC/ANSI, language English (US); selectableBRegion World, 50(60 Hz, ANSI/HEC, language English (US); selectableCRegion World, 50(60 Hz, IEC/ANSI, language Spanish; selectableDRegion World, 50(60 Hz, IEC/ANSI, language Spanish; selectableCRegion World, 50(60 Hz, IEC/ANSI, language Spanish; selectableCSystem interface0IEC 60870-5-103 protocol, electrical RS2321IEC 60870-5-103 protocol, electrical RS4852IEC 60870-5-103 protocol, optical 820 nm, ST connector3PROFIBUS-FMS Slave, electrical RS4854PROFIBUS-FMS Slave, optical, single ring, ST connector ⁴⁰ 6PROFIBUS-DP Slave, optical 820 nm, double ring, ST connector ⁴¹ 9PROFIBUS-DP Slave, optical 820 nm, double ring, ST connector ⁴¹ 9MODBUS, optical 820 nm, ST connector ⁴¹ 9MODBUS, optical 820 nm, ST connector ⁴¹ 9MODBUS, optical 820 nm, ST connector ⁴¹ 9DNP 3.0, optical 820 nm, ST connector ⁴¹ 9DNP 3.0, optical 820 nm, ST connector ⁴¹ 9DNP 3.0, optical 820 nm, ST connector ⁴¹ 9IEC 61850, 100 Mbit Ethernet, electrical, double, RJ45 connector (EN 100)9IEC 61850, 100 Mbit Ethernet, optical, double, RJ45 connector (EN 100)9IEC 61850, 100 Mbit Ethernet, optical, double, LC connector (EN 100)9IEC 61850, 100 Mbit Ethernet, optical, double, LC connector (EN 100)9		Region-specific default settings/language settings Region DE 50/60 Hz IEC/ANSL language German: selectable	Δ	
Region World, 50/60 Hz, ANSI/IEC, language English (US); selectableCRegion World, 50/60 Hz, IEC/ANSI, language French; selectableDRegion World, 50/60 Hz, IEC/ANSI, language French; selectableDRegion World, 50/60 Hz, IEC/ANSI, language Spanish; selectableDSystem interface (Port B) on rearDNo system interfaceDIEC 60870-5-103 protocol, electrical RS4852IEC 60870-5-103 protocol, electrical RS4852IEC 60870-5-103 protocol, optical 820 nm, ST connector3PROFIBUS-FMS Slave, optical, single ring, ST connector ⁴¹ 5PROFIBUS-FMS Slave, optical, double ring, ST connector ⁴¹ 6PROFIBUS-DP Slave, optical 820 nm, ST connector ⁴¹ 9L 0BMODBUS, electrical RS4859MODBUS, electrical RS4859L 00DNP 3.0, optical 820 nm, ST connector ⁴¹ 9DNP 3.0, optical 820 nm, ST connector ⁴¹ 9L 00DNP 3.0, optical 820 nm, ST connector ⁴¹ 9DNP 3.0, optical 820 nm, ST connector ⁴¹ 9DNP 3.0, optical 820 nm, ST connector ⁴¹ 9DNP 3.0, optical 820 nm, ST connector ⁴¹ 9L 00DNP 3.0, optical 820 nm, ST connector ⁴¹ 9L 00DNP 3.0, optical 820 nm, ST connector ⁴¹ 9L 00DNP 3.0, optical 820 nm, ST connector ⁴¹ 9L 00DNP 3.0, optical 820 nm, ST connector ⁴¹ 9IEC 61850, 100 Mbit Ethernet, electrical, double, RJ45 connector (EN 100)<		Region World 50/60 Hz IEC/ANSL language English (GB): sele	ectable R	
Region Co, Soi Soi Ta, Ticor Tics, Tangange English (Co), StetchakeCRegion World, 50/60 Hz, IEC/ANSI, language French; selectableDRegion World, 50/60 Hz, IEC/ANSI, language Spanish; selectableESystem interface (Port B) on rear0No system interface0IEC 60870-5-103 protocol, electrical RS2321IEC 60870-5-103 protocol, electrical RS4852IEC 60870-5-103 protocol, electrical RS4852PROFIBUS-FMS Slave, optical 820 nm, ST connector3PROFIBUS-FMS Slave, optical, single ring, ST connector ⁴⁰ 5PROFIBUS-FMS Slave, optical RS4859PROFIBUS-DP Slave, electrical RS4859PROFIBUS-DP Slave, optical 820 nm, double ring, ST connector ⁴¹ 9PROFIBUS-DP Slave, optical 820 nm, double ring, ST connector ⁴¹ 9PROFIBUS-DP Slave, optical 820 nm, double ring, ST connector ⁴¹ 9MODBUS, electrical RS4859DNP 3.0, electrical RS4859DNP 3.0, electrical RS4859DNP 3.0, optical 820 nm, ST connector ⁴¹ 9IEC 61850, 100 Mbit Ethernet, electrical, double, RJ45 connector (EN 100)9IEC 61850, 100 Mbit Ethernet, electrical, double, RJ45 connector (EN 100)9IEC 61850, 100 Mbit Ethernet, optical, double, LC connector (EN 100)9IEC 61850, 100 Mbit Etherent, optical, double, LC connector (EN 100)9		Region US 60/50 Hz ANSI/IEC language English (US): selectal		
Region Work, 50/60 Hz, IEC/ANSI, language Trinch, sclectableDRegion Work, 50/60 Hz, IEC/ANSI, language Spanish; selectableESystem interface (Port B) on rear No system interface0IEC 60870-5-103 protocol, electrical RS2321IEC 60870-5-103 protocol, electrical RS4852IEC 60870-5-103 protocol, electrical RS4852IEC 60870-5-103 protocol, optical 820 nm, ST connector3PROFIBUS-FMS Slave, electrical RS4854PROFIBUS-FMS Slave, optical, single ring, ST connector ⁴⁰ 5PROFIBUS-DP Slave, electrical RS4859LODBUS, optical 820 nm, ST connector ⁴⁰ 9LODBUS, optical 820 nm, ST connector ⁴¹ 9LODBUS, optical 820 nm, ST connector ⁴¹ 9LODBUS, optical 820 nm, ST connector ⁴¹ 9LDNP 3.0, Optical 820 nm, ST connector ⁴¹ 9LUN 3.0, Optical 820 nm, ST connector ⁴¹ 9LUN 3.0, Optical 820 nm, ST connector ⁴¹ 9L <t< th=""><th></th><th>Region World 50/60 Hz IEC/ANSI language French: selectable</th><th></th><th></th></t<>		Region World 50/60 Hz IEC/ANSI language French: selectable		
System interface0No system interface0IEC 60870-5-103 protocol, electrical RS2321IEC 60870-5-103 protocol, electrical RS4852IEC 60870-5-103 protocol, electrical RS4852IEC 60870-5-103 protocol, electrical RS4854PROFIBUS-FMS Slave, electrical RS4854PROFIBUS-FMS Slave, optical, single ring, ST connector ⁴¹ 5PROFIBUS-FMS Slave, optical, double ring, ST connector ⁴¹ 6PROFIBUS-DP Slave, optical 820 nm, double ring, ST connector ⁴¹ 9PROFIBUS-DP Slave, optical 820 nm, double ring, ST connector ⁴¹ 9PROFIBUS-DP Slave, optical 820 nm, double ring, ST connector ⁴¹ 9MODBUS, electrical RS4859MODBUS, electrical RS4859L0DNP 3.0, electrical RS4859DNP 3.0, optical 820 nm, ST connector ⁴¹ 9IEC 61850, 100 Mbit Ethernet, electrical, double, RJ45 connector (EN 100)9IEC 61850, 100 Mbit Ethernet, optical, double, LC connector (EN 100)9IEC 61850, 100 Mbit Ethernet, optical, double, LC connector (EN 100)9IEC 61850, 100 Mbit Ethernet, optical, double, LC connector (EN 100)9IEC 61850, 100 Mbit Ethernet, optical, double, LC connector (EN 100)9IEC 61850, 100 Mbit Ethernet, optical, double, LC connector (EN 100)9IEC 61850, 100 Mbit Ethernet, optical, double, LC connector (EN 100)9IEC 61850, 100 Mbit Etherent, optical, double, LC connector (EN 100)9IEC 61850, 100 Mbit Etherent, optical, double, LC connector (EN 100)9IEC 61850, 100 Mbit Et		Region World, 50/60 Hz, FEC/ANSI Janguage Spanish selectable	F	
System interface (Port B) on rearNo system interface0IEC 60870-5-103 protocol, electrical RS2321IEC 60870-5-103 protocol, electrical RS4852IEC 60870-5-103 protocol, optical 820 nm, ST connector3PROFIBUS-FMS Slave, electrical RS4854PROFIBUS-FMS Slave, optical, single ring, ST connector ⁴⁾ 5PROFIBUS-DP Slave, optical RS4859PROFIBUS-DP Slave, optical 820 nm, double ring, ST connector ⁴⁾ 6PROFIBUS-DP Slave, optical 820 nm, double ring, ST connector ⁴⁾ 9PROFIBUS, optical 820 nm, ST connector ⁴⁾ 9MODBUS, optical 820 nm, ST connector ⁴⁾ 9MODBUS, optical 820 nm, ST connector ⁴⁾ 9MODBUS, optical 820 nm, ST connector ⁴⁾ 9JNP 3.0, electrical RS4859DNP 3.0, optical 820 nm, ST connector ⁴⁾ 9IEC 61850, 100 Mbit Ethernet, electrical, double, RJ45 connector (EN 100)9IEC 61850, 100 Mbit Ethernet, optical, double, LC connector (EN 100)9IEC 61850, 100 Mbit Ethernet, optical, double, LC connector (EN 100)9IEC 61850, 100 Mbit Ethernet, optical, double, LC connector (EN 100)9IEC 61850, 100 Mbit Ethernet, optical, double, LC connector (EN 100)9IEC 61850, 100 Mbit Ethernet, optical, double, LC connector (EN 100)9IEC 61850, 100 Mbit Ethernet, optical, double, LC connector (EN 100)1IEC 61850, 100 Mbit Ethernet, optical, double, LC connector (EN 100)9IEC 61850, 100 Mbit Ethernet, optical, double, LC connector (EN 100)1IEC 61850, 100 Mbit Ethernet, optical, double, LC		region work, 50/00 112, 110/11/01, language opanish, seccuble	L	
No system interface0IEC 60870-5-103 protocol, electrical RS2321IEC 60870-5-103 protocol, electrical RS4852IEC 60870-5-103 protocol, optical 820 nm, ST connector3PROFIBUS-FMS Slave, electrical RS4854PROFIBUS-FMS Slave, optical, single ring, ST connector ⁴⁾ 5PROFIBUS-DP Slave, electrical RS4859PROFIBUS-DP Slave, electrical RS4859PROFIBUS-DP Slave, optical 820 nm, double ring, ST connector ⁴⁾ 9PROFIBUS-DP Slave, optical 820 nm, double ring, ST connector ⁴⁾ 9PROFIBUS-DP Slave, optical 820 nm, double ring, ST connector ⁴⁾ 9MODBUS, electrical RS48591MODBUS, optical 820 nm, ST connector ⁴⁾ 9MODBUS, optical 820 nm, ST connector ⁴⁾ 9PNP 3.0, electrical RS4859DNP 3.0, optical 820 nm, ST connector ⁴⁾ 9PNP 3.0, optical 820 nm, ST connector ⁴⁾ 9 <th></th> <th>System interface (Port B) on rear</th> <th></th> <th></th>		System interface (Port B) on rear		
IEC 60870-5-103 protocol, electrical RS2321IEC 60870-5-103 protocol, electrical RS4852IEC 60870-5-103 protocol, optical 820 nm, ST connector3PROFIBUS-FMS Slave, electrical RS4854PROFIBUS-FMS Slave, optical, single ring, ST connector ⁴⁾ 5PROFIBUS-FMS Slave, optical, double ring, ST connector ⁴⁾ 6PROFIBUS-DP Slave, electrical RS4859PROFIBUS-DP Slave, optical 820 nm, double ring, ST connector ⁴⁾ 9PROFIBUS-DP Slave, optical 820 nm, double ring, ST connector ⁴⁾ 9MODBUS, electrical RS4859MODBUS, optical 820 nm, ST connector ⁴⁾ 9MODBUS, 100 Mbit Ethernet, electrical, double, RJ45 connector (EN 100)9IEC 61850, 100 Mbi		No system interface	0	
IEC 60870-5-103 protocol, electrical RS4852IEC 60870-5-103 protocol, optical 820 nm, ST connector3PROFIBUS-FMS Slave, electrical RS4854PROFIBUS-FMS Slave, optical, single ring, ST connector ⁴⁾ 5PROFIBUS-FMS Slave, optical, double ring, ST connector ⁴⁾ 6PROFIBUS-DP Slave, electrical RS4859 L PROFIBUS-DP Slave, optical 820 nm, double ring, ST connector ⁴⁾ 9PROFIBUS-DP Slave, optical 820 nm, double ring, ST connector ⁴⁾ 9MODBUS, electrical RS4859 L O DMODBUS, optical 820 nm, ST connector ⁴⁾ 9MODBUS, optical 820 nm, ST connector ⁴⁾ 9DNP 3.0, electrical RS4859DNP 3.0, electrical RS4859DNP 3.0, optical 820 nm, ST connector ⁴⁾ 9IEC 61850, 100 Mbit Ethernet, electrical, double, RJ45 connector (EN 100)9IEC 61850, 100 Mbit Ethernet, optical, double, LC connector (EN 100)9IEC 61850, 100 Mbit Ethernet, optical, double, LC connector (EN 100)9		IEC 60870-5-103 protocol, electrical RS232	1	
IEC 60870-5-103 protocol, optical 820 nm, ST connector3PROFIBUS-FMS Slave, electrical RS4854PROFIBUS-FMS Slave, optical, single ring, ST connector ⁴⁾ 5PROFIBUS-FMS Slave, optical, double ring, ST connector ⁴⁾ 6PROFIBUS-DP Slave, electrical RS4859 L PROFIBUS-DP Slave, optical 820 nm, double ring, ST connector ⁴⁾ 9 L PROFIBUS-DP Slave, optical 820 nm, double ring, ST connector ⁴⁾ 9 L PROFIBUS-DP Slave, optical 820 nm, double ring, ST connector ⁴⁾ 9 L MODBUS, electrical RS4859 L 0MODBUS, optical 820 nm, ST connector ⁴⁾ 9 L 0DNP 3.0, electrical RS4859 L 0DNP 3.0, optical 820 nm, ST connector ⁴⁾ 9 L 0PROFIBUS, 100 Mbit Ethernet, electrical, double, RJ45 connector (EN 100)9 L 0REC 61850, 100 Mbit Ethernet, optical, double, LC connector (EN 100) ⁵⁾ 9 L 0State9 L 0S		IEC 60870-5-103 protocol, electrical RS485	2	
PROFIBUS-FMS Slave, electrical RS4854PROFIBUS-FMS Slave, optical, single ring, ST connector45PROFIBUS-FMS Slave, optical, double ring, ST connector46PROFIBUS-DP Slave, electrical RS4859 L PROFIBUS-DP Slave, optical 820 nm, double ring, ST connector49 L D L 0 </th <th></th> <th>IEC 60870-5-103 protocol, optical 820 nm, ST connector</th> <th>3</th> <th></th>		IEC 60870-5-103 protocol, optical 820 nm, ST connector	3	
PROFIBUS-FMS Slave, optical, single ring, ST connector5PROFIBUS-FMS Slave, optical, double ring, ST connector6PROFIBUS-DP Slave, electrical RS4859 L PROFIBUS-DP Slave, optical 820 nm, double ring, ST connector9 L MODBUS, electrical RS4859 L 0MODBUS, electrical RS4859 L 0MODBUS, optical 820 nm, ST connector9 L 0DNP 3.0, electrical RS4859 L 0DNP 3.0, optical 820 nm, ST connector9 L 0MIEC 61850, 100 Mbit Ethernet, electrical, double, RJ45 connector (EN 100)9 L 0REC 61850, 100 Mbit Ethernet, optical, double, LC connector (EN 100)9 L 0		PROFIBUS-FMS Slave, electrical RS485	4	
PROFIBUS-FMS Slave, optical, double ring, ST connector46L0APROFIBUS-DP Slave, electrical RS4859L0APROFIBUS-DP Slave, optical 820 nm, double ring, ST connector49L0BMODBUS, electrical RS4859L0DMODBUS, optical 820 nm, ST connector49L0EDNP 3.0, electrical RS4859L0EDNP 3.0, optical 820 nm, ST connector49L0GDNP 3.0, optical 820 nm, ST connector49L0RIEC 61850, 100 Mbit Ethernet, electrical, double, RJ45 connector (EN 100)9L0RIEC 61850, 100 Mbit Ethernet, optical, double, LC connector (EN 100)9L0S		PROFIBUS-FMS Slave, optical, single ring, ST connector ⁴⁾	5	
PROFIBUS-DP Slave, electrical RS4859 L 0APROFIBUS-DP Slave, optical 820 nm, double ring, ST connector ⁴¹ 9 L 0BMODBUS, electrical RS4859 L 0DMODBUS, optical 820 nm, ST connector ⁴¹ 9 L 0EDNP 3.0, electrical RS4859 L 0GDNP 3.0, optical 820 nm, ST connector ⁴¹ 9 L 0GDNP 3.0, optical 820 nm, ST connector ⁴¹ 9 L 0GDNP 3.0, optical 820 nm, ST connector ⁴¹ 9 L 0RIEC 61850, 100 Mbit Ethernet, electrical, double, RJ45 connector (EN 100)9 L 0RIEC 61850, 100 Mbit Ethernet, optical, double, LC connector (EN 100) ⁵¹ 9 L 0S		PROFIBUS-FMS Slave, optical, double ring, ST connector ⁴⁾	6	
PROFIBUS-DP Slave, optical 820 nm, double ring, ST connector49L0BMODBUS, electrical RS4859L0DMODBUS, optical 820 nm, ST connector49L0EDNP 3.0, electrical RS4859L0GDNP 3.0, optical 820 nm, ST connector49L0GDNP 3.0, optical 820 nm, ST connector49L0GDNP 3.0, optical 820 nm, ST connector49L0RIEC 61850, 100 Mbit Ethernet, electrical, double, RJ45 connector (EN 100)9L0RIEC 61850, 100 Mbit Ethernet, optical, double, LC connector (EN 100)9L0S		PROFIBUS-DP Slave, electrical RS485	9	<u>L</u> 0 A
MODBUS, electrical RS4859 L 0DMODBUS, optical 820 nm, ST connector419 L 0EDNP 3.0, electrical RS4859 L 0GDNP 3.0, optical 820 nm, ST connector419 L 0GDNP 3.0, optical 820 nm, ST connector419 L 0HIEC 61850, 100 Mbit Ethernet, electrical, double, RJ45 connector (EN 100)9 L 0RIEC 61850, 100 Mbit Ethernet, optical, double, LC connector (EN 100)9 L 0S		PROFIBUS-DP Slave, optical 820 nm, double ring, ST connector	r ⁴⁾ 9	<u>L</u> 0 B
MODBUS, optical 820 nm, ST connector49L0EDNP 3.0, electrical RS4859L0GDNP 3.0, optical 820 nm, ST connector49L0HIEC 61850, 100 Mbit Ethernet, electrical, double, RJ45 connector (EN 100)9L0RIEC 61850, 100 Mbit Ethernet, optical, double, LC connector (EN 100)9L0S		MODBUS, electrical RS485	9	L 0 D
DNP 3.0, electrical RS4859 L 0GDNP 3.0, optical 820 nm, ST connector ⁴⁾ 9 L 0HIEC 61850, 100 Mbit Ethernet, electrical, double, RJ45 connector (EN 100)9 L 0RIEC 61850, 100 Mbit Ethernet, optical, double, LC connector (EN 100) ⁵⁾ 9 L 0S		MODBUS, optical 820 nm, ST connector ⁴⁾	9	<u>L</u> 0 E
DNP 3.0, optical 820 nm, ST connector9 L 0HIEC 61850, 100 Mbit Ethernet, electrical, double, RJ45 connector (EN 100)9 L 0RIEC 61850, 100 Mbit Ethernet, optical, double, LC connector (EN 100)9 L 0R		DNP 3.0, electrical RS485	9	L 0 G
IEC 61850, 100 Mbit Ethernet, electrical, double, RJ45 connector (EN 100)9 L 0RIEC 61850, 100 Mbit Etherent, optical, double, LC connector (EN 100)9 L 0S		DNP 3.0, optical 820 nm, ST connector ⁴⁾	9	<u>L 0 H</u>
IEC 61850, 100 Mbit Etherent, optical, double, LC connector $(EN 100)^{5}$ 9L0S		IEC 61850, 100 Mbit Ethernet, electrical, double, RJ45 connector	r (EN 100) 9	<u> </u>
		IEC 61850, 100 Mbit Etherent, optical, double, LC connector (E	N 100) ⁵⁾ 9	

- 2) The binary input thresholds are selectable in two stages by means of jumpers.
- 3) Transition between the two auxiliary voltage ranges can be selected by means of jumpers.
- 4) With surface-mounting housing: only RS485 interface available.
- 5) If position 9 = "B" (surface-mounting housing), please order relay with electrical Ethernet interface and use a separate FO switch.

Selection and ordering data

Description	Order No.	Order Code
7UT613 differential protection relay for transformers, generators, motors and busbars	7UT613Q-0000 - 00	
Port C and Port D Port C: DIGSI 4/modem, electrical RS232; Port D: empty	1	
Port C: DIGSI 4/modem/thermo-box, electrical RS485; Port D: en	mpty 2	
Port C and Port D installed	9	M L
Port C (service interface)		
DIGSI 4/modem, electrical RS232		1
DIGSI 4/modem/thermo-box, electrical RS485		2
Port D (additional interface)		
Thermo-box, optical 820 nm, ST connector		A
Thermo-box, electrical RS485		F
Measured values/monitoring functions		
Basic measured values	1	
Extended measured values, min./max. values, mean values	2	
Extended measured values, min./max., mean values, transformer	monitoring functions	
(connection to thermo-box/hot spot, overload factor)	4	
Differential protection + basic functions Differential protection for transformer, generator, motor, busbar Overload protection according to IEC for one side (49) Lock out (86) Overcurrent-time protection phases (50/51): $I>$, $I>>$, I_P (inrush s Overcurrent-time protection $3 I_0$ (50N/51N): $3 I_0>$, $3 I_0>>$, $3 I_{0P}$ (Overcurrent-time protection earth (50G/51G): $I_E>$, $I_E>>$, I_{EP} (inr Differential protection + basic functions + additional current funct Restricted earth-fault protection, low impedance (87N) Restricted earth-fault protection, high impedance (87N without resistor and varistor), O/C 1-phase Trip circuit supervision (74TC) Unbalanced load protection (46) Breaker failure protection (50BF)	tabilization) (inrush stabilization) (ush stabilization) A tions	
High-sensitivity overcurrent-time protection/tank leakage protect	tion (64), O/C I-phase	
Additional voltage functions Without voltage functions		A
With overexcitation protection and voltage/power/energy/measu	rement	В
With overexcitation protection and voltage/power/energy measur + Over/undervoltage protection (59/27) + Frequency protection (81) + Directional power protection (32R/F) + Fuse failure monitor (60FL)	rement	с
Additional functions (general) Without		0
Multiple protection functions (50, 51, 50N/G, 87N, 50BF, 49) ¹⁾		1
Flexible protection functions		2
		2

Multiple + flexible protection functions

Order Code

Order No.

	7UT63□ differential protection relay 7U for transformers, generators, motors and busbars, graphic display	IT6300-0000			
	Housing, inputs and outputs Housing 1/1 x 19", 21 BI, 24 BO, 1 live status contact 12 current inputs $(11 I, I_{EE}^{1)})$; 4 voltage inputs $(1 x 3$ -phase + 1 x 1-phase)	3			
	Housing 1/1 x 19", 29 BI, 24 BO, 1 live status contact <u>16 current inputs (14 I, 2 $I_{EE}^{(1)}$)</u>	5			
	Rated current				
	$I_{\rm N} = 1$ A	1			
	$I_{\rm N} = 5 \ {\rm A}$	5			
	Rated auxiliary voltage (power supply, binary inputs) 24 to 48 V DC, binary input threshold 17 V^{2}	2			
	60 to 125 V DC^{3} , binary input threshold 17 V^{2}	4			
	110 to 250 V DC ¹ , 115/230 V AC, binary input threshold 73 V ²)	5			
	110 to 250 V DC ¹⁾ , 115/230 V AC, binary input threshold 154 $V^{2)}$	6			
	Unit design	R			
	Surface-mounting with two-tier terminals				
		<u>_</u>			
	Flush-mounting with screw-type terminals				
	Surface mounting with two-tier terminals, with 5 high-speed trip co	ntacts //			
	Flush-mounting with plug-in terminals, with 5 high-speed trip cont	acts P			
	Flush-mounting with screw-type terminals, with 5 high-speed trip c	ontacts Q			
	<i>Region-specific default settings/language settings</i> Region DE, 50/60 Hz, IEC/ANSI language German; selectable	A			
	Region World, 50/60 Hz, IEC/ANSI language English (GB); selectab	ole B			
	Region US, 60/50 Hz, ANSI/IEC language English (US); selectable	С			
	Region World, 50/60 Hz, IEC/ANSI, language French; selectable	D			
	Region World, 50/60 Hz, IEC/ANSI language Spanish; selectable	Ε			
	System interface (Port B) on rear	0			
		1			
	IEC 60870-5-103 protocol, electrical RS232	1			
	IEC 60870-5-103 protocol, electrical RS485	2			
	IEC 608/0-5-103 protocol, optical 820 nm, 51 connector	3			
	PROFIBUS-FMS Slave, electrical RS485				
	PROFIBUS-FMS Slave, optical, single ring, S1 connector	<u> </u>			
	PROFIBUS-FMS Slave, optical, double ring, S1 connector?	6			
	PROFIBUS-DP Slave, electrical RS485	9) A
	PROFIBUS-DP Slave, optical 820, double ring, ST connector*	9) <u>B</u>
	MODBUS, electrical RS485	9_		LC) D
	MODBUS, optical 820 nm, ST connector ⁴	9_) <u>E</u>
	DNP 3.0, electrical RS485	9) G
1) Sensitivity selectable normal/high.	DNP 3.0, optical 820 nm, ST connector ⁴⁾	9	+) H
2) The binary input thresholds are selectable in two stages by means	IEC 61850, 100 Mbit Ethernet, electrical, double, RJ45 connector (E IEC 61850, 100 Mbit Ethernet, optical, double, LC connector (EN 1	$\frac{N 100}{00)^{5)}} \qquad 9$) R) S
3) Transition between the two auxiliary v ranges can be selected by means of incr	voltage				
4) With surface-mounting housing: only R\$485 interface available	npero.				
5) If position $9 - {}^{\circ}R^{\circ}$ (surface mounting	housing)				
please order relay with electrical Ether face and use a separate FO switch.	net inter-	\$	 see next pag	 e	

Description

Selection and ordering data

Selection and ordering data

Description 7UT63 differential protection relay for transformers, generators, motors and busbars, graphic display

Order No. Order Code 7UT63

Port C and Port D		
Port C: DIGSI 4/modem, electrical RS232; Port D: empty 1		
Port C: DIGSI 4/modem/thermo-box, electrical RS485; Port D: empty 2		
Port C and Port D installed 9		Μ
Port C (service interface)		
DIGSI 4/modem, electrical RS232		
DIGSI 4/modem/thermo-box, electrical RS485		
Port D (additional interface)		
Thermo-box, optical 820 nm, ST connector		
Thermo-box, electrical RS485		
Measured values/monitoring functions		
Basic measured values 1		
Extended measured values, min./max. values, mean values 2		
Extended measured values, min./max. values, mean values, transformer monitoring functions (connection to thermo-box/hot spot, overload factor) 4		
Differential protection + basic functions		
Differential protection for transformer, generator, motor, busbar (87)		
Overload protection according to IEC for one side (49)		
Lock out (86)		
Overcurrent-time protection phases (50/51): $I >, I >, I_P$ (inrush stabilization)		
Overcurrent-time protection $5 I_0$ (500/510): $5 I_0$, $5 I_0$, $5 I_0$ (inrush stabilization) Overcurrent-time protection earth (50G/51G): $I_{\rm E} > I_{\rm E} > I_{\rm E}$ (inrush stabilization)		
Differential protection + basic functions + additional current functions		
Restricted earth-fault protection, low impedance (87N)		
Restricted earth-fault protection, high impedance		
(87N without resistor and varistor), O/C 1-phase		
Trip circuit supervision (74TC)		
Unbalanced load protection (40) Breaker failure protection (50BE)		
High-sensitivity overcurrent-time protection/tank leakage protection (64), O/C 1-phase		
Additional voltage functions (only with 7UT633)		
Without voltage functions	Α	
With overexcitation protection and voltage/power/energy/measurement	В	
With overexcitation protection and voltage/power/energy measurement		
+ Over/undervoltage protection (59/27)		
+ Frequency protection (81)		
+ Directional power protection (32R/F) + Fuse failure monitor (6FL)	С	
Additional functions (general)		
Without	0	
Multiple protection functions (50, 51, 50N/G, 87N, 50BF, 49) ¹⁾	1	
Flexible protection functions	2	
Multiple + flexible protection functions	3	
strategie - neutone protection functions	5	1

1) Available if selected on position 14

4	~	0	~~		
				-	-

Description		Order No.
DIGSI 4		
Software for configuration and oper	ation of Siemens protection relays	
running under MS Windows (Wind	ows 2000/XP Professional Edition),	
device templates, Comtrade Viewer,	electronic manual included	
as well as "Getting started" manual of	on paper, connecting cables (copper)	
Basis		
Full version with license for 10 comp	uters, on CD-ROM	
(authorization by serial number)		7XS5400-0AA00
Professional		
DIGSI 4 Basis and additionally SIGR	A (fault record analysis),	
CFC Editor (logic editor), Display Ed	litor (editor for default and	
control displays) and DIGSI 4 Remo	te (remote operation)	7XS5402-0AA00
Professional + IEC 61850		
DIGSI 4 Basis and additionally SIGR	A (fault record analysis),	
CFC Editor (logic editor), Display Ec	litor (editor for default	
and control displays) and DIGSI 4 Re	emote (remote operation)	
+ IEC 61850 system configurator		/XS54U5-UAAUU
IEC 61950 System configurates		
Sector and System Conjugator	the IEC (1050 commission in the second	
Software for configuration of station	2000 or XD Professional Edition	
Optional package for DIGSI 4 Basis of	2000 OF AF FIORESSIONAL Edition	
License for 10 PCs. Authorization by	serial number. On CD-ROM	7X\$5460-0AA00
SIGRA 4		
(generally contained in DIGSI Profes	sional but can be ordered additionally)	
Software for graphic visualization, ar	alvsis and evaluation of fault records.	
Can also be used for fault records of	devices of other manufacturers	
(Comtrade format) running under M	1S Windows 2000/XP Professional Edition.	
Incl. templates, electronic manual wi	th license for 10 PCs.	
Authorization by serial number. On	CD-ROM.	7XS5410-0AA00
Connecting cable		
Cable between PC/notebook (9-pin	connector)	
and protection relay (9-pin connecto	r)	
(contained in DIGSI 4, but can be or	dered additionally)	/XV5100-4
Lable between thermo-box and relay langth $5 \text{ m} / 16.4 \text{ ft}$	7	
- length 5 m / 16.4 ft		/XV5103-/AA05 7XV/5103.74425
- length 25 III / 82 II - length 50 m / 164 ft		7XV5105-7AA25 7XV/5103-7AA50
- Kingui 30 iii / 104 lt		/AVJIUJ-/MAJU
Voltage transformer miniature circuit	-breaker	
Rated current 1.6 A.	DIEUKEI	
Thermal overload release 1.6 A.		
Overcurrent trip 6 A		3RV1611-1AG14
		entrett mort
Temperature monitorina box with 6 t	hermal inputs	
For SIPROTEC units		
With 6 temperature sensors and	24 to 60 V AC/DC	7XV5662-2AD10
RS485 interface	90 to 240 V AC/DC	7XV5662-5AD10
Manual for 7UT612		
English		C53000-G1176-C148-1
-		
Manual for 7UT6		
English V4.0		C53000-G1176-C160-1
English V4.6		C53000-G1176-C160-2

АСС	essories		
-			
0-100		An an an	NORTH TOP 1
		******	mon

Fig. 8/34 Mounting rail for 19" rack

Fig. 8/36

3-pin connector

eps

SP2092-afnen

LSP2089-afpen.tif

Fig. 8/35 2-pin connector

Fig. 8/37 Short-circuit link for current contacts

Fig. 8/38 Short-circuit link for voltage contacts

Description		Order No.	Size of package	Supplier	Fig.
Connector	2-pin 3-pin	C73334-A1-C35-1 C73334-A1-C36-1	1 1	Siemens Siemens	8/35 8/36
Crimp connector	CI2 0.5 to 1 mm ²	0-827039-1 0-827396-1	4000 1	AMP ¹⁾ AMP ¹⁾	
	CI2 1 to 2.5 mm ²	0-827040-1 0-827397-1	4000 1	AMP ¹⁾ AMP ¹⁾	
	Type III+ 0.75 to 1.5 mm^2	0-163083-7 0-163084-2	4000 1	AMP ¹⁾ AMP ¹⁾	
Crimping tool	For Type III+ and matching female	0-539635-1 0-539668-2	1	AMP ¹⁾ AMP ¹⁾	
	For CI2 and matching female	0-734372-1 1-734387-1	1	AMP ¹⁾ AMP ¹⁾	
19" mounting rail		C73165-A63-D200-1	1	Siemens	8/34
Short-circuit links	For current contacts For voltage contacts	C73334-A1-C33-1 C73334-A1-C34-1	1 1	Siemens Siemens	8/37 8/38
Safety cover for terminals	large small	C73334-A1-C31-1 C73334-A1-C32-1	1 1	Siemens Siemens	

1) Your local Siemens representative can inform you on local suppliers.

Fig. 8/40a

Additional setting by jumpers: Separation of common circuit of fast BO1 to BO5 with jumpers X80, X81, X82. Switching of fast BO7, BO8 as NO contact or NC contact with jumpers X41, X42, X43.

For advanced flexibility see Fig. 8/40a.

¹⁾ Configuration of binary outputs up to hardware-version .../CC

Fig. 8/41a

Additional setting by jumpers: Separation of common circuit of fast BO1 to BO5 with jumpers X80, X81, X82. Switching of fast BO7, BO8 as NO contact or NC contact with jumpers X41, X42, X43.

- 1) Configuration of binary outputs up to hardware-version .../CC For advanced flexibility see Fig. 8/41a.
- 2) High-speed contacts (option), NO only

Fig. 8/41

3) High-speed contacts (option)

H5 Fast BO21 H9 Fast BO22 H11 Fast BO23 H14 Fast BO24 H16 - F3 Live status contact -0 C F4 - F1 Power (= supply F2 Data interface/ thermo-box 0 Service interface/ thermo-box 0 С k System interface 0 0 Time synchronization Front interface ÷ Earth at rear (÷) of housing Connection diagram 7UT63

BO17

140

190

189

138

188

187

137

186

136

185

135

174

124

123

171

121

170

120

119

118

166

116

115

164

114

163

113

162

112

161

111

160

110

101

102

37

38

D

С

В

А

P1

P2

P3 P4

P6

P7

P8

- P9

P10

P12

- K3

K4

К6

Κ7

K8

К5

К9

K10

K11

K12

K13

K14

K15

K16

H3

- H4

H6

Η7

Η8

ben

LSA4041

5	Surface-moun	ting housin	g						
		Flush-moun	ting housin	g					İ
									1
46			1 //	TUTCOF					
96			¹ L1M2 ^{/1} 4	701035	BI1			- <u>F5</u> -	108
45		_•m_	$I_{1.2M2}/I_5$		BI2	$+ \square$	•	- F6	107
95					BI3	$+ \overline{\neg} +$	●		106
44	R5		I_{L3M2}/I_6		BI4		+ -		105
94		·m) 7 /7		DIE				100
] I _{L2M5} /I _{X3}	🕨 As	DID		÷		158
42			L. (sensiti) alter-					132
92			1,73 (00/10/10	native	BO1		Ţ		1.02
	R11					L L0	<u> </u>	M3	182
	R12				Fast BO2	_`	•	- M6	131
50	01		I_{L1M1}/I_1		Fast BO3	↓ <u></u>	<u> </u>	- <u>M7</u>	180
			, I /I		Fast BO4	+		- <u>M8</u>	130
99			¹ L2M1 ^{/1} 2			<u> </u>			181
48	05	<u> </u>	Lana/la		Fast BO5	\sim	<u>+</u>	- <u>M9</u> -	179
98			Lawin, a		East DOC	<u> </u>	•		129
47	07	-·m	I_{L1M5}/I_{X1}		Fast BOb		Ŧ		1/8
97	08] - /-		Fast BO7	_ \		M13	177
			I IL1M3/17				+	-M14	127
91			, , <i>I /I</i>		Fast BO8	\sim		M15	176
90			1L2M3/18					-M16-	126
39	N5		$I_{1,3M3}/I_{0}$		1	F		K4 —	124
89	N6				BO3,	Ϊ Ĺ			
36	<u>N7</u>		I_{L3M5}/I_{X2}			<u>°</u>	•	<u>– КЗ</u> –	174
86	<u> N8</u>		1		Fast BO10	2	<u>+</u>	<u>К6</u>	123
35	P1		I_{L1M4}/I_{10}		Fast BO11		÷.		172
34		·m	//		Fast BU12		- L ÷		172
84	P4		L2M4/*11		East BO132	2)			171
33	P5	<u> </u>	$I_{1.3M4}/I_{12}$		1 461 2 6 16		_ _	K10	121
83	P6				Fast BO14 ²		•	- K11	170
32	<u>P7</u>		I_{X4}					- <u>K12</u>	120
82	<u>P8</u>	·m	1 7 (alter-	Fast BO15 ²	² ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	<u> </u>	- <u>K13</u> -	169
	P9		I_{X4} (sensition	ive) 🖌 native	E . DO10 ²	»		K14	119
	P11		-		Fast BO16	·′ ┌ ` ` ` `	÷	K15	168
	P12								118
78	M17		BI6		BO17				1
28	M18]				ol I		166
77	<u>[1]</u> -	$\dashv \angle \vdash$	BI7		Fast BO18	3	•		
			, DIO		Fast BO19			н <u>н</u> н н т н т н т н т н т н т н т н т н т	164
L/6			RIR		Fast BO20			H8	114
26			B 19					- <u>H5</u>	165
25	<u>L6</u>		BI10		Fast BO21		<u> </u>	<u>H9</u>	163
75	<u>L5</u>				F . D.000		•	H10	113
			BI11		Fast BO22	∠	÷		162
73			BI12		Fast BO23				161
23					10010020		Ŧ	H14	111
72	<u>L11</u>		BI13		Fast BO24			-H15	160
22	L12		l					H16	110
71	<u>K17</u>		BI14						
	K18								eps
			GIID						ben.
<u> </u>	LJ2								4042
Ĺ									LSA ²

Fig. 8/42Connection diagram 7UT635
part 1; continued on following page

1) High-speed contacts (option), NO only

2) High-speed contacts (option)

8 Transformer Differential Protection / 7UT6

Busbar Differential Protection

SIPROTEC 7SS60 Centralized Numerical Busbar Protection	9 /3
SIPROTEC 4 7SS52 Distributed Numerical Busbar and Breaker Failure Protection	9 /19

Page
SIPROTEC 7SS60 Centralized Numerical Busbar Protection

Description

The SIPROTEC 7SS60 system is an inexpensive numerical differential current protection for busbars in a centralized configuration.

It is suitable for all voltage levels and can be adapted to a large variety of busbar configurations with an unlimited number of feeders. The components are designed for single busbars, 1½-breaker configurations and double busbars with or without couplers.

Different primary CT ratios can be matched by using appropriate windings of the input current transformers.

The use of matching transformers allows phase-selective measurement. Single-phase measurement can be achieved by using summation current transformers.

Function overview

Features

- Optimized for single busbar and 1¹/₂ circuit-breaker configurations
- Suitable for double busbars with or without couplers
- Separate check zone possible
- Short trip times
- Unlimited number of feeders
- Matching of different primary CT ratios
- Differential current principle
- Low-impedance measuring method
- Numerical measured-value processing
- Suitable for all voltage levels
- Low demands on CTs thanks to additional restraint
- Measured-value acquisition via summation current transformer or phase-selective matching transformers
- Maintained TRIP command (lockout function)
- Centralized, compact design
- Combinative with separate breaker failure protection
- Monitoring functions
- Primary current transformers including supply leads
- Operational measured values: Differential and restraint current
- Self-supervision of the relay
- 30 event logs
- 8 fault logs
- 8 oscillographic fault records
- Communication interface
- RS485 interface for local and remote operation with DIGSI

Hardware

- Concept of modular components
- Reduced number of module types
- Auxiliary voltage 48 V DC to 250 V DC
- 7SS601 measuring system in ¹/₆ 19-inch housing 7XP20
- Peripheral components in ½ 19-inch housing 7XP20

Front design

- Display for operation and measured values
- 6 LEDs for local indication

Application

The 7SS60 system is an easily settable numerical differential current protection for busbars.

It is suitable for all voltage levels and can be adapted to a large variety of busbar configurations. The components are designed for single busbars, 1½-breaker configurations and double busbars with or without couplers.

The use of matching transformers allows phase-selective measurement.

Single-phase measurement can be achieved by using summation current transformers.

The 7SS60 is designed to be the successor of the 7SS1 static busbar protection. The existing summation current or matching transformers can be reused for this protection system.

Construction/Functions

Design

The 7SS60 compactly-built protection system contains all components for:

- Measured-value acquisition and evaluation
- Operation and LC display
- Annunciation and command output
- Input and evaluation of binary signals
- Data transmission via the RS485 interface with bus capability
- Auxiliary voltage supply

The 7SS60 system comprises the following components:

- 7SS601 measuring system and the peripheral modules
- 7TM70 restraint/command output module
- 7TR71 isolator replica/preference module
- 7TS72 command output module

The number of modules required is determined by the substation configuration and the measuring principle used (summation current transformers or phase-selective measurement). The 7SS601 measuring system is accommodated in a separate housing ($^{1}/_{6}$ 19-inch 7XP20) that is suited for panel flush mounting or cubicle mounting. The 7XP2040 peripheral module housing has a width of $^{1}/_{2}$ 19 inches and can hold up to four peripheral modules. It is suited for panel flush mounting or cubicle mounting and has plug-on connectors fitted at the rear.

The primary current transformers are connected to summation current transformers of type 4AM5120-3DA/4DA or to matching transformers of type 4AM5120-1DA/2DA. With a rated current of 1 or 5 A, the current output at these transformers is 100 mA. This output current is fed onto the 7SS601 measuring system (for differential current formation) and onto the 7TM70 restraint units (for restraint current formation). The summated restraint current is fed onto the 7SS601 measuring system as well.

Functions of the components

- The 7SS601 measuring system comprises:
 - One measuring input for acquisition and processing of the differential and the restraint current
 - 3 binary inputs for acquisition of information, e.g. a blocking condition
 - 2 command relays for activation of other, feeder-specific command relays on the 7TM70 and 7TS72 peripheral modules.

In circuits with summation current transformer, one 7SS601 measuring system is required per protected zone. For phaseselective measurement, one 7SS601 measuring system is required per phase and protected zone.

• 7TM70 restraint/command output module

This module contains 5 current transformers with rectifiers for the formation of the restraint current. It has also 5 command relays with 2 NO contacts each for output of a direct TRIP command to the circuit-breakers.

- 7TR71 isolator replica/preference module This module enables the two bus isolators to be detected in a double busbar. The feeder current is assigned to the corresponding measuring system on the basis of the detected isolator position. The module is also designed for an additional function. In the case of a double busbar system, for example, where both bus isolators of a feeder are closed at a time, no selective protection of the two busbars is possible. During this state, one of the two measuring systems is given priority. The module 7TR71 appropriately assigns feeder currents to the corresponding measuring system 7SS601. The module also contains an auxiliary relay with two changeover contacts.
- 7TS72 command output module The 7TM70 contains 5 trip relays with 2 NO contacts each. If more trip contacts are needed, the 7TS72 module can be used, providing 8 relays with 2 NO contacts each.

Fig. 9/3 Housing for peripheral modules (front cover removed)

Fig. 9/4 Rear view

Fig. 9/5 Rear view detail

Protection functions

Measuring principles

The feeder currents can be measured and processed according to different principles.

• Summation current transformer principle In the summation current transformer variant, the three secondary currents of the primary CTs are fed onto the three primary windings of the summation current transformers with a winding ratio of n1:n2:n3 = 2:1:3. According to the expected fault currents two different circuits for connecting the summation current transformer are possible. For power systems with low-resistance or solid earthing of the starpoint, the 1-phase earth-faults are sufficiently high to use the circuit with normal sensitivity (see Fig. 9/7). An increased sensitivity for earth-faults can be achieved by use of a circuit according to Fig. 9/8. With a symmetrical, three-phase current of 1 x I_N, the secondary current of the summation current transformers is 100 mA.

Different primary CT transformation ratios can usually be compensated directly by appropriate selection of the summation CT primary windings. Where the circuit conditions do not allow this, additional matching transformers, such as the 4AM5272-3AA, should be used, preferably in the form of autotransformers (see Fig. 9/9: Protection with summation current transformer and matching transformers). The autotransformer circuit reduces the total burden for the primary CTs.

Phase-selective measurement
 In this variant, each phase current is measured separately. To do so, each of the secondary currents of the primary transformers is fed onto a matching transformer. This transformer allows, if its primary windings are selected accordingly, to generate a normalized current from a variety of different primary CT transformation ratios (see Fig. 9/10: Phase-selective measurement). With a primary current of 1 x *I*_N, the secondary current of the matching transformers is 100 mA.

Function principle of the differential protection

The main function of the 7SS60 protection system is a busbar protection that operates with the differential current measuring principle. Its algorithm relies on Kirchhoff's current law, which states that in fault-free condition the vectorial sum Id of all currents flowing into an independent busbar section must be zero. Some slight deviations from this law may be caused by current transformer error, inaccuracies in the matching of the transformation ratios and measuring inaccuracies. Further errors, which may be due to e.g. transformer saturation in case of high-current external short-circuits, are counteracted by a loaddependent supplementary restraint.

The restraint current I_R is derived from the load condition. This restraint current is formed as the summated magnitudes of all currents. The differential and the restraint current are fed into the 7SS601 measuring system (see Fig. 9/6: Block diagram). With double busbars or sectionalized busbars, one measuring system 7SS601 (summation CT), respectively 3 measuring systems (phase-selective measurement) will be used for each selective section. The module 7TS71 (isolator replica/preference) appropriately assigns feeder currents to the corresponding measuring system 7SS601.

Fig. 9/6

Block diagram: Acquisition of measured values

Protection functions/Functions

Pickup characteristic of the differential protection

The characteristic can be set in the parameters for $I_d >$ (pickup value) and for the k factor which considers the linear and non-linear current transformer errors. Differential currents above the set characteristic lead to tripping.

Current transformer monitoring

An independent sensitive differential current monitoring with its parameter $I_{d \text{ thr}}$ detects faults (short-circuits, open circuit) of current transformers and their wiring even with load currents. The affected measuring system is blocked and an alarm is given. By this, the stability of the busbar protection is ensured in case of external faults.

Trip command lockout (with manual reset)

Following a trip of the differential protection, the TRIP command can be kept (sealed-in). The circuit-breakers are not reclosed until the operator has obtained information on the fault; the command must be manually reset by pressing a key or by a binary input.

The logical state of the TRIP command is buffered against a loss of the auxiliary power supply, so that it is still present on restoration of the auxiliary voltage supply.

Test and commissioning aids

The protection system provides user support for testing and commissioning. It has a wide range of integrated aids that can be activated from the keypad or from a PC using the DIGSI program. For some tests a codeword must be entered. The following test aids are available:

- Display of operational measured values
- Interrogation of status of binary inputs and LED indicators
- Blocking of the TRIP function during testing

Communication/Functions

Serial data transmission

The device is equipped with an RS485 interface. The interface has bus capability and allows a maximum of 32 units to be connected via a serial two-wire interface. A PC can be connected to the interface via an RS232 \leftrightarrow RS485 converter, so that configuration, setting and evaluation can be performed comfortably via the PC using the DIGSI operating program. The PC can also be used to read out the fault record that is generated by the device when a fault occurs.

With RS485↔820 nm optical converters, which are available as accessories (7XV5650, 7XV5651), an interference-free, isolated connection to a control center or a DIGSI-based remote control unit is possible; this allows to design low-cost stations concepts that permit e.g. remote diagnosis.

Comfortable setting

The parameter settings are made in a menu-guided procedure from the integrated operator panel and the LC display. It is, however, more comfortable to use a PC for this purpose, together with the standard DIGSI operating program.

Fault recording

If a fault leads to a trip, a fault record is generated, in which the differential and the restraint current are recorded with a sampling frequency of 2 kHz. In addition, signals are stored as binary traces, which represent internal device states or binary input states. Up to eight fault records can be stored. When a ninth fault occurs, the oldest record is overwritten. A total storage capacity of 7 s is available. The most recent 2.5 s are buffered against power failure.

7SS60 measuring system	
Measuring input Id	
Rated current	100 mA
Rated frequency	50/60 Hz settable, 16.7 Hz
Dynamic overload capacity (pulse current)	250 x $I_{\rm N}$ one half cycle
Thermal overload capacity (r.m.s.) (where external summation or matching current transformers are used, their limit data must be observed)	$100 \ge I_{\rm N} \text{ for } \le 1 \le 30 \ge I_{\rm N} \text{ for } \le 10 \le 4 \ge I_{\rm N} \text{ continuous}$
Isolating voltage	2.5 kV (r.m.s.)
Measuring range for operational measured values	0 to 240 %
Measuring dynamics	100 x $I_{\rm N}$ without offset 50 x $I_{\rm N}$ with full offset
Measuring input I _R	
Rated current	1.9 mA
Dynamic overload capability (pulse current)	$250 \ge I_{\rm N}$ for 10 ms
Thermal overload capability (r.m.s.) (where external summation or matching current transformers are used, their limit data must be ob- served)	$100 \ge I_N \text{ for } \le 1 \le 30 \ge I_N \text{ for } \le 10 \le 4 \ge I_N \text{ continuous}$
Isolating voltage	2.5 kV (r.m.s.)
Measuring dynamics	0 to 200 x $I_{ m N}$
Auxiliary voltage	
Via integrated DC/DC converter Rated auxiliary voltage V_{aux} (permissible voltage)	24/48 V DC (19 to 58 V DC) 60/110/125 V DC (48 to 150 V DC) 220/250 V DC (176 to 300 V DC) 115 V AC (92 to 133 V AC)
Superimposed AC voltage (peak-to-peak)	\leq 15 % of rated voltage
Power consumption	QuiescentApprox. 3 WEnergizedApprox. 5 W
Bridging time during failure/ short-circuit of auxiliary voltage	$\geq 50 \text{ ms at } V_{aux} \geq 100 \text{ V DC}$ $\geq 20 \text{ ms at } V_{aux} \geq 48 \text{ V DC}$
Binary inputs	
Number	3 (marshallable)
Operating voltage range	24 to 250 V DC
Current consumption when energized	Approx. 2.5 mA Independent of operating voltage
Pickup threshold Rated aux. voltage 48/60 V DC V _{pickup} V _{drop-off} Rated aux. voltage 110/125/220/250 V DC V _{pickup} V _{drop-off}	Can be changed by setting jumpers ≥ 17 V DC < 8 V DC ≥ 74 V DC < 45 V DC 300 V DC
wax. voltage	300 ¥ DC

Command contacts	
Number of relays	1 (2 NO contacts) 1 (1 NO contact)
Switching capacity Make Break	1000 W/VA 30 W/VA
Switching voltage	250 V AC/DC
Permissible current Continuous 0.5 s	5 A 30 A
Signal contacts	
Number of relays	3 (2 marshallable)
Contacts	2 changeover contacts and 1 NO contact (can be changed to NC by jumper)
Switching capacity Make Break	1000 W/VA 30 W/VA
Switching voltage	250 V AC/DC
Permissible current Continuous 0.5 s	5 A 30 A
Serial interface	
Standard	Isolated RS485
Test voltage	3.5 kV DC
Connection	Data cable at housing terminals, 2 data lines For connection of a personal com- puter or similar Cables must be shielded, and shields must be earthed.
Transmission rate	As delivered 9600 baud min. 1200 baud, max. 19200 baud
Unit design	
Housing 7XP20	¹ / ₆ 19"
Dimensions	See part 15
Weight	Approx. 4.0 kg
Degree of protection according to IEC 60529-1 For the unit For operator protection	IP 51 IP 2X

9/10

g

Functions

Differential current protection

Setting ranges for pickup threshold Differential current I_d > Restraint factor	0.20 to 2.50 <i>I</i> _{NO} 0.25 to 0.80
Tolerance of pickup value Differential current <i>I</i> d>	± 5 % of setpoint
Minimum duration of trip command	0.01 to 32.00 s (in steps of (
Time delay of trip	0.00 to 10.00 s (in steps of 0
Times Minimum tripping time 50/60 Hz ¹	10 ms
Typical tripping time 50/60 Hz^{1} Minimum tripping time 16.7 Hz^{1}	12 ms (rapid measurement 40 ms (repeated measurem 12 ms
Typical tripping time 16.7 Hz ¹⁾	14 ms (rapid measurement 40 ms (repeated measurem
Reset time ²⁾	28 ms at 50 Hz 26 ms at 60 Hz 70 ms at 16.7 Hz
Differential current supervision Pickup threshold	0.10 to 1.00 I _{NO}
Lockout function	
Lockout seal-in of trip command	Until reset
Reset	By binary input and/or loca panel
Additional functions	
Operational measured values Operating currents Measuring range Tolerance	I _d , I _R 0 to 240 % I _{NO} 5 % of rated value
Fault logging	Buffered storage of the ann of the last 8 faults
Time stamping Resolution for operational	1 ms
Resolution for fault annunciation	1 ms
Fault recording (max. 8 fault)	Buffered against voltage fai (last 2.5 s)
Recording time (from fault detection)	Max. 7.1 s total Pre-trigger and post-fault t can be set
Max. length per record Pre-trigger time Post-fault time Sampling frequency	0.2 to 5.0 s (in steps of 0.01 0.05 to 1.5 s (in steps of 0.0 0.01 to 1.5 s (in steps of 0.0 2 kHz

Parinharal modula

Periprierarmodules						
7TM700 restraint/command output module						
Measuring input I_{R}						
Number of restraint units	5					
Rated current	100 mA					
Rated frequency	16.7, 50, 60 Hz					
Dynamic overload capacity (pulse current)	250 x $I_{\rm N}$ one half cycle					
Thermal overload capacity (r.m.s.) (where external summation or match- ing current transformers are used, their limit data must be observed)	$100 \ge I_N \text{ for } \le 1 \le 30 \ge I_N \text{ for } \le 10 \le 4 \ge I_N \text{ continuous}$					

0.01 s) 0.01 s) ent)

ent)

al operator

unciations

lure ime s) 01 s) 01 s)

Auxiliary voltage (7TM700)

Rated auxiliary voltage V _{aux} (permitted voltage range)	48/60 V DC (38 to 72 V DC) 110/125 V DC (88 to 150 V DC) 220/250 V DC (176 to 300 V DC) Settable As delivered: 220/250 V DC
Command contacts (7TM700)	
Number of relays	5
Contacts per relay	2 NO contacts
For short-term operation < 10 s ³⁾	
Pickup time	Approx. 7 ms
Switching capacity Make Break	1000 W/VA 30 W/VA
Switching voltage	250 V AC/DC
Permissible currents Continuous 0.5 s	5 A 30 A
Weight	Approx. 2.0 kg
7TR710 isolator replica/preferential	treatment module

NOTE: The module 7TR710 can be used to implement 2 different functions: isolator replica or preferential treatment

Isolator replica Number of feeders 1 (single busbar and double busbar) Number of isolators 2 per feeder Preferential treatment Number of preferential 2 treatment circuits Number of contacts per preferential 3 changeover contacts treatment Switching time < 20 ms Number of auxiliary relays 1 Contacts of auxiliary relay 2 changeover contacts Auxiliary voltage 48/60 V DC Rated auxiliary voltage Vaux (38 to 72 V DC) (permissible voltage range) 110/125 V DC (88 to 150 V DC) 220/250 V DC (176 to 300 V DC) Depending on the design **Relay contacts**

Switching capacity Make Break Switching voltage Permissible current Continuous 0.5 s Weight

30 W/VA 250 V AC/DC 5 A

1000 W/VA

10 A Approx. 0.6 kg

1) Each additional intermediate relay increases the tripping time by 7 ms.

2) Each additional intermediate relay increases the reset time by 8 ms.

3) Limited by the continuous power dissipation of the device.

Peripheral modules (cont'd)		
7TS720 command output module		
Auxiliary voltage		
Rated auxiliary voltage V _{aux} (permissible voltage range)	48/60 V 110/125 V 220/250 V	(38 to 72 V DC) (88 to 150 V DC) (176 to 300 V DC)
	Settable As delivered: 220/2	50 V DC
Command contacts		
Number of relays	8	
Contacts per relay	2 NO contacts	
For short term operation $<$ 10 s $^{1)}$		
Pickup time	Approx. 7 ms	
Switching capacity Make Break	1000 W/VA 30 W/VA	
Switching voltage	250 V AC/DC	
Permissible current Continuous 0.5 s	5 A 30 A	
Weight	Approx. 0.5 kg	
7SS601 measuring system		
Current connections (terminals 1 to 6	5)	
Screw-type terminals (ring-type cable lug) Max_outside diameter	For bolts of 6 mm	
Type For conductor cross-sections of	e.g. PDIG of AMP 2.7 to 6.6 mm ² AWG 12 to 10	
In parallel double leaf-spring- crimp contact for conductor cross-sections of	2.5 to 4.0 mm ² AWG 13 to 11	
Max. tightening torque	3.5 Nm	
Control connections (terminals 7 to 3	31)	
Screw-type terminals (ring-type cable lug) Max. outside diameter	For 4 mm bolts 9 mm	
Type For conductor cross-sections of	e.g. PDIG of AMP 1.0 to 2.6 mm ² AWG 17 to 13	
In parallel double leaf-spring- crimp contact for conductor cross-sections of Max. tightening torque	0.5 to 2.5 mm ² AWG 20 to 13 1.8 Nm	

Connectors with screw-type terminals

Туре	COMBICON system of PHOENIX CONTACT Front-MSTB 2 5/10-ST-5 08
For conductor cross-sections of	0.2 to 2.5 mm^2 (rigid and flexible) AWG 24 to 12 0.25 to 2.5 mm^2 (with end sleeve)
Multiple conductor connection (2 conductors of same cross-section)	0.2 to 1.0 mm ² (rigid) 0.2 to 1.5 mm ² (flexible) 0.25 to 1.0 mm ² (flexible with end sleeve, without plastic collar) 0.5 to 1.5 mm ² (flexible with TWIN end sleeve with plastic collar)
Stripping length	7 mm
Recommended tightening torque	0.5 to 0.6 Nm
Unit design	
Housing 7XP204	1⁄2 19"
Dimensions	See part 15
Weight	Approx. 3.5 kg
Degree of protection according to IEC 60529-1	ID 51 (frank man l)
For the operator protection	IP 51 (front panel) IP 20 (rear) IP 2X (if all connectors and blanking plates are fitted)

Matching transformers

4AM5120-1DA00-0AN2							
For connection to current transference with a rated current I_N of	orm-	1 A					
Rated frequency f_N		45-6	0 Hz				
Winding Number of turns		A-B	B-C Y-Z	D-E	E-F	G-H	H-J
		1	2 500	4	8	16	32
Max. current, continuous Max. voltage	A V	6.8	6.8 0.85	6.8	6.8	6.8	6.8
, , , , , , , , , , , , , , , , , , ,		0.4	0.8 200	1.6	3.2	6.4	12.8
Max. burden	VA	1.0					
4AM5120-2DA00-0AN2							
For connection to current trans- formers with a rated current I_N o	f	5 A					
Rated frequency f _N		45-6	0 Hz				
Winding Number of turns		A-B	B-C	D-E	E-F Y-Z		
		1	2	4	8 500		
Max. current, continuous Max. voltage	A V	26	26	26	26 0.85		
		0.4	0.8	1.6	3.2 200		
Max. burden	VA	1.2					

g

Summation current matching transformers

4AM5120-3DA00-0AN2									
For connection to current transformers with a rated current $I_{\rm N}$ of		1 A							
Rated frequency f_N		45-6	60 Hz						
Winding Number of turns		А-В 3	C-D 6	E-F 9	G-H 18	J-K 24	L-M 36	N-O 90	Y-Z 500
Max. current, continuous Max. voltage Max. burden	A V VA	4 1.2 1.8	4 2.4	4 3.6	4 7.2	4 9.6	4 14.4	2 36	0.85 200
4AM5120-4DA00-0AN2									
For connection to current									

transformers with a rated current <i>I</i> _N of		5 A							
Rated frequency <i>f</i> _N		45-6	0 Hz						
Winding Number of turns		A-B 1	C-D 2	E-F 3	G-H 4	J-K 6	L-M 8	N-O 12	Y-Z 500
Max. current, continuous Max. voltage Max. burden	A V VA	17.5 0.4 2.5	17.5 0.8	17.5 1.2	17.5 1.6	17.5 2.4	17.5 3.2	8.0 4.8	0.85 200

Matching transformer

4AM5272-3AA00-0AN2									
Multi-tap auxiliary current transformer to match different c.t. ratios									
Rated frequency f_N		45-6	60 Hz						
Winding Number of turns		A-B 1	C-D 2	E-F 7	G-H 16	J-K 1	L-M 2	N-C 7) P-Q 16
Max. current, continuous	А	6	6	6	1.2	6	6	6	1.2
Max. voltage	V	4	8	28	64	4	8	28	64
resistance	Ω	0.018	0.035	0.11	1.05	0.018	3 0.035	0.11	1.05

Electrical tests

Specifications

Standards: IEC 60255-5; ANSI/IEEE C37.90.0

Insulation tests

High voltage test (routine test), measuring input I_d and relay outputs	2.5 kV (r.m.s.); 50 Hz
High voltage test (routine test), auxiliary voltage input and RS485 interface, binary inputs and measuring input I _R	3.5 kV DC
Impulse voltage test (type test), all circuits, class III	5 kV (peak); 1.2/50 μs; 0.5 J; 3 positive and 3 negative impulses in intervals of 5 s

EMC tests for interference immunity;	type tests	
Standard	IEC 60255-6, IEC 60255-22 (international product standards) EM 50082-2 (technical generic standard) DIN VDE 57435 part 303 (German product standard for pro- tection devices)	
High-frequency test IEC 60255-22-1, DIN 57435 part 303; class III	2.5 kV (peak); 1 MHz; <i>t</i> = 15 ms; 400 surges per s; test duration 2 s	
Electrostatic discharge IEC 60255-22-2; IEC 61000-4-2; class IV	8 kV contact discharge; 15 kV air discharge; both polarities; 150 pF; R_i = 330 Ω	
Irradiation with RF field, non-modulated IEC 60255-22-3 (report); class III	10 V/m; 27 to 500 MHz	
Irradiation with RF field, amplitude-modulated IEC 61000-4-3, class III	10 V/m; 80 to 1000 MHz; 80 % AM; 1 kHz	
Irradiation with RF field, pulse-modulated IEC 61000-4-3/ENV 50204; class III	10 V/m; 900 MHz; repetition frequency 200 Hz; ED 50 %	
Fast transient disturbance/bursts IEC 60255-22-4; IEC 61000-4-4; class III	4 kHz; 5/50 ns; 5 kHz, burst length = 15 ms; repetition rate 300 ms; both polarities; $R_i = 50 \Omega$; test duration 1 min	
High-energy surge voltages (SURGE), IEC 61000-4-5, installation, class III	Auxiliary voltage: Longitudinal test: 2 kV; 12 Ω ; 9 μ F Transversal test: 1 kV; 2 Ω ; 18 μ F Measuring inputs, binary inputs and relay outputs: Longitudinal test: 2 kV; 42 Ω ; 0.5 μ F Transversal test: 1 kV; 42 Ω ; 0.5 μ F	
Line-conducted HF, amplitude-modulated IEC 61000-4-6; class III	10 V; 150 kHz to 80 MHz; 80 % AM; 1 kHz	
Magnetic field with power frequency IEC 61000-4-8; class IV IEC 60255-6	30 A/m; continuous; 300 A/m for 3 s 50 Hz; 0.5 mT	
Oscillatory surge withstand capability ANSI/IEEE C37.90.1	2.5 to 3 kV (peak); 1 to 1.5 MHz; damped wave; 50 surges per s; duration 2 s; $R_i = 150$ to 200 Ω	
Fast transient surge withstand capability ANSI/IEEE C37.90.1	4 to 5 kV; 10/150 ns; 50 surges per s; both polarities; duration 2 s; $R_i = 80$ S	
Radiated electromagnetic interference ANSI/IEEE C37.90.2	35 V/m; 25 to 1000 MHz	
Damped oscillations IEC 61000-4-12 IEC 60694	2.5 kV (peak, alternating polarity); 100 kHz; 1, 10 and 50 MHz; damped wave; $R_i = 50 \Omega$	
EMC tests for interference emission; type test		
Standard	EN 50081-* (technical generic standard)	
Conducted interference voltage on lines only auxiliary voltage, EN 55022, DIN VDE 0878 part 22, IEC CISPR 22	150 kHz to 30 MHz, limit value, class B	
Radio interference field strength EN 55011; DIN VDE 0875 part 11,	30 to 1000 MHz, limit value, class A	

Mechanical stress tests

Vibration, shock stress and seismic vibration

During operation

Standards

Vibration IEC 60255-21-1, class II IEC 60068-2-6

Shock IEC 60255-21-2, class I IEC 60068-2-27

Seismic vibration IEC 60255-21-3, class I IEC 60068-3-3 Horizontal axis

Vertical axis

During transport Standards

Vibration IEC 60255-21-1, class II IEC 60068-2-6

Shock IEC 60255-21-2, class I IEC 60068-2-27

Continuous shock IEC 60255-21-2, class I IEC 60068-2-29

Climatic stress test

Temperatures	
Standards	IEC 60
Permissible ambient temperatures – In service	-20 to
– During storage	-25 to
– During transport	-25 to
Storage and transport with standard works packing	

Humidity

Standards

Permissible humidity It is recommended to arrange the

units in such a way that they are not exposed to direct sunlight or pronounced temperature changes that could cause condensation.

IEC 60255-21-1 IEC 60068-2 Sinusoidal 10 to 60 Hz, \pm 0.075 mm amplitude 60 to 150 Hz; 1 g acceleration Sweep rate 1 octave/min 20 cycles in 3 orthogonal axes Half-sinusoidal Acceleration 5 g; duration 11 ms 3 shocks in each direction of the 3 orthogonal axes

Sinusoidal

1 to 8 Hz: \pm 3.5 mm amplitude 8 to 35 Hz: 1 g acceleration 1 to 8 Hz: \pm 1.5 mm amplitude 8 to 35 Hz: 0.5 g acceleration Frequency sweep 1 octave/min 1 cycle in 3 orthogonal axes

IEC 60255-21 IEC 60068-2

Sinusoidal 5 to 8 Hz: ± 7.5 mm amplitude 8 to 150 Hz: 2 g acceleration sweep rate 1 octave/min 20 cycles in 3 orthogonal axes Half-sinusoidal Acceleration 15 g; duration 11 ms 3 shocks in each direction of the 3 orthogonal axes Half-sinusoidal Acceleration 10 g; duration 16 ms 1000 shocks in each direction of the 3 orthogonal axes

255-6

-20 to +45/55 °C	
-25 to +55 °C	
-25 to +70 °C	

IEC 60068-2-3

Annual average 75 % relative humidity; on 30 days in the year up to 95 % relative humidity; condensation not permissible!

CE conformity

This product is in conformity with the Directives of the European Communities on the harmonization of the laws of the Member States relating to electromagnetic compatibility (EMC Council Directive 89/336/EEC) and electrical equipment designed for use within certain voltage limits (Council Directive 73/23/EEC).

This unit conforms to the international standard IEC 60255, and the German standard DIN 57435/Part 303 (corresponding to VDE 0435/Part 303).

The unit has been developed and manufactured for application in an industrial environment according to the EMC standards.

This conformity is the result of a test that was performed by Siemens AG in accordance with Article 10 of the Council Directive complying with the generic standards EN 50081-2 and EN 50082-2 for the EMC Directive and standard EN 60255-6 for the "low-voltage Directive".

Selection and ordering data	Description	Order No.
	Centralized numerical busbar protection 7SS60	
	100 mA; 50/60 Hz AC	σ \uparrow \uparrow \uparrow \uparrow
	100 mA; 16.7 Hz AC	6
	Pated auvilian upltaga	
	24 to 48 V DC	2
	60 to 125 V DC	4
	220 to 250 V DC	5
	Unit design	
	Housing 7XP20 1/6 19-inch, for panel flush mounting or cubicle mounting	E
	Measuring system	
	Standard	0
	Stabilizing/command output module	
	5 stabilizing CTs, 5 relays with 2 NO contacts	
	48/60 V DC, 110/125 V DC, 220/250 V DC settable	7TM7000-0AA00-0AA0
	Isolator replica/preference module	7TR7100-□AA00-0AA0
	48 to 60 V DC	3
	110 to 125 V DC	4
	220 to 250 V DC	5
	Command output module	
	8 relays with 2 NO contacts	
	48/60 V DC, 110/125 V DC, 220/250 V DC settable	7TS7200-0AA00-0AA0
	Housing ½ 19-inch for peripheral modules 7SS60	
	For panel flush mounting or cubicle mounting	7XP2041-2MA00-0AA0
	Copper interconnecting cable	
Accessories	PC (9-pole socket) and converter/protection relay	7XV5100-2
	Connector adapter	
	9 pin female / 25 pin male	7XV5100-8H
	I CONTRACTOR	
	RS232 - RS485 converter	
	With power supply unit for 230 V AC	7XV5700-0AA00
		7775700-17400
	Converter	
	Full duplex fiber-optic cable – RS485 Auxiliary voltage: 24 V DC to 250 V DC 110/230 V DC	
	Line converter ST connector	7XV5650-0BA00
	Cascada converter ST connector	7XV5651-0BA00
	Connector for peripheral modules, as spare part	W73078-B9005-A710
	Extraction tool for connector	W73078-Z9005-A710
	Test adapter	7XV6010-0AA00
	Angle bracket (set)	C73165-A63-D200-1

9

Accessories

Description	Order No.
Summation current matching transformer	
1 A, 50/60 Hz	4AM5120-3DA00-0AN2
5 A, 50/60 Hz	4AM5120-4DA00-0AN2
Matching transformer	
1 A, 50/60 Hz	4AM5120-1DA00-0AN2
5 A, 50/60 Hz	4AM5120-2DA00-0AN2
1 A, 5 A, 50/60 Hz	4AM5272-3AA00-0AN2
Manual 7SS60	
English	E50417-G1176-C132-A3

		-
X2:1		V0.0E
X2:2		- <u>X2:25</u>
X2:4		- <u>X2:24</u>
X2:5		- <u>X2:28</u>
X2:7		- <u>X2:27</u>
X2:8		- <u>X2:31</u>
X2:10		-(X2:30)
X2:11		- <u>X2:34</u>
X2:13		- <u>X2:33</u>
X2:14		- <u>X2:37</u>
		X2:36
N/1 00		
X1:22	+	X1:21
X1:1		- <u>X1:2</u>
X1:4		- <u>X1:5</u>
X1:28	+ /	X1:27
X1:7		X1:8
X1:10		X1:11
X1:34	+	-[X1:33]
X1:13		-X1:14
X1:16		- <u>X1:17</u>
X1:37	+ 7	X1:36
X1:19		X1:20
X1:39		X1:40
V2.20		V2.40
[X2:39	+	7^2:40 8
X2:16		1X2:17
[X2:19		<u>- X2:20</u>] <u>°</u>

X2:25	+ 7	X2:24
X2:1		X2:2
X2:21		X2:22
X2:28	7	X2:27
X2:4	+ 다	X2:5
X2:7		X2:8
X2:34	7	X2:33
X2:10	+ Ľļ	X2:11
X2:13		X2:11
<u>, , , , , , , , , , , , , , , , , , , </u>	_	7.2.1
X1:22	+	X1:21
X1:1		X1:2
X1:4		X1:5
X1·28	7	X1·27]
X1:7	+ Ľļ	X1.27
X1·10		X1.11
	_	
X1:34	+ 4	X1:33
X1:13		X1:14
X1:16		X1:17
X1·37	7	X1:36
X1:19	+ Ľ,	X1:20
X1:39		X1:20 0
	_	de le
X2:39	+ 4	X2:40 🛱
X2:16		X2:17
X2:19		X2:20

Fig. 9/15 Connection diagram for 7TM700

Fig. 9/16 Connection diagram for 7TS720

9 Busbar Differential Protection / 7SS60

Connection diagram

9

SIPROTEC 4 7SS52 Distributed Numerical Busbar and Breaker Failure Protection

Description

The SIPROTEC 7SS52 numerical protection is a selective, reliable and fast protection for busbar faults and breaker failure in medium, high and extra-high voltage substations with various possible busbar configurations.

The protection is suitable for all switchgear types with iron-core or linearized current transformers. The short tripping time is especially advantageous for applications with high fault levels or where fast fault clearance is required for power system stability.

The modular hardware allows the protection to be optimally matched to the busbar configuration. The decentralized arrangement allows the cabling costs in the substation to be drastically reduced. The 7SS52 busbar protection caters for single, double or triple busbar systems with or without and quadruple busbar systems without transfer bus with up to: 48 bays, 16 bus couplers, and 24 sectionalizing disconnectors and 12 busbar sections.

Function overview

Busbar protection functions

- Busbar differential protection
- Selective zone tripping
- Very short tripping time (<15 ms)
- Extreme stability against external fault, short saturation-free time (≥ 2 ms)
- Phase-segregated measuring systems
- Integrated check zone
- 48 bays can be configured
- 12 busbar sections can be protected
- Bay-selective intertripping

Breaker failure protection functions

- Breaker failure protection (single-phase with/without current)
- 5 operation modes, selectable per bay
- Separate parameterization possible for busbar and line faults
- Independently settable delay times for all operation modes
- 2-stage operation bay trip repeat/trip busbar
- Intertrip facility (via teleprotection interface)
- "Low-current" mode using the circuitbreaker auxiliary contacts

Additional protection functions

- End-fault protection with intertrip or bus zone trip
- Backup overcurrent protection per bay unit (definite-time or inverse-time)
- Independent breaker failure protection per bay unit

Features

- Distributed or centralized installation
- Easy expansion capability
- Integrated commissioning aids
- Centralized user-friendly configuration / parameterization with DIGSI
- Universal hardware
- Communication interfaces

• FO interface

- IEC 60870-5-103 protocol
- Electrical interface

 IEC 61850 protocol with EN 100 module (firmware V4.6)

Application

The 7SS52 distributed numerical busbar and breaker failure protection system is a selective, reliable and fast protection for busbar faults and breaker failure in medium, high and extra-high voltage substations with various possible busbar configurations. The protection is suitable for all switchgear types with iron-core or linearized current transformers. The short tripping time is especially advantageous for applications with high fault levels or where fast fault clearance is required for power system stability.

The modular hardware design allows the protection system to be optimally matched to the busbar configuration.

The distributed arrangement allows the cabling costs between bay and substation to be drastically reduced. The 7SS52 busbar protection caters for single, double, triple and quadruple busbar systems with or without transfer bus with up to:

- 48 bays
- 16 bus couplers
- 24 sectionalizing disconnectors
- 12 busbar sections

Fig. 9/20 Protection functions of the central unit and the bay units

Construction

The distributed bay units measure the 3 phase currents in each bay. The rated input current is 1 or 5 A and therefore eliminates the need for interposing current transformers. The disconnector status, breaker failure protection triggering, bay out-of- service and other bay status information is derived via marshallable binary inputs in the bay units. The complete information exchange is conveyed to the central unit via a fiber-optic interface. The bay unit also has an interface on the front side for connection to a PC for operation and diagnosis. The trip and intertrip commands are issued via trip contacts in the bay units. The 7XP20 standard housing is available in a flush or surface mounting version (7SS523).

The central unit is connected to the bay units via fiber-optic communication links. The connection is built up in a star configuration. The central unit also contains serial ports for system configuration via PC or communication with a substation control system, an integrated LC Display with keypad and marshallable binary inputs, LEDs and alarm relays. The central unit is available in a 19" SIPAC module rack version for either cubicle or wall mounting.

Because of its modular hardware design, it is easy to adapt the central unit to the substation or to expand it with further modules each being connected with up to 8 bay units.

Each bay unit and the central unit has its own internal power supply.

Fig. 9/24 7SS525 Bay unit Front view of panel/flush/cubicle mounting unit

Protection functions

Busbar protection

The main function of the 7SS52 is busbar protection, and has the following characteristics:

- Evaluation of differential currents, with stabilization by through-currents based on the proven performance of the Siemens busbar protection 7SS1 and 7SS50/51, currently in service worldwide
- Selective busbar protection for busbars with up to 12 busbar sections and 48 bays
- Integrated "check zone" (evaluation of all busbar section currents without use of the disconnector replica)
- Very short tripping time (15 ms typical)
- Selective detection of short-circuits, also for faults on the transfer bus, with transfer trip to the remote end.
- Detection and clearance of faults between the current transformer and the circuitbreaker via current measurement and selective unbalancing.
- Tripping only when all three fault detection modules recognize a busbar fault (2 measurement processors and check zone processor)
- No special CT requirements (stability is guaranteed, even when the CTs saturate after 2 ms)
- Selective output tripping relays per feeder in bay units.

Mode of operation

The 7SS52 protection relay offers complete numerical measured-value processing from sampling to digital conversion of the measured variables through to the circuitbreaker tripping decision. The bay units dispose of sufficient powerful contacts to directly trip the circuit-breaker.

For each busbar section and for all three phases, two independent processors execute the protection algorithm on alternate data samples. Based on the proven performance of the 7SS1 and 7SS50/51, this method of measurement ensures highest stability even in case of high short-circuit currents and CT saturation.

Normal load line

Stabilizing

current I

In addition, an disconnector status independent check-zone measurement is executed on a further processor thus increasing the protection against unwanted operation.

 $I_{c} < EF$

The disconnector status is monitored using normally open and normally closed contacts to enable plausibility checks for both status and transition time. The contact monitoring voltage is also supervised.

All three processors must reach a trip deci-

sion independently before the trip com-

sensibility

I_{Diff}> EF

0

mand is released.

ò

In case of an auxiliary voltage failure in the bay, the latest disconnector status is stored and a bay-selective indication of the failure is issued.

The assignment of the feeder currents to the corresponding busbar systems is controlled by software via the disconnector replica. The disconnector replica is applied for both busbar protection and breaker failure protection.

The integrated breaker failure protection function provides phase-segregated two-stage operation (bay-specific trip repeat, trip bus section). Alternatively, an external breaker failure protection relay can issue its trip commands via the disconnector replica in the 7SS52.

Breaker failure protection

Fig. 9/26

The 7SS52 protection includes an integrated breaker failure protection with the following features:

Earth-fault characteristic

• Five breaker failure protection modes that are selectable:

1. Following the issue of a trip signal from a feeder protection, the busbar protection monitors the drop-off of the trip signal. If the feeder current is not interrupted before a set time delay the polarity of the feeder current is reversed, which results in a differential current in the corresponding section of the bus protection. For this function, a separate parameter set is used.

2. Following a trip signal from a feeder protection, a trip signal will be output after a settable time delay from the 7SS52 protection to the corresponding feeder circuit-breaker. If this second trip signal is also unsuccessful, the unbalancing procedure according to mode 1) as described above will take place.

3. With external stand-alone breaker failure protection, the disconnector replica of the 7SS52 may be used to selectively trip the busbar section with the faulty circuit-breaker.

Protection functions

4. Following a trip signal from the feeder protection, the 7SS52 monitors the dropoff of the trip signal. If, after a settable time, the current does not fall below a settable limiting value, busbar-selective feeder trip commands are issued with the help of the disconnector replica within the 7SS52.

5. Following a trip signal from a feeder protection, a trip signal will be output after a settable time delay from the 7SS52 protection to the corresponding feeder circuit-breaker. If this second trip signal is also unsuccessful, the tripping as described under 4) will take place.

- For single-pole or multi-pole starting, delay times are available.
- Breaker failure detection following a busbar fault by comparison of the measured current with a set value.
- For all modes of breaker failure protection, a transfer trip command output contact is provided for each feeder to initiate remote tripping.

Sensitive tripping characteristic

In some applications, e.g. within resistive earthed networks, single-phase short-circuit currents are limited to rated current values. In order to provide a busbar protection for these cases, an independent characteristic is available. This characteristic presents separate parameters for the pickup threshold, as well as for a limitation of efficiency. The activation of the characteristic takes place by means of a binary input in the central unit, e.g. by recognizing a displacement voltage.

End-fault protection

The location of the current transformer normally limits the measuring range of the busbar protection. When the circuitbreaker is open, the area located between the current transformer and the circuitbreaker can be optimally protected by means of the end-fault protection. In the event of a fault, depending on the mounting position of the current transformer, instantaneous and selective tripping of the busbar section or intertripping of the circuit-breaker at the opposite end occurs.

Backup protection

As an option, a two-stage backup protection, independent of the busbar protection is included in every bay unit. This backup protection is completed by means of a breaker failure protection. The parametrization and operation can be carried out in the central unit or locally in each bay unit with the DIGSI operating program.

Disconnector replica

The disconnector replica is used for both the busbar protection and the breaker failure protection.

The following features characterize the disconnector replica function:

- Includes up to 48 bays and 12 busbar sections
- Integrated bi-stable disconnector status characteristic (status stored on loss of auxiliary power).

Fig. 9/28 DIGSI plant monitoring

Protection functions/Functions

- Disconnector transition time monitoring.
- By the assignment "NOT open = closed", the disconnector is taken to be CLOSED during the transition time. Accurate matching of the disconnector auxiliary contacts with the main contact is not required.
- Menu-guided graphic configuration with DIGSI operating program.
- LEDs in the bay modules indicate the actual status of the busbar disconnector.
- Dynamic visualization of the substation with DIGSI on the central unit.

Tripping command/reset

The tripping output processing for the 7SS52 protection has the following features:

- Bay-selective tripping by bay units
- Settings provided for overcurrent release of the tripping command (to enable selective tripping of infeeding circuits only)
- Settable minimum time for the trip command.
- Current-dependent reset of the tripping command.

Disturbance recording

The digitized measured values from the phase currents and the differential and stabilizing currents of the busbar sections and check zone are stored following a trip decision by the 7SS52 or following an external initiation via a binary input. Pre-trigger and post-fault times with regard of the trip command can be set. Up to 8 fault recordings are stored in the 7SS52. The fault records may be input to a PC connected to the central unit, using the menu-guided DIGSI operating program. Then, the SIGRA graphics program makes it possible to easily analyze the fault recordings.

Marshallable tripping relays, binary inputs, alarm relays and LEDs

The bay units are equipped with marshallable command relays for direct circuit-breaker tripping. For each bay there are 9 (7SS523) or 8 (7SS525) duty contacts available.

For user-specific output and indication of events, 16 alarm relays and 32 LEDs in the central unit are freely marshallable.

Several individual alarms may be grouped together.

The central unit has marshallable binary inputs with:

- Reset of LED display
- Time synchronization
- Blocking of protection functions

The bay units have marshallable binary inputs:

- Disconnector status closed/open
- Phase-segregated start of circuit-breaker failure protection
- Release of circuit-breaker failure protection
- Release of TRIP command
- Circuit-breaker auxiliary contacts
- Bay out of service
- Test of circuit-breaker tripping

Measurement and monitoring functions

In the 7SS52 protection relay, a variety of measurement and monitoring functions is provided for commissioning and maintenance. These functions include:

- Measurement and display of the phase currents of the feeders in the central unit and bay units.
- Measurement and display (on the integrated LCD or PC) of the differential and stabilizing currents of all measuring systems in the central unit and the bay units.
- Monitoring of busbar-selective and phase-segregated differential currents with busbar-selective blocking/alarming
- Monitoring of the differential currents of the check zone with alarming/blocking
- Phase-segregated trip test including control of feeder circuit-breaker (by central or bay unit)
- Removal of a bay from the busbar measurement processing during feeder service and maintenance via central or bay units (bay out of service)
- Blocking of breaker failure protection or tripping command for testing purposes.
- Disconnector replica freezing (maintenance) with alarm indication ("Disconnector switching prohibition").
- Cyclic tests of measured-value acquisition and processing and trip circuit tests including coils of the command relays.

Event recording

The 7SS52 protection provides complete data for analysis of protection performance following a trip or any other abnormal condition and for monitoring the state of the relay during normal service.

Up to 200 operational events and 80 fault annunciations with a resolution of one millisecond may be stored in two independent buffers:

- Operational indications This group includes plant/substation operation events, for example disconnector switching, disconnector status discrepancies (transition time limit exceeded, loss of auxiliary voltage, etc.) or event/alarm indications
- Tripping following a busbar short-circuit fault or circuit-breaker failure.

Protection functions/Functions

Settings

A PC can be connected to the operator interface located at the front panel or the rear of the central unit. An operating program is available for convenient and clear setting, fault recording and evaluation as well as for commissioning. All settings of the busbar or breaker failure protection, as well as settings of additional functions such as backup protection, need only be parameterized at the central unit. Settings at the bay units are not necessary. With the help of the integrated keypad and display on the central unit, all setting parameters may be read out.

Keypad, display (7SS523) and the front side interface of the bay units serve for commissioning, display of operational values and diagnosis.

All parameters are written into nonvolatile memories to ensure that they are retained even during loss of auxiliary voltage.

Configuration, visualization

The configuration of the 7SS52 is effected by means of a graphics-orientated editor included in the DIGSI operation program. For frequently used bay types, a symbol library is available. Enhancements can be easily effected anytime.

A graphical configuration visualizes the states of the disconnector position, the circuit-breaker and measuring values.

Self-monitoring

Hardware and software are continuously monitored and any irregularity is immediately detected and alarmed. The self-monitoring feature improves both the reliability and the availability of the 7SS52. The following quantities are monitored:

- The current transformer circuits
- The analog-to-digital conversion
- All internal supply voltages
- The program memory
- The program running times by a watch dog function
- The disconnector status
- The three channel tripping circuit

Maximum lifetime and reliability

The hardware of the 7SS52 units is guaranteed by more than 20 years of experience in numerical protection design at Siemens. The number of components employed is reduced through use of a powerful microprocessor in conjunction with highly-integrated components, thus enhancing the reliability. The experience gained by Siemens in production of over 1 million numerical protection units has been incorporated in the software design. The most modern manufacturing methods together with effective quality control ensure high reliability and a long service life.

Battery monitoring

The internal battery is used to back-up the clock and memory for storage of switching statistics, status and fault indications and fault recording, in the event of a power supply failure. The processor checks its capacity at regular intervals. If the capacity of the battery is found to be declining, an alarm is generated. Routine replacement is therefore not necessary. All setting parameters are stored in the Flash-EPROM, and therefore not lost if the power supply or the battery fails.

Functions for testing and commissioning

The 7SS52 offers auxiliary functions for commissioning. The physical status of all binary inputs and output relays of the central unit can be displayed and directly altered to facilitate testing.

All measured values can be clearly depicted by means of DIGSI and simultaneously displayed in different windows as primary or percentage values.

The 7SS52 units are provided with a circuitbreaker test function. Single-pole and three-pole TRIP commands can be issued.

Data transmission lockout

Data transmission lockout can be activated, so as to prevent transfer of information to the control center during work on a circuit bay.

Test mode

During commissioning, a test mode can be selected; all indications then have a test mode suffix for transmission to the control system.

Communicatio

Serial communication

With respect to communication, particular emphasis is placed on the customer requirements in energy automation:

- Every data item is time-stamped at the source, i.e. where it originates.
- Already during the process of communication, information is assigned to the cause thereof (e.g. assignment of the indication "circuit-breaker TRIP" to the corresponding command).
- The communication system automatically handles the transfer of large data blocks (e.g. fault recordings or parameter data files). The user has access to these features without any additional programming effort.

Local and remote communication

The 7SS52 central unit provides several serial communication interfaces for various tasks:

- Front interface for connecting a PC
- Rear-side service interface (always provided) for connection to a PC, either directly or via a modern
- System interface for connecting to a control system via IEC 60870-5-103 protocol.
- System interface (EN 100 module) for connecting to a control system via IEC 61850 protocol
- Time synchronization via IRIG-B/DCF/system interface

Serial front interface (central unit and bay units)

There is a serial RS232 interface on the front of all the units. All of the unit's functions can be set on a PC by means of the DIGSI 4 protection operation program. Commissioning tools and fault analysis are also built into the program and are available through this interface.

Communication (continued)

Rear-mounted interfaces (central unit only)

A number of communication modules suitable for various applications can be fitted in the rear of the flush-mounting housing. The interface modules support the following applications:

- Service interface The service interface was conceived for remote access to a number of protection units via DIGSI. It can be an electrical RS232/RS85 or an optical interface.
- RS485 bus With this data transmission via copper conductors, electromagnetic fault influences are largely eliminated by the use of twisted-pair conductors. Upon failure of a unit, the remaining system continues to operate without any problem.

System interface

Communication with a central control system takes place through this interface. Radial or ring type station bus topologies can be configured depending on the chosen interface. Furthermore, the units can exchange data through this interface via Ethernet and IEC 61850 protocol and can also be operated by DIGSI.

IEC 61850 protocol (retrofittable)

The Ethernet-based IEC 61850 protocol is the worldwide standard for protection and control systems used by power supply corporations. By means of this protocol, information can also be exchanged directly between protection units so as to set up simple masterless systems for bay and system interlocking. Access to the units via the Ethernet bus will also be possible with DIGSI.

IEC 60870-5-103 protocol

The IEC 60870-5-103 protocol is an international standard for the transmission of protective data and fault recordings. All messages from the unit and also control commands can be transferred by means of published, Siemens-specific extensions to the protocol.

Time synchronization

The battery-backed clock of the 7SS52 central unit can be synchronized via:

- DCF 77 signal via time synchronization receiver
- IRIG-B satellite signal via time synchronization receiver
- Minute-pulse via binary input
- System interface by the substation control, e.g. SICAM

Date and time with milliseconds resolution is assigned to every indication. The synchronization of the 7SS52 bay units is automatically effected with the central unit.

Tool	hnical	data
 reci	mcai	aata

General unit data

Input circuits			
Rated current I _N		1 or 5 A	
Rated frequency f _N		50/60 Hz	
Thermal overload	Continuous	$4 \mathrm{x} I_{\mathrm{N}}$	
capability in current	10 s	10 x I _N	
Dynamic overload	1.5	250 x Ly	
capability		230 x 1 _N	
Burden of current inputs	At $I_N = 1 A$ At $I_N = 5 A$	< 0.1 VA < 0.2 VA	
Auxiliary voltage			
Rated auxiliary voltage V _{aux}	Central unit	48/60, 110/125, 22	0/250 V DC
Rated auxiliary voltage V _{aux}	Bay unit	48, 60 to 250 V DC	
Permissible tolerance	V _{aux}	-20 to +20 %	
Maximum ripple		≤ 15 %	
Power consumption		Configuration dep	endent
Central unit	Quiescent Energized	30 to 50 W 35 to 65 W	
Bay unit	5	7\$\$523	788525
,	Quiescent	12 W	10 W
	Energized	16 W	14 W
Max. bridging time during loss of voltage supply		$>$ 50 ms at V _{aux} \geq	60 V
Binary inputs			
		7\$\$523	7SS525
Number of binary inputs	Bay unit Central unit	20 12	10
Voltage range		24 to 250 V DC	
Current consumption	1	Approx. 1.5 mA/in	iput
Alarm/event contact	5		
Central unit			
Number of relays	Marshallable Fixed	16 (each 1 NO con 1 (2 NC contacts)	tact)
Switching capacity	Make/Break	20 W/VA	
Switching voltage		250 V AC/DC	
Permissible curren	t	1 A	
Bay unit		7\$\$523	788525
Number of	Marshallable	1 (1 NO contact)	1 (1 NO contact)
relays	Fixed	1 (2 NC contacts)	I (I NC contacts)
Switching capacity	Make/Break	20 W/VA	
Switching voltage		250 V AC/DC	
Permissible curren	t	I A	
Command contacts	•		
Number of relays (bay	y unit)	/55523	/88525
		4 (each 2 NO contacts) 1 (1 NO contact)	3 (each 2 NO contacts) 2 (1 NO contact)
Switching capacity	Make Break	1000 W/VA 30 W/VA	
Switching voltage		250 V AC/DC	
Permissible current	Continuous 0.5 s	5 A 30 A	

LEDs			
Central unit			
Operation	Green	1	
Device failure	Red	1	
Marshallable	Red	32	
Bay unit			
Operation	Green	1	
Device failure	Red	1	
Indications	Green	5 (7\$\$523)/- (7\$\$525)	
Control displays	Red	11 (788523)/1 (788525)	
Central unit			
LC Display Membrane keyb	oard	4 lines x 20 characters 24 keys	
Bay unit (7SS523)			
LC Display	1	4 lines x 16 characters	
Membrane keyb	ooard	12 Keys	
Serial interfaces			
Central unit			
PC interface (front)		
Connection, electri	ical	SUB-D, 9-pin	
		(subminiature ISO 2110)	
Baud rate		1200 to 115000 baud	
System interface II (rear)	EC 60870-5-103		
Connection, optica	d	ST connectors	
electrical		SUB-D, 9-pin (subminiature ISO 2110)	
Baud rate		1200 to 115000 baud	
System interface II	EC 61850 (rear)		
Connection, electri module	ical with EN 100	RJ45 connector	
Baud rate		up to 100 Mbaud	
Service interface (I	rear)		
Connection, optica	ıl	ST connectors	
electrical		SUB-D, 9-pin (subminiature ISO 2110)	
Baud rate		(subminuture 188 2110)	
Bav unit		1200 to 115000 budd	
PC interface (front)		
Connection, electri	ical	SUB-D, 9-pin	
Connection, electrical		(subminiature ISO 2110)	
Baud rate		1200 to 19200 baud	
Central/bay unit			
Interface for high-	speed data comm	unication	
Connection		ST connectors	
Fiber-optic cable		Glass fiber 62.5/125 µm 820 nm	
Permissible cable a	ttenuation	Max. 8 dB	
Transmission dista	nce	Max. 1.5 km	
Fiber-optic cable Optical wavelength Permissible cable a Transmission dista	ttenuation nce	Glass fiber 62.5/125 µm 820 nm Max. 8 dB Max. 1.5 km	

Unit design (degree of protection according to EN 60529)

Central unit		
Cubicle	IP 54	
Housing for wall mounting	IP 55	
SIPAC subrack	IP 20	
Bay unit	7\$\$523	788525
Housing	IP 51	IP 20
Terminals	IP 21	
Weight at max. configuration		
Central unit		
SIPAC subrack	14.3 kg	
Surface-mounting housing	43.0 kg	
Bay unit	7\$\$523	788525
Flush mounting	8.1 kg	5.5 kg
Surface mounting	11.8 kg	

Electrical tests	
Specification	
Standards	IEC 60255-5, DIN 57435 part 303
High-voltage test (routine test), except DC voltage supply input	2 kV (r.m.s.), 50 Hz
High-voltage test (routine test), only DC voltage supply input	2.8 kV DC
Impulse voltage test (type test), all circuits, class III	5 kV (peak), 1.2/50 μs, 0.5 J, 3 positive and 3 negative impulses intervals of 5 s
EMC tests for interference immunity	r; type test
Standards	IEC 60255-6, IEC 60255-22 (international product standard), EN 50082-2 (European generic standard for industrial environ- ment), VDE 0435 part 303 (German product standard)
High-frequency test with 1 MHz interference IEC 60255-2-1, class III and VDE 0435 part 303, class III	2.5 kV (peak), 1 MHz, $\tau = 15 \mu s$, 400 surges/s, duration 2 s
Electrostatic discharge IEC 60255-22-2, class IV and IEC 61000-4-2, class IV	8 kV contact discharge, 15 kV air discharge, both polaritie 150 pF, R_l = 330 Ω
Irradiation with radio-frequency field, non-modulated IEC 60255-22-3, class III	10 V/m, 27 to 500 MHz
Irradiation with radio-frequency field, amplitude-modulated IEC 61000-4-3, class III	10 V/m, 80 to 1000 MHz, AM 80 %, 1 kHz

Irradiation with radio-frequency field, pulse-modulated ENV 50204, class III

Fast transients interference/bursts IEC 60255-22-4, class IV; IEC 61000-4-4, class IV; IEC 60801-4

Line-conducted disturbances induced by radio-frequency fields, amplitude-modulated IEC 61000-4-6, class III

Power frequency magnetic field IEC 61000-4-8, class IV; IEC 60255-6

1) I_{NO} = highest c.t. ratio.

, 0.5 J, ive impulses at 55-22 t standard), n generic environ-

10 V/m, 900 MHz, repetition rate 200 Hz, duty cycle 50 %

4 kV, 5/50 ns, 5 kHz, burst length = 15 ms, repetition rate 300 ms, both polarities, $R_{\rm I} = 50 \ \Omega$, duration 1 min 10 V, 150 kHz to 80 MHz, AM 80 %, 1 kHz

30 A/m continuous, 300 A/m for 3 s, 50 Hz 0.5 mT; 50 Hz

EMC tests for interference emission;	type test
Standard	EN 50081-2 (European generic standard for industrial environment)
Conducted interference voltage, auxiliary voltage CISPR 11, EN 55011 and VDE 0875 part 11	150 kHz to 30 MHz, limit class B
Radio interference field strength CISPR 11, EN 55011 and VDE 0875 part 11	30 to 1000 MHz, limit class B
Mechanical stress tests	
Specification	
Standards	IEC 60255-21-1, IEC 6068-2
Permissible mechanical stress	
During service During transport	10 to 60 Hz, 0.035 mm amplitude 60 to 500 Hz, 0.5 g acceleration 5 to 8 Hz, 7.5 mm amplitude 8 to 500 Hz, 2 g acceleration
Climatic stress tests	
Temperatures	
Standard	IEC 60255-6
Permissible ambient temperature	
– In service	–10 °C to +55 °C (bay unit)
F	-5 °C to $+55$ °C (central unit)
 For storage During transport 	$-25 ^{\circ}\text{C}$ to $+70 ^{\circ}\text{C}$
– During start-up	-10 °C to +55 °C (bay unit) 0 °C to +55 °C (central unit)
Humidity	
Standards	IEC 60068-2-3
It is recommended to arrange the	Annual average 75 % relative
units in such a way that they are not	humidity; on 56 days a year up to
nounced temperature changes that	condensation not permissible!
could cause condensation.	condensation not permissioner
Busbar configuration	
Quadruple or triple busbar with	
transfer busbar;	49
Number of bus sections	48
Number of bus couplers	16
Number of sectionalizers	24
Number of coupler bus sections	12
Busbar protection	
Setting ranges	
Overcurrent <i>I</i> / <i>I</i> _{NO} ¹⁾	0.2 to 4 (in steps of 0.01)
Stabilizing factor k	0.1 to 0.8 (in steps of 0.01)
protection	
Stabilizing factor k for check zone	0 to 0.8 (in steps of 0.01)
Tripping time	
Typical trip time	15 ms
Differential current monitoring	
Setting ranges	0.05 to 0.8 (in stone of 0.01)
Time delay	1 to 10 s (in steps of 1 s)

Breaker failure protection	
Tripping	
Setting ranges	
Overcurrent I/I_N Stabilizing factor k	0.05 to 2 (in steps of 0.01)
Time delay for	0.05 to 10 s (in steps of 0.01 s)
unbalancing / <i>I</i> > query	
Time delay for TRIP	0.00 to 10 s (in steps of 0.01 s)
repeat	
Modes of operation	
I > query	
TRIP repeat (1/3-phase) with $I >$	query
Unbalancing (1-stage BF)	(2 phase 2 stage PE)
TRIP by external BF protection (t	ripping via disconnector replica of
busbar protection)	11 0 1
Plus for each mode (except for Th	RIP by external BF): low-current
mode Plus for modes with TRIP repeat:	pulse mode
Breaker failure protection for bushers	hort-circuit
Setting value	nort-encur
Overcurrent I/I _N	0.05 to 2 (in steps of 0.01)
Time delay	0.05 to 10.00 s (in steps of 0.01 s)
General data of the protection system	n
Min. time of TRIP commands	
Setting range	0.02 to 1 s (in steps of 0.01 s)
command reset <i>I</i> / <i>I</i> _N	0.05 to 2 (in steps of 0.10)
Overcurrent release of TRIP command	ds
Setting range	0 to 25 (in steps of 0.01)
Disconnector transition time	
Setting range	1 to 180 s (in steps of 0.01 s)
Overcurrent protection in the bay un	it
Characteristics	Definite-time or inverse-time
	overcurrent protection
Setting ranges	$0.05 \pm 0.25 \pm 0.0$ (in stone of 0.01)
High-set stage; $I >>$ (phase) I/I_N High-set stage: $I_E >>$ (earth) I/I_N	0.05 to 25.00 (in steps of 0.01)
Trip time delays; $T_{\rm I} >>, T_{\rm IE} >>$	0.00 to 60.00 s or ∞
Definite-time overcurrent protection	
Overcurrent stage; $I > (phase) I/I_N$	0.05 to 25.00 (in steps of 0.01)
Overcurrent stage; $I_E > (earth) I/I_N$ Trip time delays: $T_E > T_T > T_T$	0.05 to 25.00 (in steps of 0.01)
Inverse time overcurrent protection	0.00 10 00.00 \$ 01 ~
Inverse time O/C stage: $I_{\rm D}$ (phase) $I/I_{\rm N}$	0.10 to 4.00 (in steps of 0.01)
Inverse time O/C stage; I_E (earth) I/I_N	0.10 to 4.00 (in steps of 0.01)
Trip time delays; $T_{\rm Ip}$, $T_{\rm IE}$	0.00 to 10.00 s or ∞
Characteristics	Inverse (IEC 60255-3 type A) Very inverse (IEC 60255-3 type B)
	Extremely inverse (IEC 60255-3 type D)

Additional functions	
Self-diagnosis	
Current monitoring per feeder Auxiliary voltage monitoring Cyclic test Check of the data transmission be- tween central unit and bay units Memory tests	
Operational measured values: Centra	ıl unit
Feeder currents Range Tolerance Differential and restraint (stabilizing) currents of all bus sections (separate for ZPS-BSZ1 and ZPS-BSZ2) Range	$\begin{array}{l} I_{\rm L1}; I_{\rm L2}; I_{\rm L3} \mbox{ in A primary and in \% } I_{\rm N} \\ 0 \mbox{ to } 1000 \ \% \ I_{\rm N} \\ typically 2 \ \% \mbox{ of measured value} \\ I_{\rm dL1}; I_{\rm dL2}; I_{\rm dL3} \\ I_{\rm sL1}; I_{\rm sL2}; I_{\rm sL3} \mbox{ in \% } I_{\rm N} \\ 0 \ \mbox{ to } 1000 \ \% \ I_{\rm N} \end{array}$
Operational measured values: Bay ur	nit
Feeder currents Range Tolerance	I_{L1} ; I_{L2} ; I_{L3} ; I_E in A primary and in % I_N 0 to 6 000 % I_N typically 2 % of measured value
Differential and restraint (stabilizing) currents Range Frequency Range Tolerance	$\begin{array}{l} I_{\rm dL1}; \ I_{\rm dL2}; \ I_{\rm dL3} \\ I_{\rm sL1}; \ I_{\rm sL2}; \ I_{\rm sL3} \\ 0 \ {\rm to} \ 6 \ 000 \ \% \ I_{\rm N} \\ f \ {\rm in} \ {\rm Hz} \ (I > 0.1 \ I_{\rm N}) \\ f_{\rm N} \pm 5 \ {\rm Hz} \\ 0.1 \ {\rm Hz} \end{array}$
Event recording: Central unit	
Storage of the last 200 operational events and 80 fault events	
Event recording: Bay unit	
Storage of the last 50 operational events and 100 fault events	
Fault recording: Central unit	
Resolution Storage time (from busbar TRIP or external initiation by binary input)	1 ms at 50 Hz; 0.83 ms at 60 Hz - 500 to + 500 ms at 50 Hz - 416 to + 416 ms at 60 Hz (up to 8 fault records)
Fault recording: Bay unit	
Resolution Storage time (from busbar TRIP or external initiation by binary input)	1 ms at 50 Hz; 0.83 ms at 60 Hz – 500 to + 500 ms at 50 Hz – 416 to + 416 ms at 60 Hz (up to 8 fault records)

CE conformity

This product is in conformity with the Directives of the European Communities on the harmonisation of the laws the Member States relating to electromagnetic compatibility (EMC Council Directive 89/336/EEC) and electrical equipment designed for use within certain voltage limits (Council Directive 73/23/EEC).

This unit conforms to the international standard IEC 60255 and the German standard DIN 57435/Part 303 (corresponding to VDE 0435 part 303). The unit has been developed and manufactured for application in an industrial environment according to the EMC standards.

This conformity is the result of a test that was performed by Siemens AG in accordance with Article 10 of the Council Directive complying with the generic standards EN 50081-2 and EN 50082-2 for the EMC Directive and standard EN 60255-6 for the "low-voltage Directive".

Selection and ordering data

Description	Order No.	Order
7SS522 distributed busbar/breaker failure protection	7SS5200-00000-00	
Central unit		∖ ▲▲▲
Central unit 50/60 Hz	2	
Rated auxiliany voltage		
48, 60 V DC	3	
110, 125 V DC	4	
220, 250 V DC	5	
Unit design In subrack FS902C	Δ	
Regional presettings/regional functions and languages		
Region DE, language German (language can be selected)		
Region World, language English (UK) (language can be selected)		
Region US, language English (US) (language can be selected)		
Region FR, language French (language can be selected)		
Region World, language Spanish (language can be selected)		
Region World, language Italian (language can be selected)		
Region world, language Russian (language can be selected)	<u> </u>	
System interface		
Without	0	
IEC 60870-5-103 protocol, optical 820 nm, ST connector	3	
IEC 61850, 100 Mbit Ethernet, electrical, double, RJ45 connector	9	LOR
Service interface (on rear of relay)		
DIGSI 4/modem, electrical RS232	1	
DIGSI 4/modem, electrical RS485	2	
DIGSI 4/modem, optical 820 nm, ST connector	3	
Additional functions	1	
without	1	
	2	
Equipped for		
8 bays	A	
16 Days	В	
24 bays	<u> </u>	
40 bays	D	
40 bays 48 bays	E	
	1	
7SS523 distributed busbar/breaker failure protection	7SS5200-00A	01- D AA1
Bay unit, frequency, housing, binary inputs and outputs		A
Bay unit, 50/60 Hz, housing 1/2 x 19", 20 BI, 6 BO, 2 live status con	ntacts 3	
Rated current		
1 A	1	
5 A	5	
Rated auxiliary voltage		
48 V DC	2	
60 to 250 V DC	5	
Unit design 7XP2040-2 for flush mounting or subicle mounting	C	
7XP2040-1 for surface mounting		
7Ar 2040-1 for surface mounting 7XP2040-2 for flush mounting without class cover	D F	
The 2010 2 for mush mounting without glass cover	L	
Additional functions		
Without additional functions		0
With overcurrent-time protection		1

Selection and ordering data	Description	Order No.
	7SS525 distributed busbar/breaker failure protection Bay unit, frequency 50/60 Hz; Housing 1/3 x 19"; 10 Bl, 6 BO, 1 live status contact	7SS525□-□ □ A01- □ AA1
	Rated current at 50/60 Hz	
	5 A	5
	Rated auxiliary voltage at converter 48 to 250 V DC	5
	<i>Unit design</i> 7XP2040-2 for panel flush mounting or cubicle mounting without glass cover	F
	Additional functions Without additional functions	0
	With overcurrent-time protection	1

Accessories

Description	Order No.
DIGSI 4	
Software for configuration and operation of Siemens protection relays running under MS Windows (version Windows 2000/XP Professional Edition) device templates, Comtrade Viewer, electronic manual included as well as "Getting started" manual on paper, connecting cables (copper)	
Basis	
Full version with license for 10 computers, on CD-ROM (authorization by serial number)	7XS5400-0AA00
Professional DIGSI 4 Basis and additionally SIGRA (fault record analysis), CFC Editor (logic editor), Display Editor (editor for default	
and control displays) and DIGSI 4 Remote (remote operation)	7XS5402-0AA00
Professional + IEC 61850 DIGSI 4 Basis and additionally SIGRA (fault record analysis), CDC Editor (logic editor), Display Editor (editor for default and control displays), and DIGSI 4 Remote (remote operation)	
+ IEC 61850 system configurator	7XS5403-0AA00
Software for configuration of stations with IEC 61850 communication under DIGSI, running under MS Windows 2000 or XP Professional Edition Optional package for DIGSI 4 Basis or Professional	7///5//00 04/000
License for 10 PCs. Authorization by serial number. On CD-ROM	7XS5460-0AA00
SIGRA 4 (generally contained in DIGSI Professional, but can be ordered additionally) Software for graphic visualization, analysis and evaluation of fault records. Can also be used for fault records of devices of other manufacturers (Comtrade format). Running under MS Windows 2000/XP Professional Edition. Incl. templates, electronic manual with license for 10 PCs. Authorization by serial number. On CD-ROM (contained in DIGSI 4, but can be ordered additionally)	7XS5410-0AA00
Connection cable Cable between PC/notebook (9-pin connector) and protection relay (9-pin connector) (contained in DIGSI 4, but can be ordered additionally)	7XV5100-4
Manual 7SS52 V4.7/V3.3	C53000-G1176-C182-5
Litghon	CJJ000-01170-C102-J

Connection diagram

9

Connection diagram

2

Connection diagram

Fig. 9/33 Connection diagram 7SS525

Relays for Various Protection Applications

SIPROTEC 4 7VK61 Breaker Management Relay	10 /3
SIPROTEC 7SV600 Numerical Circuit-Breaker Failure Protection Relay	10 /21
SIPROTEC 7SN60 Transient Earth-Fault Protection Relay	10 /31

Page

SIPROTEC 4 7VK61 Breaker Management Relay

Description

The SIPROTEC 4 breaker management relay 7VK61 is a highly flexible autoreclosure, synchro-check and circuitbreaker failure protection unit.

This unit is used for the single and threepole auto-reclosure of a circuit-breaker, after this circuit-breaker has tripped due to a fault. The synchro-check function ensures that the two circuits being reconnected by closing the circuit-breaker are within a defined safe operating state before the CLOSE command is issued. The 7VK61 is also applicable as circuitbreaker failure protection. A breaker failure occurs when the circuit-breaker fails to correctly open and clear the fault after single or three-pole trip commands have been issued by the protection. It is then necessary to trip the relevant busbar zone (section) to ensure fault clearance. Together with the above-mentioned protection functions, the following additional functions of the 7VK61 can be applied: end-fault protection, pole-discrepancy protection, overvoltage protection and undervoltage protection. As a member of the numerical SIPROTEC 4 relay family, it also provides control and monitoring functions and therefore supports the user with regard to a cost-effective power system management.

25 50BF 79 59 27 86 74TC

Fig. 10/1 SIPROTEC 4 7VK61 breaker management relay

Function overview

Protection functions

- Single and/or three-pole auto-reclosure
- Synchro-check with live/dead line/bus measurement
- Closing under asynchronous conditions (consideration of CB operating time)
- Circuit-breaker failure protection with two stages (single and three-pole with/without current)
- End-fault protection
- Pole-discrepancy protection
- Overvoltage/undervoltage protection

Control function

• Commands f. ctrl. of CB and isolators

Monitoring functions

- Operational measured values
- Self-supervision of the relay
- Event buffer and fault protocols
- Oscillographic fault recording
- Monitoring of CB auxiliary contacts
- Switching statistics

Features

- All functions can be used separately
- Initiation/start by phase-segregated or 3-pole trip commands
- Auto-reclosure for max. 8 reclose cycles
- Evolving/sequential trip recognition
 - Auto-reclosure with ADT, DLC, RDT
 - Synchro-check with ΔV , $\Delta \varphi$, Δf measurement
 - Breaker failure protection with highly secure 2-out-of-4 current check detectors
 - Breaker failure protection with short reset time and negligible overshoot time

Communication interfaces

- Front interface for connecting a PC
- System interface for connecting to a control system via various protocols
 – IEC 61850 Ethernet

 - IEC 60870-5-103 protocol
 - PROFIBUS-FMS/-DP
- DNP 3.0
- Rear-side service/modem interface
- Time synchronization via
- IRIG-B or DCF77 or system interface

Application

The 7VK61 provides highly flexible breaker management. It applies to single-breaker, ring-bus, and 1½ breaker installations. The auto-reclosure, synchronism-check, breaker failure protection and voltage protection functions can be used separately or combined. Therefore the current and voltage transformer connection can be selected according to the required application.

The auto-reclosure function closes the circuit-breaker after this circuit-breaker has tripped due to a fault. The check-synchronism function ensures that the two circuits being reconnected by closing the circuitbreaker are within a defined safe operating state before the CLOSE command is issued.

The numerical 7VK61 relay provides rapid backup fault clearance in case the circuitbreaker nearest to the fault fails to respond to a TRIP command. It is suitable for power systems of all voltage levels with single and/or three-pole circuit-breaker operation. The initiation signal can be issued from any protection or supervision equipment. Information from the circuitbreaker auxiliary contact is only required for the breaker failure protection during faults which produce little or no fault current flow, for instance due to a trip from the power transformer Buchholz protection.

Cost-effective power system management

The SIPROTEC 4 units are numerical relays which also provide control and monitoring functions and therefore support the user with regard to a cost-effective power system management. The security and reliability of the power supply is increased as a result of minimizing the use of hardware.

The local operation has been designed according to ergonomic criteria. Large, easy-to-read backlit displays are provided.

The SIPROTEC 4 units have a uniform design and a degree of functionality which represents a benchmark-level of performance in protection and control. If the requirements for protection, control and interlocking change, it is possible in the majority of cases to implement such changes by means of parameterization using DIGSI 4 without having to change the hardware.

The use of powerful microcontrollers and the application of digital measured-value conditioning and processing largely suppresses the influence of higher-frequency transients, harmonics and DC components.

ANSI	
(50BF)	Breaker-failure protection
59/27	Overvoltage/undervoltage protection
25	Synchro-check
(79)	Auto-reclosure
(74TC)	Trip circuit supervision
86)	Lockout (CLOSE command interlocking)

Fig. 10/2 Application and function diagram
Construction

Connection technique and housing with many advantages

1/3 and 1/2-rack sizes are available as housing widths of the SIPROTEC 4 7VK61 relays, referred to a 19" modular frame system. This means that previous models can always be replaced. The height is a uniform 255 mm for flush-mounting housings and 266 mm for surface-mounting housings for all housing widths. All cables can be connected with or without ring lugs.

In the case of surface mounting on a panel, the connection terminals are located above and below the housing in the form of screw-type terminals. The communication interfaces are located in a sloped case at the top and bottom of the housing.

Fig. 10/3 Flush-mounting housing with screw-type terminals

Fig. 10/4 Rear view of flush-mounting housing with covered connection terminals and wirings

Fig. 10/5 Surface-mounting housing with screw-type terminals, example 7SA63

Fig. 10/6 Communication interfaces in a sloped case in a surfacemounting housing

10

Protection functions

Auto-reclosure (ANSI 79)

The 7VK61 relay is equipped with an <u>a</u>uto-<u>r</u>eclose function (AR). Usually the auto-reclosure interacts with the feeder protection via binary inputs and outputs.

The function includes several operating modes:

- 3-pole auto-reclosure for all types of faults; different dead times are available depending on the type of fault
- 1-pole auto-reclosure for 1-phase faults, no reclosing for multi-phase faults
- 1-pole auto-reclosure for 1-phase and 3-pole auto-reclosing for multi-phase faults
- Multiple-shot auto-reclosure
- Interaction with the internal or an external synchro-check
- Monitoring of the circuit-breaker auxiliary contacts.

In addition to the above-mentioned operating modes, several other operating principles can be employed by means of the integrated programmable logic (CFC).

The 7VK61 allows the line-side voltages to be evaluated. A number of voltagedependent supplementary functions are thus available:

• ADT

10

The <u>a</u>daptive <u>d</u>ead <u>time</u> is employed only if auto-reclosure at the remote station was successful (reduction of stress on equipment).

• DLC

By means of <u>d</u>ead-<u>l</u>ine <u>c</u>heck, reclosure is effected only when the line is deenergized (prevention of asynchronous breaker closure in case that the synchronism check can not be used).

• RDT

<u>R</u>educed <u>d</u>ead time is employed in conjunction with auto-reclosure where no teleprotection method is employed: when faults within the zone extension of a distance feeder protection but external to the protected line, are switched off for rapid auto-reclosure (RAR), the RDT function decides on the basis of measurement of the return voltage from the remote station which has not tripped, that the fault has been cleared by the protection on the faulted downstream feeder and that reclosure with reduced dead time may take place.

Fig. 10/7 Auto-reclosure and synchro-check with voltage measurement across a power transformer

Synchronism check (ANSI 25)

Where two network sections are switched in by control command or following a 3-pole auto-reclosure, it must be ensured that both network sections are mutually synchronous. For this purpose, a synchronism-check function is provided. After verification of the network synchronism, the function releases the CLOSE command. Consideration of the duration of the CB operating time before issuing the CLOSE command (especially important under asynchronous conditions and when several circuit-breakers with different operating times are to be operated by one single relay).

In addition, reclosing can be enabled for different criteria, e.g., when the busbar or line are not carrying a voltage (dead line or dead bus).

Breaker failure protection (ANSI 50BF)

The 7VK61 relay incorporates a two-stage circuit-breaker failure protection to detect failures of tripping command execution, for example due to a defective circuitbreaker. The current detection logic is phase-segregated and can therefore also be used in single-pole tripping schemes. If the fault current is not interrupted after a settable time delay has expired, a retrip command or the busbar trip command will be generated. The breaker failure protection will usually be initiated by external feeder protection relays via binary input signals. Trip signals from the internal autoreclosure logic or from the voltage protection can start the breaker failure protection as well.

Overvoltage protection, undervoltage protection (ANSI 59, 27)

The 7VK61 contains a number of overvoltage measuring elements. Each measuring element is of two-stage design. The following measuring elements are available:

- Phase-to-earth overvoltage
- Phase-to-phase overvoltage
- Zero-sequence overvoltage The zero-sequence voltage can be connected to the 4th voltage input (not in conjunction with syncho-check) or be derived from the phase voltages.
- Negative-sequence overvoltage

Tripping by the overvoltage measuring elements can be effected either at the local circuit-breaker or at the remote station by means of a transmitted signal.

The 7VK61 is fitted, in addition, with three two-stage undervoltage measuring elements:

- Phase-to-earth undervoltage
- Phase-to-phase undervoltage
- Positive-sequence undervoltage

The undervoltage measuring elements can be blocked by means of a minimum current criterion and by means of binary inputs.

Protection functions

End-fault protection

When the circuit-breaker is open, the area located between the current transformer and the circuit-breaker can be optimally protected by means of the end-fault protection. In the event of a fault, an independently settable time delay is started after a valid initiation has been received and the circuit-breaker auxiliary contacts indicate an open circuit-breaker position, with current still flowing (see Fig. 10/8). Depending on the mounting position of the current transformer, instantaneous tripping of the busbar section or intertripping of the circuit-breaker at the opposite end occurs.

Pole-discrepancy protection

This function ensures that any one or two poles of a circuit-breaker do not remain open for longer than an independently settable time (i.e. unsymmetrical conditions). This time stage is initiated when current (above the set value) is flowing in any 1 or 2 phases, but not in all 3 phases. Additionally, the circuit-breaker auxiliary contacts (if connected) are interrogated and must show the same condition as the current measurement. Should this time delay expire, then a three-pole trip command is issued. This function is normally used when single-pole auto-reclosing is applied.

Trip circuit supervision (ANSI 74TC)

One or two binary inputs for each circuitbreaker pole can be used for monitoring the circuit-breaker trip coils including the connecting cables. An alarm signal is issued whenever the circuit is interrupted. The trip circuit supervision function requires one or two independent potential-free binary inputs per trip circuit. To make existing (non potential-free) binary inputs potential-free, external optocoupler modules can be applied.

Lockout (ANSI 86)

Under certain operating conditions, it is advisable to block CLOSE commands after a final TRIP command of the relay has been issued. Only a manual 'Reset' command unblocks the CLOSE command. The 7VK61 is equipped with such an interlocking logic.

Monitoring functions

The 7VK61 relay provides comprehensive monitoring functions covering both hardware and software. Furthermore, the measured values are continuously checked for plausibility. Therefore the current and voltage transformers are also included in this monitoring system.

If all voltages are connected, the relay will detect secondary voltage interruptions by means of the integrated fuse failure monitor. Immediate alarm and blocking of the synchronism check and dead line check is provided for all types of secondary voltage failures. Additional measurement supervision functions are

- Symmetry of voltages and currents (in case of appropriate transformer connection)
- Broken-conductor supervision (if current transformers are connected)
- Summation of currents and voltages (in case of appropriate transformer connection)
- Phase-sequence supervision (if three voltage transformers are connected)

Fig. 10/8 End-fault between circuit-breaker and current transformer

Communication

With respect to communication, particular emphasis is placed on the customer requirements in energy automation:

- Every data item is time-stamped at the source, i.e. where it originates.
- Already during the process of communication, information is assigned to the cause thereof (e.g. assignment of the indication "circuit-breaker TRIP" to the corresponding command).
- The communication system automatically handles the transfer of large data blocks (e.g. fault recordings or parameter data files). The user has access to these features without any additional programming effort.
- For the safe execution of a control command the corresponding data telegram is initially acknowledged by the unit which will execute the command. After the release and execution of the command a feedback signal is generated. At every stage of the control command execution particular conditions are checked. If these are not satisfied, command execution may be terminated in a controlled manner.

The units offer a high degree of flexibility by supporting different standards for connection to industrial and power automation systems. By means of the communication modules, on which the protocols run, exchange and retrofit is possible. Therefore, the units will also in future allow for optimal adaptation to changing communication infrastructure such as the application of Ethernet networks (which will also be used increasingly in the power supply sector in the years to come).

Local PC interface

The serial RS232 PC interface accessible from the front of the unit permits quick access to all parameters and fault event data. The use of the DIGSI 4 operating program is particularly advantageous during commissioning.

Service/modem interface

7VK61 units are always fitted with a rear-side hardwired service interface, optionally as RS232 or RS485. In addition to the front-side operator interface, a PC can be connected here either directly or via a modem.

Time synchronization interface

The time synchronization interface is a standard feature in all units. The supported formats are IRIG-B and DCF77.

Reliable bus architecture

• RS485 bus

With this data transmission via copper conductors, electromagnetic fault influences are largely eliminated by the use of twisted-pair conductors. Upon failure of a unit, the remaining system continues to operate without any problem.

• Fiber-optic double ring circuit The fiber-optic double ring circuit is immune to electromagnetic interference. Upon failure of a section between two units, the communication system continues to operate without disturbance. It is usually impossible to communicate with a unit that has failed. Should a unit fail, there is no effect on the communication with the rest of the system.

Retrofitting: Modules for every type of communication

Communication modules for retrofitting are available for the entire SIPROTEC 4 unit range. These ensure that, where different communication protocols (IEC 61850, IEC 60870-5-103, PROFIBUS, DNP, etc.) are required, such demands can be met. For fiber-optic communication, no external converter is required for SIPROTEC 4.

IEC 61850 protocol

The Ethernet-based IEC 61850 protocol is the worldwide standard for protection and control systems used by power supply corporations. Siemens was the first manufacturer to support this Standard. By means of this protocol, information can also be exchanged directly between bay units so as to set up simple masterless systems for bay and system interlocking. Access to the units via the Ethernet bus is also be possible with DIGSI.

IEC 60870-5-103 protocol

IEC 60870-5-103 is an internationally standardized protocol for efficient communication with protection relays. IEC 60870-5-103 is supported by a number of protection device manufacturers and is used worldwide. Supplements for the control function are defined in the manufacturer-specific part of this standard.

Fig. 10/9

IEC 60870-5-103 star-type RS232 copper conductor connection or fiber-optic connection

Fig. 10/10 Bus structure for station bus with Ethernet and IEC 61850 with fiber-optic ring

Communication

PROFIBUS-DP

PROFIBUS-DP is an industrial communications standard and is supported by a number of PLC and protection device manufacturers.

DNP 3.0

DNP 3.0 (Distributed Network Protocol, Version 3) is an internationally recognized protection and bay unit communication protocol. SIPROTEC 4 units are Level 1 and Level 2 compatible.

System solutions for protection and station control

Together with the SICAM power automation system, SIPROTEC 4 can be used with PROFIBUS-FMS. Over the low-cost electrical RS485 bus, or interference-free via the optical double ring, the units exchange information with the control system. Units equipped with IEC 60870-5-103 interfaces can be connected to SICAM in parallel via the RS485 bus or connected in star by fiberoptic link. Through this interface, the system is open for the connection of units of other manufacturers (see Fig. 10/14).

Because of the standardized interfaces, SIPROTEC units can also be integrated into systems of other manufacturers or in SIMATIC. Electrical RS485 or optical interfaces are available. The optimum physical data transfer medium can be chosen thanks to opto-electrical converters. Thus, the RS485 bus allows low-cost wiring in the cubicles and an interference-free optical connection to the master can be established.

For IEC 61850, an interoperable system solution is offered with SICAM PAS. Via the 100 Mbits/s Ethernet bus, the units are linked with PAS electrically or optically to the station PC. The interface is standardized, thus also enabling direct connection of units of other manufacturers to the Ethernet bus.

With IEC 61850, however, the units can also be used in other manufacturers' systems. Units with an IEC 60870-5-103 interface are connected with PAS via the Ethernet station bus by means of serial/ Ethernet converters. DIGSI can also be used via the same station bus.

Fig. 10/11 820 nm fiber-optic communication module

Fig. 10/12 RS232/RS485 electrical communication module

10

Typical connection

Connection for current <u>and</u> voltage transformers

With the transformer connection as shown in Fig. 10/15, it is possible to use the complete scope of functions of 7VK61, i.e. breaker failure protection, synchronism check with 3-phase dead line check (with or without auto-reclosure), complete measured value monitoring, voltage protection, and the complete range of operational measured values.

Alternative: Connection for current transformers only

The connection for current transformers only provides breaker failure protection and current operational measured values.

Typical connection

Alternative: Connection for two voltage transformers

In case of a connection for two voltage transformers, synchro-check and two operational measured voltages, and additionally synchro-check measured values are applicable. Dead line check is performed for the connected line voltage only.

Note: Please connect the two voltages <u>always</u> to the terminals R15/R16 and R13/R14 with the appropriate polarity. The setting address 106 "Voltage transformer" must then be set to "single-phase". The terminals R17 and R18 must not be connected.

The connection of the voltage V_{L1-L2} as shown in Fig. 10/17 is just an example: any other of the shown combinations is possible for synchronization.

The two voltage transformer connection can also be combined with the current transformer connection according to Fig. 10/16.

General unit data		Output co
Analog inputs		"Unit read
Rated frequency	50 or 60 Hz (selectable)	(live statu
Rated current <i>I</i> nom	1 or 5 A (selectable)	Comman
Rated voltage V _{nom}	80 to 125 V (selectable)	Quantity
Power consumption With $I_{nom} = 1$ A With $I_{nom} = 5$ A Voltage inputs	Approx. 0.05 VA Approx. 0.30 VA ≤ 0.10 VA	7VK61 7VK61 <u>NO/NC c</u> Switching
Overload capacity of current circuit Thermal (r.m.s.) Dynamic (peak value)	500 A for 1 s 150 A for 10 s 20 A continuous 1250 A (half cycle)	Make Break, o Break, o (for res Break, o (for τ =
Thermal overload capacity of volt- age circuit	230 V continuous	Switching
Auxiliary voltage		Permissib
Rated voltages	24, 48 V DC 60, 125 V DC 110, 250 V DC and 115, 230 V AC (50/60 Hz)	Operating NO cor NO/NO Fast NO
Permissible tolerance	-20 % to +20 %	I FDs
Superimposed AC voltage (peak-to-peak) Power consumption Quiescent Energized	≤ 15 % Approx. 5 W Approx. 8 W to 14 W, depending on design	Quantity RUN (g ERROF LED (r functio 7VK610 7VK610
auxiliary voltage		Unit desig
For $V_{aux} = 48$ V and $V_{aux} \ge 110$ V For $V_{aux} = 24$ V and $V_{aux} = 60$ V	\geq 50 ms \geq 20 ms	Housing
Rinary inputs	_ 20 113	Dimensio
Quantity 7VK610 7VK611 Rated voltage range Pickup threshold	7 20 24 to 250 V, bipolar 19 or 88 V or 176 V DC, bipolar	Degree of EN 60529 Surface Flush-r
Functions are freely assignable		
Minimum pickup voltage Ranges are settable by means of jumpers for each binary input	19 or 88 V or 176 V DC, bipolar (3 operating ranges)	Weight Flush-r
Maximum permissible voltage	300 V DC	
Current consumption, energized	Approx. 1.8 mA	Surface
Input impulse suppression	220 nF coupling capacitance at 220 V with a recovery time >60 ms	

Output contacts		
"Unit ready" contae (live status contact)	ct	1 NC/NO contact ¹⁾
Command/indicati	on relay	
Quantity 7VK610 7VK611		5 NO contacts, 14 NO contacts, 4 NC/NO contacts ¹⁾
NO/NC contact		
Switching capacity Make Break, contacts Break, contacts (for resistive load Break, contacts (for $\tau = L/R \le 50$	l) 0 ms)	1000 W / VA 30 VA 40 W 25 VA
Switching voltage		250 V
Permissible total cu	rrent	30 A for 0.5 seconds 5 A continuous
Operating time, app NO contact NO/NC contact Fast NO contact	prox. (selectable)	8 ms 8 ms 5 ms
LEDs		
Quantity RUN (green) ERROR (red) LED (red), function can be a 7VK610 7VK611	assigned	1 1 7 14
Unit design		
Housing		7XP20
Dimensions		Refer to part 15 for dimension drawings
Degree of protectio EN 60529	n acc. to	
Surface-mountir Flush-mounting	ng housing housing Front Rear For the terminals	IP 51 IP 51 IP 50 IP 20 with terminal cover put on
Weight		
Flush-mounting	housing 1/3 x 19" 1/2 x 19"	5 kg 6 kg
Surface-mountir	ng housing 1/3 x 19" 1/2 x 19"	9.5 kg 11 kg

1) Can be set via jumpers.

10

100	hhi		00	
		cui		

Serial interfaces	
Operating interface front of unit for	NGSIA
Connection	Non-isolated, RS232, 9-pin subminiature connector (SUB-D)
Baud rate	4800 to 115200 baud setting as supplied: 38400 baud; parity 8E1
Time synchronization DCF77/ IRIG-B	signal (Format IRIG-B000)
Connection	9-pin subminiature connector (SUB-D) (terminal with surface-mounting housing)
Voltage levels	5 V, 12 V or 24 V (optional)
Service/modem interface for DIGSI 4	/ modem / service
Isolated RS232/RS485 Dielectric test Distance for RS232 Distance for RS485	9-pin subminiature connector (SUB-D) 500 V / 50 Hz Max. 15 m Max. 1000 m
System interface	
	IEC 61850 Ethernet IEC 60870-5-103 protocol PROFIBUS-FMS PROFIBUS-DP DNP 3.0
Isolated RS232/RS485 Baud rate Dielectric test Distance for RS232 Distance for RS485 PROFIBUS RS485 Dielectric test	9-pin subminiature connector (SUB-D) 4800 to 38400 baud 500 V / 50 Hz Max. 15 m Max. 1000 m 500 V / 50 Hz
Baud rate Distance	Max. 12 Mbaud 1000 m at 93.75 kbaud; 100 m at 12 Mbaud
PROFIBUS fiber-optic Only for flush-mounting housing For surface-mounting housing Baud rate Optical wavelength Permissible attenuation Distance	ST connector Optical interface with OLM ¹⁾ Max. 1.5 Mbaud $\lambda = 820 \text{ nm}$ Max. 8 dB for glass-fiber 62.5/125 μ m 500 kB/s 1.6 km 1500 kB/s 530 m

Electrical tests	
Specifications	
Standards	IEC 60255 (product standards) IEEE C37.90.0/.1/.2 VDE 0435 For further standards see "Individual tests"
Insulation tests	
Standards	IEC 60255-5 and 60870-2-1
Voltage test (100 % test)	
All circuits except for auxiliary supply, binary inputs, communication and time synchronization interfaces	2.5 kV (r.m.s.), 50 Hz
Auxiliary voltage and binary inputs (100 % test)	3.5 kV DC
RS485/RS232 rear side communication interfaces and time synchronization interface (100 % test)	500 V (r.m.s.), 50 Hz
Impulse voltage test (type test) All circuits except for communi- cation interfaces and time synchronization interface, class III	5 kV (peak); 1.2/50 μs; 0.5 J, 3 positive and 3 negative impulses in intervals of 5 s
EMC tests for noise immunity; type te	ests
Standards	IEC 60255-6; IEC 60255-22 (product standard) EN 61000-6-2 (generic standard), VDE 0435 Part 301, DIN VDE 0435-110
High-frequency test IEC 60255-22-1 class III and VDE 0435 Part 303, class III	2.5 kV (peak); 1 MHz; $\tau = 15 \mu s$; 400 surges per s; test duration 2 s; $R_i = 200 \Omega$
Electrostatic discharge IEC 60255-22-2 class IV and EN 61000-4-2, class IV	8 kV contact discharge; 15 kV air discharge; both polarities; 150 pF; $R_i = 330 \Omega$
Irradiation with HF field, IEC 60255-22-3 class III IEC 61000-4-3, class III	10 V/m; 80 to 1000 MHz; 80 % AM; 1 kHz 10 V/m; 1.4 to 2 GHz; 80 % AM; 1 kHz
Irradiation with HF field,	Class III, 10 V/m
IEC 60255-22-31, IEC 61000-4-3 Amplitude-modulated	80; 160; 450; 900 MHz; 80 % AM
Pulse-modulated	900 MHz, 50 % PM, repetition frequency 200 Hz
Fast transient disturbance/bursts IEC 60255-22-4 and IEC 61000-4-4, class IV	4 kV; 5/50 ns; 5 kHz; burst length = 15 ms; repetition rate 300 ms; both polari- ties; $R_i = 50 \Omega$; test duration 1 min

1) Conversion with external OLM

Fiber-optic interface please complete order number at 11th position with 4 (FMS RS485) or 9 and Order Code LOA (DP RS485) or 9 and Order Code LOG (DNP 3.0) and additionally a suitable external repeater.

EMC tests for noise immunity; type tests (cont'd)

High-energy surge voltages (SURGE),	Impulse: 1.2/50 μs
IEC 61000-4-5 installation class III Auxiliary supply	Common (longitudinal) mode: 2 kV; 12 Ω ; 9 μ F Differential (transversal) mode:1 kV;
	2 Ω; 18 μF
Measurement inputs, binary inputs,	Common (longitudinal) mode: 2 kV; 42 Ω; 0.5 μF
binary output relays	Differential (transversal) mode: 1 kV; 42 Ω; 0.5 μF
Line-conducted HF, amplitude- modulated, IEC 61000-4-6, class III	10 V; 150 kHz to 80 MHz; 80 % AM; 1 kHz
Magnetic field with power fre- quency IEC 61000-4-8, class IV; IEC 60255-6	30 A/m continuous; 300 A/m for 3 s; 50 Hz 0.5 mT; 50 Hz
Oscillatory surge withstand capabil- ity, IEEE C37.90.1	2.5 kV (peak); 1 MHz; τ = 50 µs; 400 surges per second, duration 2 s, R_i = 200 Ω
Fast transient surge withstand capability, IEEE C37.90.1	4 kV; 5/50 ns; 5 kHz burst length = 15 ms; repetition rate 300 ms; both polarities; $R_i = 50 \Omega$; duration 1 min
Radiated electromagnetic interfer- ence IEEE C37.90.2	35 V/m; 25 to 1000 MHz,
Damped oscillation IEC 60694, IEC 61000-4-12	2.5 kV (peak value); polarity alternating 100 kHz; 1 MHz; 10 and 50 MHz; $R_i = 200 \Omega$
EMC tests for interference emission; ty	/pe tests
Standard	EN 61000-6-3 (generic standard)
Conducted interference voltage on lines, only auxiliary voltage IEC-CISPR 22	150 kHz to 30 MHz Limit class B
Radio interference field strength IEC-CISPR 22	30 to 1000 MHz Limit class B
Harmonic currents on the network lead at 230 V AC, IEC 61000-3-2	Class A limits are observed

Voltage fluctuations and flicker on the network incoming feeder at 230 V AC, IEC 61000-3-3

Mechanical stress test

During operation

10

Vibration, shock stress and seismic vibration

Standards
Vibration
IEC 60255-21-1, class 2
IEC 60068-2-6

Shock IEC 60255-21-2, class 1 IEC 60068-2-27

IEC 60255-21 and IEC 60068-2 Sinusoidal 10 to 60 Hz: \pm 0.075 mm amplitude; 60 to 150 Hz: 1 g acceleration, frequency sweep 1 octave/min 20 cycles in 3 orthogonal axes Half-sinusoidal Acceleration 5 g, duration 11 ms, 3 shocks on each of the 3 axes in both directions

Limits are observed

Seismic vibration IEC 60255-21-3, class 1 IEC 60068-3-3

During transport

IEC 60255-21-1, class 2

IEC 60255-21-2, class 1

Standards

Vibration

Shock

IEC 60068-2-6

IEC 60068-2-27

Continuous shock IEC 60255-21-2, class 1

IEC 60068-2-29

8 to 35 Hz: 1 g acceleration (horizontal axis) 8 to 35 Hz: 0.5 g acceleration (vertical axis) Frequency sweep 1 octave/min 1 cycle in 3 orthogonal axes IEC 60255-21 and IEC 60068-2 Sinusoidal

Sinusoidal

(horizontal axis)

(vertical axis)

5 to 8 Hz: ± 7.5 mm amplitude; 8 to 150 Hz: 2 g acceleration, frequency sweep 1 octave/min 20 cycles in 3 orthogonal axes

1 to 8 Hz: \pm 3.5 mm amplitude

1 to 8 Hz: \pm 1.5 mm amplitude

Semi-sinusoidal Acceleration 15 g, duration 11 ms, 3 shocks on each of the 3 axes in both directions

Semi-sinusoidal Acceleration 10 g, duration 16 ms, 1000 shocks on each of the 3 axes in both directions

Climatic stress tests

Standard Temperatures

Type-tested acc. to IEC 60068-2-1 and -2, test Bd, for 16 h Temporarily permissible operating temperature, tested for 96 h (Legibility of display may be impaired above +55 °C / +131 °F) Recommended permanent operating temperature acc. to IEC 60255-6

- Limiting temperature during permanent storage
- Limiting temperature during transport

Humidity

Permissible humidity stress: It is recommended to arrange the units in such a way that they are not exposed to direct sunlight or pronounced temperature changes that could cause condensation.

-25 °C to +85 °C / -13 °F to +185 °F

IEC 60255-6

-20 °C to +70 °C / -4 °F to +158 °F

-5 °C to +55 °C / +23 °F to +131 °F

-25 °C to +55 °C / -13 °F to 131 °F

-25 °C to +70 °C / -13 °F to +158 °F

Annual average on \leq 75 % relative humidity; on 56 days per year up to 93 % relative humidity; condensation is not permitted.

Functions

i uncuons	
Auto-reclosure (ANSI 79)	
Number of auto-reclosures	Up to 8
Operating mode	Only 1-pole; or 3-pole
Operating modes with line volt- age check	DLC – dead-lin ADT – adaptive RDT – reduced
Dead times T _{1-ph} , T _{3-ph} , T _{Seq}	0 to 1800 s (step vated
Action times	0.01 to 300 s (ste vated
Reclaim times	0.5 to 300 s (ste
Start-signal monitoring time	0.01 to 300 s (st
Additional functions	Synchro-check 3-phase intertr InterCLOSE co mote end Check of CB rea Blocking with n
Voltage limit values for DLC, ADT,	
Healthy line voltage _{PH-E} Dead line voltage _{PH-E}	30 to 90 V (step 2 to 70 V (steps
Tolerances Time stages Voltage limit values	1 % of setting v ≤ 3 % of setting
Synchro-check (ANSI 25)	
Initiate options	Auto-reclosure; Manual CLOSE Control comma
Operating modes With auto-reclosure	Synchro-check Line dead/busb Line live/busbar Line and busbar Bypassing
For manual closure and control commands	As for auto-recl
Permissible voltage difference	1 to 60 V (step
Permissible frequency difference	0.03 to 2 Hz (st
Permissible angle difference	2 to 80 ° (step 1
Max. duration of synchronization	0.01 to 600 s (stervated
Release delay with synchronous networks	0 to 30 s (steps
Minimum measuring time	Approx. 80 ms
Tolerances Time stages Voltage limit values	1 % of setting v ≤ 2 % of setting

	Breaker fail
	Number of
	Pickup of cu
pole; only 3-pole, 1- or	
	Time delays
dead-line check	Dropout (or
adaptive dead time	End-fault pr
00 s (step 0.01 s) or deacti-	
300 s (step 0.01 s) or deacti-	Pole discrep
out of the point of the dealer	Monitori
00 s (step 0.01 s)	Tolerances
300 s (steps 0.01 s)	Current l
o-check request	Time stag
intertripping	Voltage pro
OSE command to the re-	Operating n
of CB ready state	o //
g with manual CLOSE	Overvoltag
	Pickup valu
\mathbf{X} (stars 1 \mathbf{X})	(pliase-earth
V (steps 1 V)	Pickup valu
	Pickup valu
setting value or 10 ms	$(3V_0 \text{ can be})$
f setting value or 1 V	formers or c
	(zero-seque
eclosure;	Pickup valu
l CLOSE control	(positive-sec
r commands	Pickup valu
o-check	
ad/busbar live	Reset ratio (
e/busbar dead	Undervolta
d busbar dead	Pickup valu
uto-reclosure	(phase-earth
	(phase-phas
V (step 0.1 V)	Pickup valu
2 Hz (step 0.01 Hz)	(positive-see
° (step 1°)	Blocking of
600 s (steps 0.01 s) or deacti-	stages
	Reset ratio (
s (steps 0.01 s)	Time delays
	Time delay

g value or 10 ms ng value or 1 V

lure protection (ANSI 50BF)

Number of stages	2	
Pickup of current element	0.05 to 20 A $_{\rm (1A)}$ / 0.25 to 100 A $_{\rm (5A)}$ (step 0.01 A)	
Time delays $T1_{1 phase}$, $T1_{3 phase}$, $T2$	0 to 30 s (steps 0.01 s) or deactivated	
Dropout (overshoot) time, internal	\leq 15 ms, typical; 25 ms, max.	
End-fault protection	For fault between open CB and CT, with intertrip to the remote line end	
Pole discrepancy supervision	Initiation if not all CB poles are closed or open	
Monitoring time	0 to 30 s (steps 0.01 s) or deactivated	
Tolerances Current limit value Time stages	\leq 5 % of setting value or 1 % I_{nom} 1 % of setting value or 10 ms	
Voltage protection (ANSI 59, 27)		
Operating modes	Local tripping and/or carrier trip for remote end	
Overvoltage protection		
Pickup values <i>V</i> _{PH-E} >>, <i>V</i> _{PH-E} > (phase-earth overvoltage)	1 to 170 V (step 0.1 V)	
Pickup values V _{PH-PH} >>, V _{PH-PH} > (phase-phase overvoltage)	2 to 220 V (step 0.1 V)	
Pickup values $3V_0 >>, 3V_0 >$ ($3V_0$ can be measured via V4 transformers or calculated by the relay) (zero-sequence overvoltage)	1 to 220 V (step 0.1 V)	
Pickup values V ₁ >>, V ₁ > (positive-sequence overvoltage)	2 to 220 V (step 0.1 V)	
Pickup values V ₂ >>, V ₂ > (negative-sequence overvoltage)	2 to 220 V (step 0.1 V)	
Reset ratio (settable)	0.5 to 0.98 (step 0.01)	
Undervoltage protection		
Pickup values <i>V</i> _{PH-E} <<, <i>V</i> _{PH-E} < (phase-earth undervoltage)	1 to 100 V (step 0.1 V)	
Pickup values <i>V</i> _{PH-PH} <<, <i>V</i> _{PH-PH} < (phase-phase undervoltage)	1 to 170 V (step 0.1 V)	
Pickup values <i>V</i> ₁ <<, <i>V</i> ₁ < (positive-sequence undervoltage)	1 to 100 V (step 0.1 V)	
Blocking of undervoltage protection stages	Minimum current; binary input	
Reset ratio (settable)	1.01 to 1.20 (step 0.01)	
Time delays		
Time delay for all stages	0 to 100 s (step 0.01 s) or deactivated	
Command / pickup time	Approx. 34 ms at $f_{\text{nom}} = 50 \text{ Hz}$ Approx. 30 ms at $f_{\text{nom}} = 60 \text{ Hz}$	
Tolerances Voltage limit values Time stages	≤ 3 % of setting value or 1 V 1 % of setting value or 10 ms	
Trip circuit supervision (ANSI 74TC)		
Number of supervisable trip circuits	Up to 3	
Number of required binary inputs per trip circuit	1 or 2	
Indication relay	1 to 30 s (steps 1 s)	

Additional functions		Further additional functions		
Operational measured values		Measured value supervision	Current sum	
Representation	Primary, secondary and percentage referred to rated value		Current symmetry Voltage sum Voltage symmetry	
Currents	3 x I _{Phase} ; 3I ₀ ; I ₁ ; I ₂		Phase sequence	
Tolerances	Typ. 0.3 % of indicated measured value or 0.5 % $I_{\rm nom}$	Indications	Fuse failure monitor Power direction	
Voltages	3 x V _{Phase-Earth} ; 3 x V _{Phase-Phase} ; 3V ₀ , V ₁ , V ₂ , V _{SYNC} , V _{en}	Operational indications System disturbance indication	Buffer size 200 Storage of indications of the last 8	
Tolerances	Typ. 0.25 % of indicated measured value or 0.01 % $V_{\rm nom}$	Switching statistics	faults, buffer size 600 Number of breaking operations per	
Power with direction indication Tolerances <i>P</i> : for $ \cos \varphi = 0.7$ to 1 and V/V_{nom} , $I/I_{\text{nom}} = 50$ to 120 % <i>Q</i> : for $ \sin \varphi = 0.7$ to 1 and V/V_{nom} , $I/I_{\text{nom}} = 50$ to 120 % <i>S</i> : for V/V_{nom} , $I/I_{\text{nom}} = 50$ to 120 %	P, Q, S Typical $\leq 1\%$ Typical $\leq 1\%$ Typical $\leq 1\%$	Circuit-breaker test Dead time for CB TRIP / CLOSE	CB pole Sum of breaking current per phase Breaking current of last trip opera- tion Max. breaking current per phase TRIP/CLOSE cycle, 3 phases TRIP/CLOSE per phase 0 to 30 s (steps 0.01 s)	
Frequency Tolerance	$f \leq 10 \text{ mHz}$	cycle Commissioning support	Operational measured values, CB	
Power factor	PF	Commononing oupport	test, status display of binary inputs,	
Tolerance for $ \cos \phi = 0.7$ to 1	Typical ≤ 0.02		setting of output relays, generation	
Energy meters			faces	
Four-quadrant meters	$W_{P+}; W_{P-}; W_{Q+}; W_{Q-}$	Phase rotation adjustment	Clockwise or anti-clockwise	
Tolerance for $ \cos \varphi > 0.7$ and $V > 50 \%$ V_{nom} and $I > 50 \% I_{nom}$	5 %	CE conformity		
Oscillographic fault recording		This product complies with the directive of the Council of the European Communities on the approximation of the laws of the Member States relat-		
Analog channels Max_number of available record-	3 x I _{Phase} , 3I ₀ 3 x V _{Phase} , 3V ₀ , V _{SYNC} , V _{en} 8 hacked-up by battery if auxiliary	ing to electromagnetic compatibility (EMC Council Directive 89/336/EE) and concerning electrical equipment for use within specified voltage limi (Low-voltage directive 73/23/EEC).		
ings	voltage supply fails	This conformity is proved by tests con	nducted by Siemens AG in accordance	
Sampling intervals	20 samplings per cycle	with Article 10 of the Council Directive in agreement with the generic standards EN 61000-6-2 and EN 61000-6-4 for the EMC directive and the standard EN 60255-6 for the low-voltage directive.		
Total storage time	> 15 s			

This device is designed and produced for industrial use.

The product conforms with the international standard of the series IEC 60255 and the German standard VDE 0435.

10

Max. number of displayed binary 40 channels Control Number of switching units Control commands Feed back Interlocking

Local control

Binary channels

Remote control

> 15 s Pickup and trip information; number and contents can be freely configured by the user

Depends on the number of binary / indication inputs and indication / command outputs Single command / double command 1, 1 plus 1 common or 2 pole

CLOSE, TRIP, intermediate position

Freely configurable Control via menu, function keys, control keys (if available) Control protection, DIGSI, pilot wires

	Current symmetry Voltage sum Voltage symmetry Phase sequence Fuse failure monitor
Indications Operational indications	Power direction Buffer size 200
System disturbance indication	Storage of indications of the last 8 faults, buffer size 600
Switching statistics	Number of breaking operations per CB pole Sum of breaking current per phase Breaking current of last trip opera- tion Max. breaking current per phase
Circuit-breaker test	TRIP/CLOSE cycle, 3 phases TRIP/CLOSE per phase
Dead time for CB TRIP / CLOSE cycle	0 to 30 s (steps 0.01 s)
Commissioning support	Operational measured values, CB test, status display of binary inputs, setting of output relays, generation of indications for testing serial inter- faces
Phase rotation adjustment	Clockwise or anti-clockwise

Selection and ordering data	Description		Order No.	Order
	7VK61 breaker managem	ent relay	7VK6100 - 00000	$\boxed{-4Y} 0 \boxed{0}$
	Housing, binary inputs (BI) ar Housing 1/3 19", 7 BI, 6 BO i	nd outputs (BO) incl. 1 live-status contact,		
	$\frac{Measuring inputs (4 \times V, 4 \times I)}{I_{ph} = 1 \text{ A}, I_e = 1 \text{ A} (min. = 0.0)}$ $\frac{I_{ph} = 5 \text{ A}, I_e = 5 \text{ A} (min. = 0.2)}{I_{ph} = 5 \text{ A}, I_e = 5 \text{ A} (min. = 0.2)}$	5 A) ¹⁾	<u>1</u> 5	
	Rated auxiliary voltage (power 24 to 48 V DC, binary input f 60 to 125 V DC ²), binary input 110 to 250 V DC ²), 115 to 230 200 to 250 V DC ²) 115 to 230	er supply, threshold of binary inputs) threshold 19 V ³⁾ at threshold 19 V ³⁾ 0 V AC, binary input threshold 88 V ³⁾	2 4 3) 6	
	Unit version For panel flush mounting For panel surface mounting	J V AC, binary input uireshold 176 v	0 	
	Region-specific default setting Region DE, language: Germa Region World, language: Eng Region US, language:US-Eng	gs/language settings and functions ve m, selectable glish, selectable glish, selectable	ersions A B C	
	Region FR, language: French Region World, language: Spa Region World, language: Ital	, selectable ınish, selectable ian, selectable	D E F	
	Port B system interface Empty		0	
	IEC 60870-5-103 protocol, e	electrical RS232	1	
	IEC 60870-5-103 protocol, e	electrical RS485	2	
	IEC 60870-5-103 protocol, o	optical 820 nm, ST connector	3	
	PROFIBUS-FMS Slave, elect	cal double ring ST connector ⁴⁾	4	
	PROFIBUS-DP Slave, RS48	5	9	
	PROFIBUS-DP Slave, N546.	al 820 nm double ring ST connecto	y 4) 9	
	DNP 3.0 RS485	ar 620 min, double mig, 51 connecto	9	
	DNP 3.0, optical 820 nm ST	connector ⁴⁾	9	IOH
	IEC 61850, 100 Mbit Etherne	et, electrical, double, RI45 connector	9	LOR
	IEC 61850, 100 Mbit Etherne	et, optical, double, LC connector ⁵⁾	9	L 0 S
 Rated current can be selected by means of jumpers. 	Port C service interface DIGSI 4/modem, electrical R	\$232	1	
2) Transition between the 3 auxiliary ranges can be selected by means of jumpers.	DIGSI 4/modem, electrical R	Auto rodosuro — Ovor/Un	damualtara	
 The binary input thresholds are selectable in 3 steps by means of jumpers. 	1-/3-pole or 3-pole only	1-/3-pole or 3-pole only protectio and synchro-check	n	C
4) Optical interfaces are not available				D
(position $9 = E$). Please order the		<u> </u>		<u>N</u>
version with RS485 interface and a		<u></u>		<u>P</u>
separate electrical/optical converter.	•			R
cations please order the relay with				

10

electrical Ethernet interface and use a separate fiber-optic switch.

cc	000		100
	-	10/1	163

Description	Order No.
DIGSI 4	
Software for configuration and operation of Siemens protection units	
running under MS Windows 2000/XP Professional Edition	
device templates, Comtrade Viewer, electronic manual included	
as well as Getting started manual on paper, connecting cables (copper)	
Basis	
Full version with license for 10 computers, on CD-ROM	
(authorization by serial number)	7XS5400-0AA00
Professional	
DIGSI 4 Basis and additionally SIGRA 4 (fault record analysis),	
CFC Editor (logic editor), Display Editor (editor for default	
and control displays) and DIGSI 4 Remote (remote operation)	7XS5402-0AA00
SIGRA 4	
(generally contained in DIGSI Professional, but can be ordered additionally)	
Software for graphic visualization, analysis and evaluation of fault records.	
Can also be used for fault records of devices of other manufacturers	
(Comtrade format). Running under MS Windows 2000/XP Professional Edition	
Incl. templates, electronic manual with license for 10 PCs.	
Authorization by serial number. On CD-ROM.	7XS5410-0AA00
Connecting cable (copper)	
Cable between PC/notebook (9-pin connector) and protection unit (9-pin connector)	
(contained in DIGSI 4, but can be ordered additionally)	7XV5100-4
Voltage transformer miniature circuit-breaker	
Rated current 1.6 A; thermal overload release 1.6 A;	
overcurrent trip 6 A	3RV1611-1AG14
Manual for 7VK61	
For the latest version please visit	www.siemens.com/sinrotec
	in the second

Fig. 10/21 Short-circuit link for current contacts

3-pin connector

Fig. 10/22 Short-circuit link for voltage contacts/ indications contacts

Supplier Description Fig. package C73334-A1-C35-1 1 10/19 Connector 2-pin Siemens 1 3-pin C73334-A1-C36-1 Siemens 10/20 $AMP^{\ 1)}$ Crimp CI2 0.5 to 1 mm² 4000 0-827039-1 AMP¹⁾ connector 1 0-827396-1 $AMP^{(1)}$ CI2 1 to 2.5 mm² 0-827040-1 4000 $AMP^{\ 1)}$ 0-827397-1 1 AMP¹⁾ Type III+ 0.75 to 1.5 mm² 4000 0-163083-7 $AMP^{(1)}$ 1 0-163084-2 $AMP^{(1)}$ Crimping For type III+ 0-539635-1 1 $AMP^{(1)}$ tool and matching female 0-539668-2 $AMP^{(1)}$ for CI2 1 0-734372-1 $AMP^{1)}$ and matching female 1-734387-1 19" mounting rail 10/18 Siemens C73165-A63-D200-1 1 Short-circuit links For current terminals C73334-A1-C33-1 1 Siemens 10/21 For other terminals 10/22 Siemens C73334-A1-C34-1 1 10/4Safety cover for terminals large C73334-A1-C31-1 1 Siemens 10/4small C73334-A1-C32-1 1 Siemens

Order No.

Size of

1) Your local Siemens representative

can inform you on local suppliers.

Connection diagram

Fig. 10/25 Connection diagram 7VK611, 1/2 x

Connection diagram 7VK611, 1/2 x 19" housing

SIPROTEC 7SV600 Numerical Circuit-Breaker Failure Protection Relay

Fig. 10/26 SIPROTEC 7SV600 numerical circuit- breaker failure protection relay

Description

The SIPROTEC 7SV600 is a numerical relay used for circuit-breaker failure protection. A failure occurs when the circuit-breaker fails to correctly open and clear the fault after single or three-pole trip commands have been issued by the protection unit. It is then necessary to trip the relevant busbar zone (section) to ensure fault clearance.

Generally, the monitoring of the current is sufficient as the criterion for the indication that the circuit-breaker has successfully cleared the fault ("current condition"). However, under certain fault conditions (e.g. overvoltage), little or no current may flow, making the measurement of current unreliable for indication of the circuitbreaker status ("no current condition"). The 7SV600 operates correctly for both these conditions. The relay is suitable for use at all voltage levels and in all applications. The current transformers can either be of the closed iron core or linear type. The relay can be incorporated in conventional switchgear systems and modem substation control systems e.g. SICAM.

Function overview

Protection functions

- Circuit-breaker failure protection (single or three-pole with/without current)
- Independently settable delay times for operation with and without current
- Single or two-stage time delay of the busbar trip command
- Re-trip (cross trip) stage (1st stage of the 2-stage operation)
- Intertrip facility (via teleprotection interface)
- End-fault protection with intertrip
- "No current" control using the circuit-breaker auxiliary contacts

Features

- Highly sensitive current detection
- 2-out-of-4 check of the current detectors
- Short reset time, negligible overshoot time
- Can be initiated by phase-segregated or common-phase trip commands
- End-fault protection
- Assignable output relays, LEDs and binary inputs

Monitoring functions

- Monitoring of circuit-breaker auxiliary contacts
- Operational current measured values
- Self-supervision of the relay
- Event buffer
- Fault protocols
- Oscillographic fault recording

Communication interfaces

- 1 x RS485 interface
- IEC 60870-5-103 protocol – DIGSI

Hardware

- Digital inputs:
- 3 binary inputs
- Digital outputs:
 4 output relays

Front design

- Display for operation and measured values
- 6 LEDs for local alarm

10/21

Application

The numerical circuit-breaker failure protection relay 7SV600 provides rapid backup fault clearance instruction to the associated circuit-breakers in case the circuit-breaker nearest to the fault fails to respond.

It is suitable for power systems of all voltage levels. The initiation signal can be derived from any protection or supervision equipment or, in case of manual opening, from the control discrepancy switch of the breaker. Information from the circuitbreaker auxiliary contact is required for the breaker failure protection to function during faults which produce little or no current flow (possible only with commonphase initiation).

Simplified application diagram of circuit-breaker failure protection.

Fig. 10/27 Typical applications

Simplified application diagram of circuit-breaker failure protection by means of a circuit-breaker auxiliary contact.

Construction

The relay contains all the components needed for

- Acquisition and evaluation of measured values
- Operation and display
- Output of signals and trip commands
- Input and evaluation of binary signals
- SCADA interface (RS485)
- Power supply

The rated CT currents applied to the SIPROTEC 7SV600 can be 1 or 5 A. This is selectable via a jumper inside the relay.

Three different housings are available. The flush-mounting versions have terminals accessible from the rear. The surfacemounting version has terminals accessible from the front.

Fig. 10/28 Rear view of surface-mounting housing

Protection function

The breaker failure protection can operate single-stage or two-stage. When used as single-stage protection, the bus trip command is given to the adjacent circuitbreakers if the protected feeder breaker fails. When used as two-stage protection, the first stage can be used to repeat the trip command to the relevant feeder breaker, normally on a different trip coil, if the initial trip command from the feeder protection is not successful. The second stage will result in a bus trip to the adjacent breakers, if the command of the first stage is not successful.

The bus trip command from the breaker failure protection can be routed to all circuit-breakers linked to the same busbar (section) as the breaker that failed. It can also be transmitted to the remote end by means of a suitable communication link (e.g. PLC, radio wave, or optical fiber).

The isolator replica which is necessary in case of multiple busbar sections is not part of the 7SV600 relay.

The current level is monitored in each of the three phases against a set threshold. In addition, the zero-sequence component or the negative-sequence component of the phase currents derived by symmetrical component analysis is monitored. This ensures high security against malfunction by use of a 2-out-of-4 check of the current detectors.

The version with phase-segregated initiation enables reliable breaker failure detection even during single-pole auto-reclose cycles, provided the phase-segregated trip signals of the feeder protection are connected to the 7SV600.

If the protected circuit-breaker is not operational (e.g. air pressure failure or spring not charged), instantaneous bus trip of the adjacent circuit-breakers can be achieved following a feeder protection trip, provided the relay is informed via binary input of the breaker status (possible only for common-phase initiation).

An end-fault protection function is integrated in the 7SV600 relay. An end fault is a short-circuit located between the circuitbreaker and the current transformer set of the feeder. For this fault, current flow is detected, although the auxiliary contacts of the breaker indicate open breaker poles. A command signal is generated which can be transmitted to the remote-end breaker (possible only for common-phase initiation). Special measures are taken to prevent malfunction of the relay. Besides the mentioned 2-out-of-4 check of the current detection elements, the trip signals of the feeder protection can be connected in a redundant manner, so that they can be checked for plausibility (possible only for common-phase initiation).

Continuous monitoring of the measured values permits rapid annunciation of any fault in the instrument transformer circuits. Continuous plausibility monitoring of the internal measured value processing circuits and monitoring of the auxiliary voltages to ensure that they remain within tolerance are obviously inherent features.

Serial data transmission

A PC can be connected to ease setup of the relay using the Windows-based program DIGSI which runs under MS-Windows.

It can also be used to evaluate up to 8 oscillographic fault records, 8 fault logs and the operational event buffer. As an option, a system interface is available.

The SIPROTEC 7SV600 transmits a subset of data via IEC 60870-5-103 protocol:

- General fault detection of the device
- General trip of the device
- Current in phase L2 [%] =
- Breaker failure trip T1 (local trip)
- Breaker failure trip T2 (busbar trip)
- Circuit-breaker defective: Trip
- Trip by end-fault protection
- Trip by monitoring current symmetry
- Breaker failure protection is active

Fig. 10/29

Wiring communication RS485

For convenient wiring of the RS485 bus,

use bus cable system 7XV5103 (see part 13 of this catalog)

Connection diagrams

Fig. 10/30

protection with phase-segregated initiation

Fig. 10/32

Connection example for single-stage breaker failure protection with common phase initation and Buchholz protection, CB interrogation is imperative; additional intertrip signal to the opposite line end in case of breaker failure or end fault 10

General unit data	
Measuring circuits	
Rated current I _N	1 to 5 A
Rated frequency $f_{\rm N}$ can be parameterized	50 or 60 Hz (selectable)
Power consumption of current inputs At $I_N = 1$ A At $I_N = 5$ A	< 0.1 VA < 0.2 VA
Overload capability current path, Thermal (r.m.s.)	$100 \ge I_{\rm N}$ for $\le 1 \le$ $30 \ge I_{\rm N}$ for $\le 10 \le$ $4 \ge I_{\rm N}$ continuous
Dynamic (pulse current)	250 x $I_{\rm N}$ one half cycle
Auxiliary voltage	
Power supply via integrated DC/DC c	onverter
Rated auxiliary voltage V_{Aux} DC	24 / 48 V DC 60 / 110 / 125 V DC 220 / 250 V DC
Permissible variations	19 to 58 V DC 48 to 150 V DC 176 to 300 V DC
Superimposed AC voltage Peak-to-peak	≤ 12 % at rated voltage ≤ 6 % at limits of admissible voltage
Power consumption Quiescent Energized	Approx. 2 W Approx. 4 W
Bridging time during fail- ure/short-circuit of auxiliary voltage	$\geq 50 \text{ ms at } V_{\text{rated}} \geq 110 \text{ V DC}$ $\geq 20 \text{ ms at } V_{\text{rated}} \geq 24 \text{ V DC}$
Rated auxiliary voltage V_{Aux}	115 V AC, 50/60 Hz 230 V AC, 50/60 Hz
Permissible variations	92 to 133 V AC 184 to 265 V AC
Heavy duty (command) contacts	
Command (trip) relays, number Contacts per relays	2 (can be marshalled) 2 NO
Make Break Switching voltage Permissible current	1000 W / VA 30 W / VA 250 V 5 A continuous 30 A for 0.5 s
Signal contacts	
Signal/alarm relays Contact per relays Switching capacity Make Break Switching voltage Permissible current	2 (can be marshalled) 1 CO 1000 W/VA 30 W/VA 250 V 5 A

Binary inputs Number 3 (can be marshalled) Rated operating voltage 24 to 250 V DC Current consumption Approx. 2.5 mA, independent of operating voltage selectable by plug-in jumpers $V_{\text{pickup}} \ge 17 \text{ V DC}$ Pick-up threshold Rated aux. voltage 24/48/60 V DC $V_{\rm drop-off} < 8 \text{ V DC}$ $V_{\rm pickup} \ge 74 \, {\rm V \, DC}$ Rated aux. voltage 110/125/220/250 V DC $V_{\rm drop-off} < 45 \text{ V DC}$ Unit design Housing 7XP20 Dimensions Refer to part 15 for dimension drawings Weight In housing for surface mounting Approx. 4.5 kg In housing for flush mounting Approx. 4.0 kg Degree of protection acc. to EN 60529 IP 51 Housing IP 21 Terminals Serial interface Isolated RS485 Standard Test voltage 2.8 kV DC Data cable on terminals, two data Connection wires, one frame reference, for connection of a personal computer or similar; core pairs with shield, shield must be earthed; communication possible via modem As delivered 9600 baud Baud rate min. 1200 baud; max. 19200 baud Electrical tests Specifications Standards IEC 60255-5; ANSI/IEEE C37.90.0 Insulation tests High voltage test (routine test) 2 kV (r.m.s.); 50 Hz except DC voltage supply input and RS485 High voltage test (routine test) 2.8 kV DC only DC voltage supply input and RS485 High voltage test (type test) Between open contacts of 1.5 kV (r.m.s.), 50 Hz trip relays Between open contacts 1 kV (r.m.s.), 50 Hz of alarm relays Impulse voltage test (type test) 5 kV (peak); 1.2/50 μs; 0.5 J; all circuits, class III 3 positive and 3 negative impulses at intervals of 5 s

EMC tests for noise immunity; type tests

Standards: IEC 60255-6, IEC 60255-22 (product standards); EN 50082-2 (generic standard) VDE 0435, part 303

High frequency IEC 60255-22-1, class III

Electrostatic discharge IEC 60255-22-2, class III and IEC 61000-4-2, class III

Irradiation with radio-frequency field, non-modulated; IEC 60255-22-3 (report), class III

Irradiation with radio-frequency field, amplitude-modulated; IEC 61000-4-3, class III

Irradiation with radio-frequency field, pulse-modulated; IEC 61000-4-3/ENV 50204, class III

Fast transients/bursts IEC 60255-22-4 and IEC 61000-4-4, 15 ms; repetition rate 300 ms; both class III

Line-conducted HF, amplitudemodulated IEC 61000-4-6, class III

Magnetic field with power frequency IEC 61000-4-8, class IV

IEC 60255-6

Oscillatory surge withstand capability ANSI/IEEE C37.90.1 (common mode)

Fast transient surge withstand capability ANSI/IEEE C37.90.1 (common mode)

Radiated electromagnetic interference ANSI/IEEE C37.90.2 High frequency test

document 17C (SEC) 102

EMC tests for interference emission; type tests

Standard
Conducted interference voltage,
aux. voltage
CISPR 22, EN 55022
Radio interference field strength
CISPR 11, EN 55011

2.5 kV (peak); 1 MHz; $\tau = 15 \mu s$; 400 shots/s; duration 2 s 4 kV/6 kV contact discharge; 8 kV air discharge; both polarities; 150 pF; $R_i = 330 \Omega$

10 V/m; 27 to 500 MHz

10 V/m; 80 to 1000 MHz; 80 % AM; 1 kHz

10 V/m; 900 MHz; repetition frequency 200 Hz; duty cycle 50 %

2 kV; 5/50 ns; 5 kHz; burst length polarities; $R_i = 50 \Omega$; duration 1 min

10 V; 150 kHz to 80 MHz; 80 % AM; 1 kHz

30 A/m continuous: 300 A/m for 3 s; 50 Hz 0.5 mT; 50 Hz 2.5 to 3 kV (peak); 1 to 1.5 MHz, decaying oscillation; 50 surges per s; duration 2 s; $R_{\rm i} = 150 \ \Omega$ to 200 Ω

4 to 5 kV; 10/150 ns; 50 surges per s; both polarities; duration 2 s; $R_i = 80 \Omega$

10 to 20 V/m; 25 to 1000 MHz; amplitude and pulse modulated

2.5 kV (peak, alternating polarity); 100 kHz, 1 MHz, 10 and 50 MHz, decaying oscillation; $R_i = 50 \Omega$

EN 50081-* (generic standard) 150 to 30 MHz

Limit class B 30 to 1000 MHz Limit class A

Mechanical stress tests

Vibration, shock stress and seismic vibration

During operation

Standards Vibration IEC 60255-21-1, class I IEC 60068-2-6

Shock IEC 60255-21-2, class I

Seismic vibration IEC 60255-21-3, class I IEC 60068-3-3

During transportation

Standard Vibration IEC 60255-21-1, class II IEC 60068-2-6

Shock IEC 60255-21-2, class I IEC 60068-2-27

Continuous shock IEC 60255-21-2, class I IEC 60068-2-29

Sinusoidal 10 to 60 Hz: ± 0.035 mm amplitude; 60 to 150 Hz: 0.5 g acceleration Sweep rate 1 octave/min 20 cycles in 3 orthogonal axes Half-sine Acceleration 5 g, duration 11 ms, 3 shocks in each direction of 3 orthogonal axes Sinusoidal 1 to 8 Hz: ± 3.5 mm amplitude (horizontal axis) 1 to 8 Hz: \pm 1.5 mm amplitude (vertical axis) 8 to 35 Hz: 1 g acceleration (horizontal axis) 8 to 35 Hz: 0.5 g acceleration

IEC 60255-21 and IEC 60068-2

(vertical axis) Sweep rate 1 octave/min 1 cycle in 3 orthogonal axes

IEC 60255-21 and IEC 60068-2

Sinusoidal 5 to 8 Hz: \pm 7.5 mm amplitude; 8 to 150 Hz: 2 g acceleration Sweep rate 1 octave/min 20 cycles in 3 orthogonal axes

Half-sine Acceleration 15 g, duration 11 ms, 3 shocks in each direction of 3 orthogonal axes

Half-sine Acceleration 10 g, duration 16 ms, 1000 shocks in each direction of 3 orthogonal axes

Climatic stress tests	
Temperatures	
Permissible temperature during service	-20 °C to +70 °C (> 55 °C decreased display contrast)
Recommended temperature during service	−5 °C to +55 °C
Permissible temperature during storage	–25 °C to +55 °C
Permissible temperature during transport Storage and transport with standard works packaging!	−25 °C to +70 °C
Humidity	
Permissible humidity We recommend that all units are	Mean value per year $\leq 75\%$ relative humidity: on 30 days per year 95\%

installed such that they are not subjected to direct sunlight, nor to large permissible! temperature fluctuations which may give rise to condensation.

Service conditions

The relay is designed for use in industrial environment, for installation in standard relay rooms and compartments so that with proper installation electromagnetic compatibility (EMC) is ensured. The following should also be heeded:

- All contactors and relays which operate in the same cubicle or on the same relay panel as the digital protection equipment should, as a rule, be fitted with suitable spike quenching elements.
- All external connection leads in substations from 100 kV upwards should be shielded with a shield capable of carrying power currents and earthed at both sides. No special measures are normally necessary for substations of lower voltages.

- The shield of the RS485 cat must be earthed.
- . It is not permissible to with or insert individual module der voltage. In the withdray condition, some componer electrostatically endangered during handling the standa for electrostatically endange components must be obser The modules are not endan when plugged in.

WARNING! The relay is not designed for use in residential commercial or light-industrial environment as defined in EN 50081.

	T UTICIONS	
	Breaker supervision	
–20 °C to +70 °C (> 55 °C decreased display contrast)	Current detection Setting range	0.05 x $I_{\rm N}$ to 4.00 x $I_{\rm N}$ (steps 0.01 x $I_{\rm N})$
−5 °C to +55 °C	Drop-off ratio	Approx. 0.9
	Tolerance	0.01 x $I_{\rm N}$ or 5 % of set value
–25 °C to +55 °C	Initiation conditions	
-25 °C to +70 °C	Depending on ordered version	Phase-segregated initiation (single- pole trip from feeder protection) or common-phase initiation (three-pole trip from feeder protection) and common-phase initiation (three-pole trip from non-short-circuit protec- tion)
Mean value per year $\leq 75\%$ relative humidity: on 30 days per year 95\%	Times	
relative humidity; condensation not permissible!	Pickup time	Approx. 15 ms with measured quantities present Approx. 25 ms after switch-on of measured quantities
	Drop-off time with sinusoidal	$\leq 10 \text{ ms}$
	measured quantities	
• The shield of the RS485 cable	Drop-off time maximum	$\leq 25 \text{ ms}$
must be earthed.It is not permissible to withdraw	Delay times for all time stages	0.00 s to 32.00 s (steps 0.01 ms) or deactivated
or insert individual modules un-	Delay time tolerance	1 % of set value or 10 ms
der voltage. In the withdrawn	The set times are pure delay times.	
electrostatically endangered:		
during handling the standards	Additional functions	
for electrostatically endangered components must be observed. The modules are not endangered when plugged in. WARNING! The relay is not	Operational value measurements	
	Operational current values Measurement range Tolerance	<i>I</i> _{L1} ; <i>I</i> _{L2} ; <i>I</i> _{L3} 0 % to 240 % <i>I</i> _N 3 % of rated value or of measured
designed for use in residential,	Steady-state measured value super	vision

Current unbalance

Fault event data storage

I_{max} / I_{min} > symmetry factor as long as $I > I_{\text{limit}}$ Storage of annunciations of the last

eight faults with max. 30 messages each Time assignment Resolution for operational 1 sannunciations Resolution for fault event 1 ms annunciations 0.01 % Max. time deviation Data storage for fault recording (max. 8 fault events) Total storage time (fault detection Max. 5 s, selectable pre-trigger and post-fault time or trip command = 0 ms) Max. storage period 0.30 to 5.00 s (steps 0.01 s) per fault event T_{max} 0.05 to 0.50 s (steps 0.01 s) Pre-trigger time T_{pre} Post-fault time Tpost 0.05 to 0.50 s (steps 0.01 s) Sampling rate 1 instantaneous value per ms at 50 Hz 1 instantaneous value per 0.83 ms at 60 Hz

Selection and ordering data

Description	Order No.
7SV600 numerical circuit-breaker failure protection relay	<i>75V600</i> □-□□A00-□DA0
Rated current; rated frequency	
1 A; 50/60 Hz	1
5 A; 50/60 Hz	5
Rated auxiliary voltage	
24, 48 V DC	2
60, 110, 125 V DC	4
220, 250 V DC / 115 V AC, 50/60 Hz	5
230 V AC, 50/60 Hz	6
Unit design	
For panel surface mounting with terminals on both sides	В
For panel surface mounting with terminals at top and bottom	D
For panel flush mounting/cubicle mounting	E
Options	
For common phase initiation	0
For common phase initiation or phase-segregated initiation	1

Accessories

DIGSI 4

Software for configuration and operation of Siemens protection units			
running under MS Windows (version Windows 2000/XP Professional Edition)			
device templates, Comtrade Viewer, electronic manual included			
as well as "Getting started" manual on paper, connecting cables (copper)			
Basis			
Full version with license for 10 computers, on CD-ROM			
(authorization by serial number)	7XS5400-0AA00		
Professional			
DIGSI 4 Basis and additionally SIGRA (fault record analysis),			
CFC Editor (logic editor), Display Editor (editor for default			
and control displays) and DIGSI 4 Remote (remote operation)	7XS5402-0AA00		

RS232 (V.24)↔RS485 converter*

Plug-in auxiliary power supply unit 220 V/50 Hz AC	0
Plug-in auxiliary power supply unit 110 V/60 Hz AC	1
With RS485 connecting cable for 7SJ6, 7RW6, 7SD6, 7SV6	A
With RS485 connecting cable with 9-pin connector for SIMEAS Q	В
With RS485 connecting cable with plug connector for SIMEAS T	С
Without RS232 connecting cable	A
With RS232 connecting cable 7XV5100-2 for PC/notebook, 9-pin connector (fer	male) B
With RS232 adapter, 25-pin connector (male) to 9-pin connector (female)	
for connection to notebook/PC	С
Converter full-duplex fiber-optic cable - RS485	
With power supply 24 - 250 V DC and 110/230 V AC	7XV5650-0BA00

Manual for 7SV600

For the latest version please visit

www.siemens.com/siprotec

7XV5700-□□00

*) RS485 bus system up to 115 kbaud RS485 bus cable and adaptor 7XV5103-□AA□□; see part 13.

Connection diagram

Fig. 10/33

General connection diagram of 7SV600 with presettings for common phase initiation

Fig. 10/34

General connection diagram of 7SV600 with presettings for phase-segregated initiation

SIPROTEC 7SN60 Transient Earth-Fault Protection Relay

Fig. 10/35 SIPROTEC 7SN60 transient earth-fault relay

Description

The highly sensitive 7SN60 transient earthfault relay determines the direction of transient and continuous earth faults in systems with isolated neutral, in systems with high-impedance resistive earthing and in compensated systems. Continuous earth faults are indicated with a delay, either in conjunction with a transient earth fault and subsequently persisting displacement voltage, or with just the displacement voltage present.

Function overview

Protection functions

- Units for panel surface mounting or flush mounting in 7XP20 housing, with terminals on the side or terminals on the top/bottom
- Both fault directions indicated by LEDs and signaled by relays
- High pickup sensitivity due to separate detection and evaluation of total current and displacement voltage
- 1 A and 5 A rated current selectable for current transformer matching
- 16 selectable pickup thresholds for detection of transients in the current path, even with higher steady-state total currents of 10 to 300 mA
- Fixed pickup threshold of 5 V for detection of transients in the voltage path, even in the case of higher steady-state displacement voltages
- 4 selectable pickup thresholds for evaluation of the displacement voltage of 10 to 50 V
- Optional suppression of switching operations by evaluation of the displacement voltage after a switching-induced transient has occured
- Wide-range power supply for connection to 110/230 V AC systems,
 60 to 250 V DC station batteries or
 100 V DC voltage transformers without switchover or 24 to 60 V DC
- Binary inputs for remote reset and blocking with extremely wide input voltage range of 24 to 250 V DC
- Automatic reset of direction indications and signals after 3 or 10 s (selectable)
- Automatic reset in case of intermittent earth faults only after the last earthfault, i.e. the correct indication and signal of the first earth fault is preserved
- Detection of the displacement voltage and earth-fault indication/signal, independent of a transient fault detection
- Signaling and indication of a continuous earth fault possible only in the forward direction
- Fault indication if sensitivity is set too high

Construction

The relay contains all the components needed for

- Acquisition and evaluation of measured values
- Operation and display
- Output of signals and trip commands
- Power supply

The rated CT currents applied to the SIPROTEC 7SN60 can be 1 or 5 A. This is selectable via a jumper inside the relay.

Three different housings are available. The flush-mounting/cubicle-mounting housings have terminals accessible from the rear. The surface-mounting housing has terminals either on the side or on the top and bottom.

Fig. 10/36 Rear view

Protection functions

Earth-fault directional determination

The highly sensitive 7SN60 transient earth-fault relay determines the direction of transient and continuous earth faults in systems with isolated neutral, in systems with high-impedance resistive earthing and in compensated systems.

Continuous earth faults are indicated with a delay, either in conjunction with a transient earth fault and subsequently persisting displacement voltage, or with just the displacement voltage present.

In the event of an earth fault, the neutralpoint voltage to earth can be as high as the full-phase voltage.

The phase-to-earth capacitances of the non-earth-faulted phases are charged via the transformer inductance.

This charging process is bound up with a strong current surge (starting oscillation).

The amplitude of this current surge depends on the expands of the system and on the contact resistance values at the earth-fault location.

This current flows via the phase-to-earth capacitances of the unaffected lines to earth, enters the earth-faulted phase via the earth-fault location and flows back from there to the feeding transformer. Thus the direction of the earth-fault induced current surge is identical to that of the short-circuit current at the same location.

At measuring point A, as a result of the transformer summation circuit, the earth current of the faulted line is not included in the measurement, as this current portion flows through the summation transformer of the relevant Holmgreen circuit and back, thereby canceling itself out.

It is the total of the capacitive earth currents from the non-faulted system which has an effect. In the diagram they are summated on the upper line. The capacitive currents of the non-faulted lines 1, 3 and 2, 4 accumulate vectorially, which explains why only three arrows instead of four are shown at the measuring point A.

With a transient earth fault, the equalizing current forming a damped oscillation of 100 to more than 1000 Hz decays after only a few periods.

The displacement voltage $V_{\rm EM}$ thereupon also returns to zero. In earthed systems this takes place after a number of periods (decay of the Petersen coil - earth capacitance oscillation circuit); in non-earthed systems this occurs after a very short time.

Fig. 10/37 Fault currents in the system

Protection functions

In the case of a continuous earth fault, the equalizing current in the non-earthed system changes into the mostly capacitive continuous earth current or, in compensated systems, into the relatively low residual active current.

For the directional determination, the direction of the first transient of neutral current and displacement voltage is considered.

The relay indicates the direction of the transient earth fault by LEDs (red = for-ward direction, yellow = reverse direction) and the relevant signaling relay pickups.

Continuous earth faults are indicated after a settable time by an LED on the relay and signaled by a signaling relay.

Detection of the fault location

If the system is of radial configuration, the red lamp immediately indicates the faulted line.

If one of the lines consists of several sections, the fault is upstream of the last red lamp.

The transient earth-fault relay can also be used without restrictions in any type of meshed systems. Transient earth-fault relays distributed at suitable points throughout the system allow detection of the earth-fault location from the directional indications.

Fig. 10/38 Neutral current and displacement voltage

Fig. 10/40 Cascaded radial system

Fig. 10/42 Ring system

Typical connection

Connection of the current and voltage transformers

Figures 10/43 and 10/44 show the connection of the current and voltage transformer set in Holmgreen circuit.

In Fig. 10/43, the star point at the line-side of the CT must be connected to terminal 1 while the star point at the busbar side of the CTs must be connected to terminal 2.

The three phase voltages V_{L1} , V_{L2} and V_{L3} are connected to terminals 7, 8, 9 respectively. The earthed star point of the voltage transformer is connected to terminal 10.

Fig. 10/43 Connection of transformers and auxiliary power supply for panel flush-mounting housing and panel surface-mounting housing (terminals on the side)

Fig. 10/44 Connection of transformers and auxiliary power supply for panel surface-mounting housing (terminals on the top/bottom)

General unit data Measuring circuit Rated current I₀

Input impedance Z at 50 Hz and $I_{\rm N}$

10

Rated voltage V_N 100/110 V AC 50 Hz (16.7 Hz) Rated frequency f_N Thermal rating - In voltage path, continuous 140 V AC - In current path, continuous $4 \ge I_N$ 10 s $30 \ge I_N$ 1 s (at 1 A) $100 \ge I_N$ 1 s (at 5) 300 A Auxiliary voltage Rated auxiliary 60 - 250 V DC and 100 - 230 V AC voltage Vaux without switchover Power consumption at Quiescent Energized 60 V DC 4.5 W 3.1 W 110 V DC 3.0 W 4.5 W 220 V DC 3.6 W 4.6 W 250 V DC 3.7 W 4.8 W 100 V AC 2.9 VA 4.2 VA 110 V AC 3.0 VA 4.2 VA 230 V AC 5.8 VA 4.6 VA **Binary** inputs Input voltage for blocking and 24 - 250 V DC remote reset input Pickup thresholds for - Blocking X30 pin 1-2, Approx. 19 V remote reset X31 pin 1-2 - Blocking X30 pin 2-3, Approx. 75 V remote reset X31 pin 2-3 Signaling relays Number of relays, forward or 2 NO contacts reverse direction Number of relays, continuous 1 NO contact earth-fault signal Number of relays, alarm 1 NC contact 1000 W/VA Switching capacity Make (all relays) Switching capacity Break 30 W/VA (all relays) 250 V AC/DC Switching voltage Permissible switching current Continuous 5 A 0.5 s 30 A Unit design Housing, dimensions SIPROTEC housing of 1/6 width Refer to part 15 for dimension drawings For flush mounting, terminals 6 current / 25 voltage terminals at the top/bottom For panel surface mounting, 6 current / 25 voltage terminals terminals on the side Weight Approx. 4 kg Standards DIN VDE 0435, Part 303 and IEC 60255-5

1 or 5 A

 $< 0.05 \Omega$

Selection and ordering data

Description	Order No.
7SN60 transient earth-fault protection relay	7SN6000-□□A00
In SIPROTEC housing 1/6 width Rated frequency 50 Hz	
Rated auxiliary voltage 60 - 250 V DC and 100 - 230 V AC without switchover	0
24 - 48 V DC	1
For panel surface mounting with terminals on the side	В
For panel surface mounting with terminals at top/bottom part	D
For panel flush mounting or cubicle mounting	E

Connection diagram

Fig. 10/45 Connection diagram

Generator Protection

SIPROTEC 4 7UM61 Multifunction Generator and Motor Protection Relay	11/3
SIPROTEC 4 7UM62 Multifunction Generator, Motor and Transformer Protection Relay	11/33
SIPROTEC 7UW50 Tripping Matrix	11/69
SIPROTEC 7RW600 Numerical Voltage, Frequency and Overexcitation Protection Relay	11 /71
SIPROTEC 7VE6 Multifunction Paralleling Device	11 /81

Page

SIPROTEC 4 7UM61 Multifunction Generator and Motor Protection Relay

Description

The SIPROTEC 4 7UM61 protection relays can do more than just protect. They also offer numerous additional functions. Be it earth faults, short-circuits, overloads, overvoltage, overfrequency or underfrequency, protection relays assure continued operation of power stations. The SIPROTEC 4 7UM61 protection relay is a compact unit which has been specially developed and designed for the protection of small and medium-sized generators. They integrate all the necessary protection functions and are particularly suited for the protection of :

- Hydro and pumped-storage generators
- Co-generation stations
- Private power stations using regenerative energy sources such as wind or biogases
- Diesel generator stations
- Gas-turbine power stations
- Industrial power stations
- Conventional steam power stations.

The device can also be used for protecting synchronous and asynchronous motors.

The integrated programmable logic functions (continuous function chart CFC) offer the user high flexibility so that adjustments can easily be made to the varying power station requirements, on the basis of special system conditions.

The flexible communication interfaces are open for modern communication architectures with the control system.

Function overview

Basic version

- Stator earth-fault protection
- Sensitive earth-fault protection
- Stator overload protection
- Overcurrent-time protection (either definite-time or inverse-time)
- Definite-time overcurrent-time protection, directional
- Undervoltage and overvoltage protection
- Underfrequency and overfrequency protection
- Reverse power protection
- Overexcitation protection
- External trip coupling

Standard version

- Scope of basic version plus:
- Forward-power protection
- Underexcitation protection
- Negative-sequence protection
- Breaker failure protection

Full version

Scope of standard version plus:

- Inadverdent energization protection
 100 % stator earth-fault protection
- with 3rd harmonic
- Impedance protection

Asynchronous motor

Scope of standard version plus

- Motor starting time supervision
- Restart inhibit (without underexcitation protection)

Monitoring functions

- Trip circuit supervision
- Fuse failure monitor
- Operational measured values V, I, f, ...
- Every metering value $W_{\rm p}$, $W_{\rm q}$
- Time metering of operation hours
- Self-supervision of relay
- 8 oscillographic fault records

Communication interfaces

- System interface
 - IEC 60870-5-103 protocol
 - PROFIBUS-DP
 - MODBUS RTU
 - DNP 3.0

11

Application

The 7UM6 protection relays of the SIPROTEC 4 family are compact multifunction units which have been developed for small to medium-sized power generation plants. They incorporate all the necessary protective functions and are especially suitable for the protection of:

- Hydro and pumped-storage generators
- Co-generation stations
- Private power stations using regenerative energy sources such as wind or biogases
- Power generation with diesel generators
- Gas turbine power stations
- Industrial power stations
- Conventional steam power stations.

They can also be employed for protection of motors and transformers.

The numerous other additional functions assist the user in ensuring cost-effective system management and reliable power supply. Measured values display current operating conditions. Stored status indications and fault recording provide assistance in fault diagnosis not only in the event of a disturbance in generator operation.

Combination of the units makes it possible to implement effective redundancy concepts.

Protection functions

Numerous protection functions are necessary for reliable protection of electrical machines. Their extent and combination are determined by a variety of factors, such as machine size, mode of operation, plant configuration, availability requirements, experience and design philosophy.

This results in multifunctionality, which is implemented in outstanding fashion by numerical technology.

In order to satisfy differing requirements, the combination of functions is scalable (see Table 11/1). Selection is facilitated by division into groups.

Protection functions	Abbre- viation	ANSI No.	Generator			
			Basic	Stan- dard	Full	Motor async.
Stator earth-fault protection non-directional, directional	$V_0>$, $3I_0>$ $\setminus (V_0, 3I_0)$	59N, 64G 67G	Х	Х	Х	Х
Sensitive earth-fault protection (also rotor earth-fault protection)	$I_{\rm EE}$ >	50/51GN (64R)	Х	Х	Х	Х
Stator overload protection	I^2t	49	Х	Х	Х	Х
Definite-time overcurrent protection with undervoltage seal-in	I > +V <	51	Х	Х	Х	Х
Definite-time overcurrent protection, directional	<i>I>></i> , Direc.	50/51/67	Х	Х	Х	Х
Inverse-time overcurrent protection	t = f(I) + V <	51V	Х	Х	Х	Х
Overvoltage protection	V>	59	Х	Х	Х	Х
Undervoltage protection	$V \! < $	27	Х	Х	Х	Х
Frequency protection	<i>f</i> <, <i>f</i> >	81	Х	Х	Х	Х
Reverse-power protection	-P	32R	Х	Х	Х	Х
Overexcitation protection (Volt/Hertz)	V/f	24	Х	Х	Х	
Fuse failure monitor	$V_2/V_1, I_1/I_2$	60FL	Х	Х	Х	Х
External trip coupling (7UM611/612)	Incoup.		2/4	2/4	2/4	2/4
Trip circuit supervision (7UM612)	T.C.S.	74TC	Х	Х	Х	Х
Forward-power protection	<i>P>, P<</i>	32F		Х	Х	Х
Underexcitation protection	1/xd	40		Х	Х	
Negative-sequence protection	$I_2>, t = f(I_2)$	46		Х	Х	Х
Breaker failure protection	I _{min} >	50BF		Х	Х	Х
Inadvertent energization protection	<i>I>, V<</i>	50/27			Х	
100 %-stator-earth-fault protection with 3 rd harmonics	$V_{0(3^{rd} harm)}$	59TN 27TN (3 rd h.)		х	
Impedance protection with (<i>I</i> >+ <i>V</i> <)-pickup	<i>Z</i> <	21			Х	
Motor starting time supervision	$I_{an}^{2}t$	48			Х	Х
Restart inhibit for motors	I^2t	49 Rotor			Х	Х
External temperature monitoring through serial interface	ϑ (Thermo-box	38	Х	Х	Х	Х
Rate-of-frequency-change protection ¹⁾	df/dt >	81R	Х	Х	Х	Х
Vector jump supervision (voltage) ¹⁾	$\Delta \varphi >$		Х	Х	Х	Х

 Table 11/1
 Scope of functions of the 7UM61

Generator Basic

One application is concentrated on small generators or as backup protection for larger generators. The function mix is also an effective addition to transformer differential protection with parallel-connected transformers. The functions are also suitable for system disconnection.

Generator Standard

This function mix is recommended for generator outputs exceeding 1 MVA. It is also suitable for protection of synchronous motors. Another application is as backup protection for the larger block units.

Generator Full

Here, all protection functions are available and are recommended from generator outputs exceeding 5 MVA. Backup protection for the larger block units is also a recommended application.

Asynchronous motor

This protection function mix is recommended for motors up to 1 - 2 MW. It offers a wide frequency operating range from 11 Hz to 69 Hz. When an infeed is switched, the protection adapts to the changed voltage and frequency.

¹⁾ Available as an option (please refer to Order No., position 15).
Application

Construction

The SIPROTEC 4 units have a uniform design and a degree of functionality which represents a whole new quality in protection and control. Local operation has been designed according to ergonomic criteria. Large, easy-to-read displays were a major design aim. The DIGSI 4 operating program considerably simplifies planning and engineering and reduces commissioning times.

The 7UM611 is configured in 1/3 19 inch, and the 7UM612 in 1/2 19 inch width. This means that the units of previous models can be replaced. The height throughout all housing width increments is 243 mm.

All wires are connected directly or by means of ring-type cable lugs.

Alternatively, versions with plug-in terminals are also available. These permit the use of prefabricated cable harnesses.

In the case of panel surface mounting, the connecting terminals are in the form of screw-type terminals at top and bottom. The communication interfaces are also arranged on the same sides.

Fig. 11/3 Rear view with wiring terminal safety cover and serial interface

Definite-time overcurrent protection I>, I>> (ANSI 50, 51, 67)

This protection function comprises the short-circuit protection for the generator and also the backup protection for upstream devices such as transformers or power system protection.

An undervoltage stage at *I*> maintains the pickup when, during the fault, the current falls below the threshold. In the event of a voltage drop on the generator terminals, the static excitation system can no longer be sufficiently supplied. This is one reason for the decrease of the short-circuit current.

The *I>>* stage can be implemented as high-set instantaneous trip stage. With the integrated directional function it can be applied for generators without star point CT (see Figure 11/4).

Inverse-time overcurrent protection (ANSI 51V)

This function also comprises short-circuit and backup protection and is used for power system protection with currentdependent protection devices.

IEC and ANSI characteristics can be selected (Table 11/2).

The current function can be controlled by evaluating the generator terminal voltage.

The "controlled" version releases the sensitive set current stage.

With the "restraint" version, the pickup value of the current is lowered linearly with decreasing voltage.

The fuse failure monitor prevents unwanted operation.

Stator overload protection (ANSI 49)

The task of the overload protection is to protect the stator windings of generators and motors from high, continuous overload currents. All load variations are evaluated by the mathematical model used. The thermal effect of the r.m.s. current value forms the basis of the calculation. This conforms to IEC 60255-8. In dependency of the current the cooling time constant is automatically extended. If the ambient temperature or the temperature of the coolant are injected via PROFIBUS-DP, the model automatically adapts to the ambient conditions; otherwise a constant ambient temperature is assumed.

Negative-sequence protection (ANSI 46)

Asymmetrical current loads in the three phases of a generator cause a temperature rise in the rotor because of the negative sequence field produced.

This protection detects an asymmetrical load in three-phase generators. It functions on the basis of symmetrical components and evaluates the negative sequence of the phase currents. The thermal processes are taken into account in the algorithm and form the inverse characteristic. In addition, the negative sequence is evaluated by an independent stage (alarm and trip) which is supplemented by a time-delay element (see Figure 11/5).

Available inverse-time characteristic

Characteristics	ANSI / IEEE	IEC 60255-3
Inverse	•	•
Moderately inverse	•	
Very inverse	•	•
Extremely inverse	•	•
Definite inverse	•	
Table 11/2		

Underexcitation protection (ANSI 40) (Loss-of-field protection)

Derived from the generator terminal voltage and current, the complex admittance is calculated and corresponds to the generator diagram scaled in per unit. This protection prevents damage due to loss of synchronism resulting from underexcitation. The protection function provides three characteristics for monitoring static and dynamic stability. In the event of exciter failure, fast response of the protection can be ensured via binary input. This input releases a timer with a short time delay.

The straight-line characteristics allow the protection of the generator diagram to be optimally adapted (see Fig. 11/6). The per-unit-presentation of the diagram allows the setting values to be directly read out.

The positive-sequence systems of current and voltage are used to calculate the admittance. This ensures that the protection always operates correctly even with asymmetrical network conditions.

If the voltage deviates from the rated voltage, the admittance calculation has the advantage that the characteristics move in the same direction as the generator diagram.

Reverse-power protection (ANSI 32R)

The reverse-power protection monitors the direction of active power flow and picks up when the mechanical energy fails because then the drive power is taken from the network. This function can be used for operational shutdown (sequential tripping) of the generator but also prevents damage to the steam turbines. The reverse power is calculated from the positivesequence systems of current and voltage. Asymmetrical network faults therefore do not cause reduced measuring accuracy. The position of the emergency trip valve is injected as binary information and is used to switch between two trip command delays. When applied for motor protection, the sign (\pm) of the active power can be reversed via parameters.

Forward-power protection (ANSI 32F)

Monitoring of the active power produced by a generator can be useful for starting up and shutting down generators. One stage monitors threshold beyond one limit value while another stage monitors threshold below another limit value. The power is calculated using the positive-sequence component of current and voltage.

Impedance protection (ANSI 21)

This fast short-circuit protection protects the generator, the generator transformer and is a backup protection for the power system. This protection has two settable impedance stages; in addition, the first stage can be switched over via binary input. With the circuit-breaker in "open" position (see Fig. 11/7) the impedance measuring range can be extended. The overcurrent pickup element with undervoltage seal-in ensures a reliable pickup and the loop selection logic a reliable detection of the faulty loop. With this logic it is possible to perform a correct measurement via the unit transformer.

Undervoltage protection (ANSI 27)

The undervoltage protection evaluates the positive-sequence components of the voltages and compares them with the threshold values. There are two stages available.

The undervoltage function is used for asynchronous motors and pumped-storage stations and prevents the voltage-related instability of such machines.

The function can also be used for monitoring purposes.

Overvoltage protection (ANSI 59)

This protection prevents insulation faults that result when the voltage is too high.

Either the maximum line-to-line voltages or the phase-to-earth voltages (for lowvoltage generators) can be evaluated. The measuring results of the line-to-line voltages are independent of the neutral point displacement caused by earth-faults. This function is implemented in two stages.

Frequency protection (ANSI 81)

The frequency protection prevents impermissible stress of the equipment (e.g. turbine) in case of under or overfrequency. It also serves as a monitoring and control element.

The function has four stages; the stages can be implemented either as underfrequency or overfrequency protection. Each stage can be delayed separately.

Even in the event of voltage distortion, the frequency measuring algorithm reliably identifies the fundamental waves and determines the frequency extremely precisely. Frequency measurement can be blocked by using an undervoltage stage.

Overexcitation protection Volt/Hertz (ANSI 24)

The overexcitation protection serves for detection of an unpermissible high induction (proportional to V/f) in generators or transformers, which leads to thermal overloading. This may occur when starting up, shutting down under full load, with weak systems or under isolated operation. The inverse characteristic can be set via seven points derived from the manufacturer data.

In addition, a definite-time alarm stage and an instantaneous stage can be used.

For calculation of the *V*/*f* ratio, frequency and also the highest of the three line-to-line voltages are used. The frequency range that can be monitored comprises 11 to 69 Hz.

Stator earth-fault protection, non-directional, directional (ANSI 59N, 64G, 67G)

Earth faults manifest themselves in generators that are operated in isolation by the occurrence of a displacement voltage. In case of unit connections, the displacement voltage is an adequate, selective criterion for protection.

For the selective earth-fault detection, the direction of the flowing earth current has to be evaluated too, if there is a direct connection between generator and busbar.

The protection relay measures the displacement voltage at a VT located at the transformer star point or at the broken delta-winding of a VT. As an option, it is also possible to calculate the zero-sequence voltage from the phase-to-earth voltages. Depending on the load resistor selection, 90 to 95 % of the stator winding of a generator can be protected.

A sensitive current input is available for earth-current measurement. This input should be connected to a core-balance current transformer. The fault direction is deduced from the displacement voltage and earth current. The directional characteristic (straight line) can be easily adapted to the system conditions. Effective protection for direct connection of a generator to a busbar can therefore be established. During start-up, it is possible to switch over from the directional to the displacement voltage measurement via an externally injected signal.

Depending on the protection setting, various earth-fault protection concepts can be implemented with this function (see Figs. 11/17 to 11/21).

Sensitive earth-fault protection (ANSI 50/51GN, 64R)

The sensitive earth-current input can also be used as separate earth-fault protection. It is of two-stage form. Secondary earth currents of 2 mA or higher can be reliably handled.

Alternatively, this input is also suitable as rotor earth-fault protection. A voltage with rated frequency (50 or 60 Hz) is connected in the rotor circuit via the interface unit 7XR61. If a higher earth current is flowing, a rotor earth fault has occurred. Measuring-circuit monitoring is provided for this application (see Figure 11/20).

100 % stator earth-fault protection with 3. harmonic (ANSI 59TN, 27TN (3H.))

Owing to the design, the generator produces a 3rd harmonic that forms a zero system. It is verifiable by the protection on a broken delta winding or on the neutral transformer. The magnitude of the voltage amplitude depends on the generator and its operation.

In the event of an earth fault in the vicinity of the neutral point, there is a voltage displacement in the 3rd harmonic (dropping in the neutral point and rising at the terminals).

Depending on the connection, the protection must be set in either undervoltage or overvoltage form. It can also be delayed. So as to avoid overfunction, the active power and the positive-sequence voltage act as enabling criteria.

The final protection setting can be made only by way of a primary test with the generator.

Breaker failure protection (ANSI 50BF)

In the event of scheduled downtimes or a fault in the generator, the generator can remain on line if the circuit-breaker is defective and could suffer substantial damage.

Breaker failure protection evaluates a minimum current and the circuit-breaker auxiliary contact. It can be started by internal protective tripping or externally via binary input. Two-channel activation avoids overfunction (see Figure 11/8).

Inadvertent energization protection (ANSI 50, 27)

This protection has the function of limiting the damage of the generator in the event of an unintentional switch-on of the circuit-breaker, whether the generator is standing still or rotating without being excited or synchronized. If the power system voltage is connected, the generator starts as an asynchronous machine with a large slip and this leads to excessively high currents in the rotor.

A logic circuit consisting of sensitive current measurement for each phase, measured value detector, time control and blocking as of a minimum voltage, leads to an instantaneous trip command. If the fuse failure monitor responds, this function is ineffective.

Starting time supervision (motor protection only) (ANSI 48)

Starting time supervision protects the motor against long unwanted start-ups, which might occur as a result of excessive load torque or excessive voltage drops within the motor, or if the rotor is locked.

The tripping time is dependent on the square of the start-up current and the set start-up time (Inverse Characteristic). It adapts itself to the start-up with reduced voltage. The tripping time is determined in accordance with the following formula:

$$t_{\rm Trip} = \left(\frac{I_{\rm start}}{I_{\rm rms}}\right)^2 \cdot t_{\rm start\ ma}$$

tTripTripping timeIstartPermissible start-up current

tstart max Permissible start-up time

*I*_{rms} Measured r.m.s. current value

Calculation is not started until the current $I_{\rm rms}$ is higher than an adjustable response value

(e.g. 2 *I*_{N, MOTOR}).

If the permissible locked-rotor time is less than the permissible start-up time (motors with a thermally critical rotor), a binary signal is set to detect a locked rotor by means of a tachometer generator. This binary signal releases the set locked-rotor time, and tripping occurs after it has elapsed.

Fig. 11/9 Temperature characteristic at rotor and thermal replica of the rotor (multiple start-ups)

Restart inhibit for motors (ANSI 66, 49Rotor)

When cold or at operating temperature, motors may only be connected a certain number of times in succession. The start-up current causes heat development in the rotor which is monitored by the restart inhibit function.

Contrary to classical counting methods, in the restart inhibit function the heat and cooling phenomena in the rotor are simulated by a thermal replica. The rotor temperature is determined on the basis of the stator currents. Restart inhibit permits restart of the motor only if the rotor has enough thermal reserve for a completely new start. Fig. 11/9 illustrates the thermal profile for a permissible triple start out of the cold state. If the thermal reserve is too low, the restart inhibit function issues a blocking signal with which the motor starting circuit can be blocked. The blockage is cancelled again after cooling down and the thermal value has dropped below the pickup threshold.

As the fan provides no forced cooling when the motor is off, it cools down more slowly. Depending on the operating state, the protection function controls the cooling time constant. A value below a minimum current is an effective changeover criterion.

System disconnection

Take the case of in-plant generators feeding directly into a system. The incoming line is generally the legal entity boundary between the system owner and the in-plant generator. If the incoming line fails as the result of auto-reclosure, for instance, a voltage or frequency deviation may occur depending on the power balance at the feeding generator. Asynchronous conditions may arise in the event of connection, which may lead to damage on the generator or the gearing between the generator and the turbine. Besides the classic criteria such as voltage and frequency, the following two criteria are also applied (vector jump, rate-of-frequency-change protection).

Rate-of-frequency-change protection (ANSI 81)

The frequency difference is determined on the basis of the calculated frequency over a time interval. It corresponds to the momentary rate-of-frequency change. The function is designed so that it reacts to both positive and negative rate-of-frequency changes. Exceeding of the permissible rate-of-frequency change is monitored constantly. Release of the relevant direction depends on whether the actual frequency is above or below the rated frequency. In total, four stages are available, and can be used optionally.

Vector jump

Monitoring the phase angle in the voltage is a criterion for identifying an interrupted infeed. If the incoming line should fail, the abrupt current discontinuity leads to a phase angle jump in the voltage. This is measured by means of a delta process. The command for opening the generator or coupler circuit-breaker is issued if the set threshold is exceeded.

External trip coupling

For recording and processing of external trip information, there are 2 (for 7UM611) or 4 (for 7UM612) binary inputs. They are provided for information from the Buchholz relay or generator-specific commands and act like a protective function. Each input initiates a fault event and can be individually delayed by a timer.

Trip circuit supervision (ANSI 74TC)

One or two binary inputs can be used for monitoring the circuit-breaker trip coil including its incoming cables. An alarm signal occurs whenever the circuit is interrupted.

Phase rotation reversal

If the relay is used in a pumped-storage power plant, matching to the prevailing rotary field is possible via a binary input (generator/motor operation via phase rotation reversal).

2 pre-definable parameter groups

In the protection, the setting values can be stored in two data sets. In addition to the standard parameter group, the second group is provided for certain operating conditions (pumped-storage power stations). It can be activated via binary input, local control or DIGSI 4.

Lockout (ANSI 86)

All binary outputs (alarm or trip relays) can be stored like LEDs and reset using the LED reset key. The lockout state is also stored in the event of supply voltage failure. Reclosure can only occur after the lockout state is reset.

Fuse failure and other monitoring

The relay comprises high-performance monitoring for the hardware and software.

The measuring circuits, analog-digital conversion, power supply voltages, memories and software sequence (watch-dog) are all monitored.

The fuse failure function detects failure of the measuring voltage due to short-circuit or open circuit of the wiring or VT and avoids overfunction of the undervoltage elements in the protection functions.

The positive and negative-sequence system (voltage and current) are evaluated.

Filter time

All binary inputs can be subjected to a filter time (indication suppression).

Communication

With respect to communication, particular emphasis has been placed on high levels of flexibility, data integrity and utilization of standards common in energy automation. The design of the communication modules permits interchangeability on the one hand, and on the other hand provides openness for future standards (for example, Industrial Ethernet).

Local PC interface

The PC interface accessible from the front of the unit permits quick access to all parameters and fault event data. The use of the DIGSI 4 operating program during commissioning is particularly advantageous.

Rear-mounted interfaces

Two communication modules on the rear of the unit incorporate optional equipment complements and permit retrofitting. They assure the ability to comply with the requirements of different communication interfaces (electrical or optical) and protocols (IEC 60870, PROFIBUS, DIGSI).

The interfaces make provision for the following applications:

Service interface

In the RS485 version, several protection units can be centrally operated with DIGSI 4. By using a modem, remote control is possible. This provides advantages in fault clearance, in particular in unmanned substations.

System interface

This is used to communicate with a control or protection and control system and supports, depending on the module connected, a variety of communication protocols and interface designs.

IEC 60870-5-103

IEC 60870-5-103 is an internationally standardized protocol for communication with protection relays.

IEC 60870-5-103 is supported by a number of protection unit manufacturers and is used worldwide.

The generator protection functions are stored in the manufacturer-specific, published part of the protocol.

PROFIBUS-DP

PROFIBUS is an internationally standardized communication protocol (EN 50170). PROFIBUS is supported internationally by several hundred manufacturers and has to date been used in more than 1,000,000 applications all over the world.

With the PROFIBUS-DP, the protection can be directly connected to a SIMATIC S5/S7. The transferred data are fault data, measured values and information from or to the logic (CFC).

MODBUS RTU

MODBUS is also a widely utilized communication standard and is used in numerous automation solutions.

DNP 3.0

DNP 3.0 (Distributed Network Protocol version 3) is a messaging-based communication protocol. The SIPROTEC 4 units are fully Level 1 and Level 2 compliant with DNP 3.0. DNP 3.0 is supported by a number of protection device manufacturers.

Safe bus architecture

• RS485 bus

With this data transmission via copper conductors, electromagnetic interference influences are largely eliminated by the use of twisted-pair conductor. Upon failure of a unit, the remaining system continues to operate without any faults.

 Fiber-optic double ring circuit The fiber-optic double ring circuit is immune to electromagnetic interference. Upon failure of a section between two units, the communication system continues to operate without disturbance.

Fig. 11/10

IEC 60870-5-103 star-type RS232 copper conductor connection or fiber-optic connection

Fig. 11/11

PROFIBUS: RS485 copper conductors

Communication

System solution

SIPROTEC 4 is tailor-made for use in SIMATIC-based automation systems.

Via the PROFIBUS-DP, indications (pickup and tripping) and all relevant operational measured values are transmitted from the protection unit.

Via modem and service interface, the protection engineer has access to the protection devices at all times. This permits remote maintenance and diagnosis (cyclic testing).

Parallel to this, local communication is possible, for example, during a major inspection. Fig. 11/12 RS232/RS485 Electrical communication module

Fig. 11/13 820 nm fiber-optic communication module

Fig. 11/14 PROFIBUS communication module, optical, double-ring

Fig. 11/15 System solution: Communication

Direct generator - busbar connection

Fig. 11/16 illustrates the recommended standard connection if several generators supply one busbar. Phase-to-earth faults are disconnected by employing the directional earth-fault criterion. The earth-fault current is driven through the cables of the system. If this is not sufficient, an earthing transformer connected to the busbar supplies the necessary current (maximum approximately 10 A) and permits a protection range of up to 90 %. The earth-fault current should be detected by means of core-balance current transformers in order to achieve the necessary sensitivity. The displacement voltage can be used as earth-fault criterion during starting operations until synchronization is achieved.

Fig. 11/16

Direct generator - busbar connection with low-resistance earthing

If the generator neutral point has lowresistance earthing, the connection illustrated in Fig. 11/17 is recommended. In the case of several generators, the resistance must be connected to only one generator, in order to prevent circulating currents (3rd harmonic).

For selective earth-fault detection, the earth-current input should be looped into the common return conductor of the two current transformer sets (differential connection). The current transformers must be earthed at only one point. The displacement voltage $V_{\rm E}$ is utilized as an additional enabling criterion.

Balanced current transformers are desirable with this form of connection. In the case of higher generator power (for example, I_N approximately 2000 A), current transformers with a secondary rated current of 5 A are recommended.

Direct generator - busbar connection with high-resistance generator neutral earthing

With this system configuration, selective earth-fault detection is implemented on the basis of the lower fault currents through the differential connection of core-balance current transformers (see Figure 11/18). Secondary-side earthing must be effected at only one core-balance current transformer. The displacement voltage is to be utilized additionally as enable criterion.

The load resistor takes the form either of primary or of secondary resistor with neutral transformer. In the case of several generators connected to the busbar, again only one generator will be earthed via the resistor.

Unit connection with isolated star point

This configuration of unit connection is a variant to be recommended (see Figure 11/19). Earth-fault detection is effected by means of the displacement voltage. In order to prevent unwanted operation in the event of earth faults in the system, a load resistor must be provided at the broken delta winding. Depending on the plant (or substation), a voltage transformer with a high power (VA) may in fact be sufficient. If not, an earthing transformer should be employed. The available measuring winding can be used for the purpose of voltage measurement.

Rotor earth-fault protection can be implemented with the unassigned earth-fault current input. The 7XR61 coupling unit must be used for this purpose.

Fig. 11/19

Unit connection with neutral transformer

With this system configuration, disturbance voltage reduction and damping in the event of earth faults in the generator area are effected by a load resistor connected to generator neutral point. The maximum earth-fault current is limited to approximately 10 A. Configuration can take the form of a primary or secondary resistor with neutral transformer. In order to avoid low secondary resistance, the transformation ratio of the neutral transformer should be low. The higher secondary voltage can be reduced by means of a voltage divider.

Electrically, the circuit is identical to the configuration in Figure 11/19.

Connection with low-voltage generators

As is generally known, the low-voltage system is solidly earthed, so that the generator neutral point is connected to earth (see Figure 11/21). With this configuration, there is the risk that, as a result of the 3^{rd} harmonics forming a zero phase-sequence system, circulating currents will flow via the N-conductor. This must be limited by the generator or system configuration (reactor).

Otherwise, connection corresponds to the customary standard. In the case of residual current transformer design, it has to be ensured that the thermal current limit (1 s) of the $I_{\rm EE}$ input is restricted to 300 A.

Siemens SIP · Edition No. 6

Fig. 11/21

11/15

Connection of an asynchronous motor

The figure shows the standard connection of motors of medium capacity (500 kW to <(1-2) MW). In addition to the short-circuit protection, an earth-fault protection ($V_{\rm E}$; $I_{\rm E}$ inputs) is available.

As the busbar voltage is being monitored, starting of the motor is prevented if the voltage is too low or - in case of failure of infeed - the motor circuit-breaker is opened. Here, the wide range of frequency is advantangeous. For the detection of temperatures, 2 thermo-boxes (temperature monitoring boxes) can be connected via a serial interface.

Fig. 11/22

Voltage transformer in open delta connection (V-connection)

Protection can also be implemented on voltage transformers in open delta connection. Figure 11/23 shows the connection involved. If necessary, the operational measured values for the phase-to-earth voltages can be slightly asymmetrical. If this is disturbing, the neutral point (R16) can be connected to earth via a capacitor.

In the case of open delta connection, it is not possible to calculate the displacement voltage from the secondary voltages. It must be passed to the protection relay along a different path (for example, voltage transformer at the generator neutral point or from the earthing transformer).

Connection with two current transformers

This configuration is to be found in older systems with insulated or high-resistance star point. This connection is illustrated in Fig. 11/24. In the protection unit, the secondary currents are represented correctly and, in addition, the positive and the negative-sequence system are correctly calculated. Limits of application occur in the case of low-resistance and solid earthing.

Hardware

Analog inputs	
Rated frequency	50 or 60 Hz
Rated current <i>I</i> _N	1 or 5 A
Earth current, sensitive <i>I</i> _{Emax}	1.6 A
Rated voltage $V_{\rm N}$	100 to 125 V
Power consumption With $I_N = 1$ A With $I_N = 5$ A For sensitive earth current Voltage inputs (with 100 V)	Approx. 0.05 VA Approx. 0.3 VA Approx. 0.05 VA Approx. 0.3 VA
Capability in CT circuits Thermal (r.m.s. values) Dynamic (peak)	100 $I_{\rm N}$ for 1 s 30 $I_{\rm N}$ for 10 s 4 $I_{\rm N}$ continuous 250 $I_{\rm N}$ (one half cycle)
Earth current, sensitive	300 A for 1 s 100 A for 10 s 15 A continuous 750 A (one half cycle)
Capability in voltage paths	230 V continuous
Auxiliary voltage	
Rated auxiliary voltage	24 to 48 V DC 60 to 125 V DC 110 to 250 V DC and 115 V/230 V AC with 50/60 Hz
Permitted tolerance	-20 to +20 %
Superimposed (peak-to-peak)	≤ 15 %
Power consumption During normal operation 7UM611	Approx. 4 W

Approx. 4.5 W

Approx. 9.5 W

Approx. 12.5 W

7UM611 7UM612 During pickup with all inputs and outputs activated 7UM611 7UM612 Bridging time during auxiliary voltage failure

at $V_{aux} = 48 \text{ V}$ and $V_{aux} \ge 110 \text{ V}$ $\geq 50 \text{ ms}$ at $V_{aux} = 24$ V and $V_{aux} = 60$ V $\geq 20 \text{ ms}$

Binary inputs

Number	
7UM611	7
7UM612	15
3 pickup thresholds Range is selectable with jumpers	10 to 19 V DC or 44 to 88 V DC 88 to 176 V $\mathrm{DC}^{1)}$
Maximum permissible voltage	300 V DC
Current consumption, energized	Approx. 1.8 mA

Output relays Number 7UM611 12 (1 NO, 1 optional as NC, via jumper) 7UM612 20 (1 NO, 2 optional as NC, via jumper) Switching capacity 1000 W / VA Make 30 VA Break 40 W Break (for resistive load) Break (for L/R \leq 50 ms) 25 VA 250 V Switching voltage Permissible current 5 A continuous 30 A for 0.5 seconds LEDs Number RUN (green) 1 ERROR (red) 1 Assignable LED (red) 7UM611 7 7UM612 14 Unit design 7XP20 housing For dimensions see dimension drawings, part 15 Degree of protection acc. to EN 60529 IP 51 For surface-mounting housing For flush-mounting housing IP 51 Front Rear IP 50 For the terminals IP 2x with terminal cover put on Weight Flush mounting housing Approx. 5.5 kg 7UM611 (1/3 x 19") 7UM612 (1/2 x 19") Approx. 7 kg Surface mounting housing 7UM611 (1/3 x 19") Approx. 7.5 kg 7UM612 (1/2 x 19") Approx. 12 kg

Technical data

Serial interfaces

Operating interface for DIGSI 4		
Connection	Non-isolated, RS232, front panel; 9-pin subminiature connector	
Baud rate	4800 to 115200 baud	
Time synchronization IRIG-B / DCF 77	signal (Format IRIG-B000)	
Connection	9-pin subminiature connector, terminal with surface-mounting housing	
Voltage levels	Selectable 5 V or 12 V or 24 V	
Service/modem interface for DIGSI 4/modem/service		
Isolated RS232/RS485 Test voltage Distance for RS232 Distance for RS485	9-pin subminiature connector 500 V / 50 Hz Max. 15 m Max. 1000 m	
Fiber-optic cable Optical wavelength Permissible path attenuation Bridgeable distance	Integrated ST-connector $\lambda = 820 \text{ nm}$ Max. 8 dB for glass-fiber $62.5/125 \mu m$ Max. 1.5 km	

System interface IEC 60870-5-103 protocol, PROFIBUS-DP, MODBUS RTU

Isolated RS232/RS485 Baud rate Test voltage Distance for RS232 Distance for RS485

PROFIBUS RS485 Test voltage Baud rate Distance

PROFIBUS fiber-optic Only for flush-mounting housing For surface-mounting housing Baud rate Optical wavelength Permissible path attenuation Distance 9-pin subminiature connector 4800 to 115200 baud 500 V / 50 Hz Max. 15 m Max. 1000 m

500 V / 50 Hz Max. 12 Mbaud 1000 m at 93.75 kBaud; 100 m at 12 Mbaud

ST connector Optical interface with OLM¹⁾ Max. 1.5 Mbaud $\lambda = 820$ nm Max. 8 dB for glass-fiber 62.5/125 μ m 1.6 km (500 kB/s) 530 m (1500 kB/s)

Electrical tests Specifications Standards IEC 60255 (product standards) ANSI/IEEE C37.90.0/.1/.2 UL 508 DIN 57435, part 303 For further standards see below. Insulation tests Standards IEC 60255-5 Voltage test (100 % test) 2.5 kV (r.m.s.), 50/60 Hz All circuits except for auxiliary supply, binary inputs communication and time synchronization interfaces Voltage test (100 % test) 3.5 kV DC Auxiliary voltage and binary inputs Voltage test (100 % test) 500 V (r.m.s. value), 50/60 Hz RS485/RS232 rear side communication interfaces and time synchronization interface Impulse voltage test (type test) 5 kV (peak); 1.2/50 µs; 0.5 J; 3 positive and 3 negative impulses All circuits except for communication interfaces and time synchroniat intervals of 5 s zation interface, class III EMC tests for noise immunity; type test Standards IEC 60255-6, IEC 60255-22 (product standards) EN 50082-2 (generic standard) DIN 57435 part 303 High frequency test 2.5 kV (peak value), 1 MHz; IEC 60255-22-1, class III $\tau = 15$ ms, 400 pulses per s; and VDE 0435 part 303, class III duration 2 s Electrostatic discharge 8 kV contact discharge; 15 kV air IEC 60255-22-2, class IV discharge; both polarities; EN 61000-4-2, class IV 150 pF; $R_i = 330 \Omega$ Irradiation with RF field, 10 V/m; 27 to 500 MHz non-modulated IEC 60255-22-3 (report), class III Irradiation with RF field, 10 V/m; 80 to 1000 MHz; 80 % AM; amplitude-modulated 1 kHz IEC 61000-4-3, class III Irradiation with RF field, 10 V/m; 900 MHz; repetition pulse-modulated, IEC 61000-4-3/ frequency 200 Hz; duty cycle 50 % ENV 50204, class III Fast transient interference bursts 4 kV; 5/50 ns; 5 kHz; burst length = IEC 60255-22-4, IEC 61000-4-4, 15 ms; repetition rate 300 ms; class IV both polarities;

 $R_i = 50 \Omega$; test duration 1 min

1) Conversion with external OLM

For fiber-optic interface please complete order number at 11th position with 4 (FMS RS485) or 9 and Order code LOA (DP RS485) and additionally order:

For single ring: SIEMENS OLM 6GK1502-3AB10 For double ring: SIEMENS OLM 6GK1502-4AB10

Technical data

EMC tests for noise immunity; type tests High-energy surge voltages Impulse: 1.2/50 µs

High-energy surge voltages (SURGE), IEC 61000-4-5 Installation, class III Auxiliary supply

Measurement inputs, binary inputs and relay outputs

Line-conducted HF, amplitudemodulated IEC 61000-4-6, class III

IEC 61000-4-6, class III

Magnetic field with power frequency IEC 61000-4-8, class IV; IEC 60255-6

Oscillatory surge withstand capability ANSI/IEEE C37.90.1

Fast transient surge withstand capability

ANSI/IEEE C37.90.1

Radiated electromagnetic interference

ANSI/IEEE C37.90.2

Damped oscillations IEC 60894, IEC 61000-4-12

EMC tests for interference emission; type tests

Standard

Conducted interference voltage on lines only auxiliary supply IEC-CISPR 22

Interference field strength IEC-CISPR 22

2.5 kV (peak value), polarity alter-

Common (longitudinal) mode:

Differential (transversal) mode:

Common (longitudinal) mode:

Differential (transversal) mode:

2.5 to 3 kV (peak); 1 to 1.5 MHz

Duration 2 s; $R_i = 150$ to 200 Ω

4 to 5 kV; 10/150 ns; 50 surges per

damped wave; 50 surges per second;

10 V; 150 kHz to 80 MHz;

2 kV; 12 Ω, 9 μF

1 kV; 2 Ω, 18 μF

2 kV; 42 Ω, 0.5 μF

1 kV; 42 Ω, 0.5 μF

80 % AM; 1 kHz

0.5 mT; 50 Hz

30 A/m continuous;

300 A/m for 3 s; 50 Hz

second; both polarities;

Duration 2 s; $R_i = 80 \Omega$

35 V/m; 25 to 1000 MHz

nating 100 kHz, 1 MHz, 10 and 50 MHz, $R_i = 200 \Omega$

EN 50081-1 (generic standard) 150 kHz to 30 MHz Limit class B

30 to 1000 MHz Limit class B

Mechanical stress tests

Vibration, shock stress and seismic vibration

During operation Standards Vibration IEC 60255-21-1, class 2 IEC 60068-2-6

Shock IEC 60255-21-2, class 1 IEC 60068-2-27

Seismic vibration IEC 60255-21-2, class 1 IEC 60068-3-3

During transport

Standards

Vibration IEC 60255-21-1, class 2 IEC 60068-2-6

Shock IEC 60255-21-2, class 1 IEC 60068-2-27

Continuous shock IEC 60255-21-2, class 1 IEC 60068-2-29 IEC 60255-21 and IEC 60068 Sinusoidal 10 to 60 Hz: ± 0.075 mm amplitude; 60 to 150 Hz: 1 g acceleration Frequency sweep 1 octave/min 20 cycles in 3 orthogonal axes Half-sinusoidal

Acceleration 5 *g*, duration 11 ms, 3 shocks each in both directions of the 3 axes

Sinusoidal 1 to 8 Hz: ± 3.5 mm amplitude (horizontal axis) 1 to 8 Hz: ± 1.5 mm amplitude (vertical axis) 8 to 35 Hz: 1 g acceleration (horizontal axis) 8 to 35 Hz: 0.5 g acceleration (vertical axis) Frequency sweep 1 octave/min 1 cycle in 3 orthogonal axes

IEC 60255-21 and IEC 60068-2

Sinusoidal 5 to 8 Hz: ±7.5 mm amplitude; 8 to 150 Hz: 2 g acceleration Frequency sweep 1 octave/min 20 cycles in 3 orthogonal axes

Half-sinusoidal Acceleration 15 g, duration 11 ms, 3 shocks each in both directions 3 axes

Half-sinusoidal Acceleration 10 g, duration 16 ms, 1000 shocks in both directions of the 3 axes

Climatic stress tests

Temperatures

remperatures	
Type-tested acc. to IEC 60068-2-1 and -2, test Bd, for 16 h	–25 °C to +85 °C / –13 °F to +185 °F
Temporarily permissible operating temperature, tested for 96 h	–20 °C to +70 °C / –4 °F to +158 °F
Recommended permanent operating temperature acc. to IEC 60255-6	–5 °C to +55 °C / +25 °F to +131 °F
 Limiting temperature during permanent storage 	–25 °C to +55 °C / –13 °F to +131 °F
 Limiting temperature during transport 	–25 °C to +70 °C / –13 °F to +158 °F
Humidity	
Permissible humidity stress	Annual average \leq 75 % relative hu-

is not permitted

midity; on 56 days a year up to 93

% relative humidity; condensation

Permissible It is recommended to arrange the units in such a way that they are not exposed to direct sunlight or pronounced temperature changes that could cause condensation

Functions

General	G	īе	n	e	ra	I
---------	---	----	---	---	----	---

General	
Frequency range	11 to 69 Hz
Definite-time overcurrent protection,	directional (ANSI 50, 51, 67)
Setting ranges	
Overcurrent <i>I</i> >, <i>I</i> >>	0.1 to 8 A (steps 0.01 A); 5 times at $I_{\rm N}$ = 5 A
Time delay T	0 to 60 s (steps 0.01 s) or indefinite
Undervoltage seal-in V<	10 to 125 V (steps 0.1 V)
Seal-in time of V<	0.1 to 60 s (steps 0.01 s)
Angle of the directional element (at <i>I</i> >)	- 90 ° to + 90 ° (steps 1 °)
Times	
Pickup time I>, I>>	
At 2 times of set value	Approx. 35 ms
At 10 times of set value	Approx. 25 ms
Drop-off time <i>I</i> >, <i>I</i> >>	Approx. 50 ms
Drop-off ratio Drop-off ratio <i>V</i> <	<i>I</i> >: 0.95; <i>I</i> >>: 0.9 to 0.99 (steps 0.01) Approx. 1.05
Tolerances	
Current pickup (starting) I>,	1 % of set value or 10/50 mA
Undervoltage seal-in V<	1 % of set value or 0.5 V
Angle of the directional element	1 °
Time delays	1 % or 10 ms

Inverse-time overcurrent protection (ANSI 51V)

-	
Setting ranges	
Pickup overcurrent <i>I</i> _P	0.1 to 4 A (steps 0.01 A); 5 times at $I_{\rm N} = 5$ A
Time multiplier IEC-characteristics <i>T</i>	0.05 to 3.2 s (steps 0.01 s) or indefinite
Time multiplier ANSI-characteristics D	0.5 to 15 (steps 0.01) or indefinite
Undervoltage release V<	10 to 125 V (steps 0.1 V)
Trip characteristics	
IEC	Normal inverse; very inverse;
ANSI	Inverse; moderately inverse; very inverse; extremely inverse; definite inverse
Pickup threshold Drop-off threshold	Approx. 1.1 I_P Approx. 1.05 I_P for $I_P/I_N \ge 0.3$
Tolerances	
Pickup threshold <i>I</i> P	1 % of set value 10/50 mA
Pickup threshold V<	1 % of set value or 0.5 V
Time for $2 \le I/I_P \le 20$	5 % of nominal value + 1 % current
	tolerance or 40 ms

Stator overload protection, thermal (ANSI 49)

Regarding trip time

Setting ranges	
Factor k according to	0.5 to 2.5 (steps 0.01)
IEC 60255-8	
Time constant	30 to 32000 s (steps 1 s)
Time delay factor at standstill	1 to 10 (steps 0.01)
Alarm overtemperature	70 to 100 % related to the trip
$\Theta_{\text{Alarm}} / \Theta_{\text{Trip}}$	temperature (steps 1 %)
Overcurrent alarm stage I _{Alarm}	0.1 to 4 A (steps 0.01 A); 5 times at
-	$I_{\rm N} = 5 \text{ A}$
Temperature at I _N	40 to 200 °C (steps 1 °C)
-	or 104 to 392 °F (steps 1 °F)
Scaling temperature of cooling	40 to 300 °C (steps 1 °C)
medium	or 104 to 572 °F (steps 1 °F)
Reset time at emergency start	20 to 150000 s (steps 1 s)
Drop-off ratio	
Θ/Θτ	Drop-off with Quart
Θ/Θ_{A1}	Approx 0.99
U/U _{A1}	Approx 0.95
1/1 Alarm	пррюх. 0.95
Tolerances	
Regarding k x $I_{\rm P}$	2 % or 10/50 mA; class 2 %

2 % or 10/50 mA; class 2 % according to IEC 60255-8 3 % or 1 s: class 3 % according to IEC 60255-8 for $I/(k I_N) > 1.25$

11

Negative-sequence protection (ANSI 46)

Setting ranges	
Permissible negative sequence	3 to 30 % (steps 1 %)
I_2 perm. $/I_N$	-
Definite time trip stage $I_2 >>/I_N$	10 to 100 % (steps 1 %)
Time delays T_{Alarm} ; $T_{I2} >>$	0 to 60 s (steps 0.01 s) or indefinite
Negative-sequence factor k	2 to 40 s (steps 0.1 s)
Cooling down time T _{Cooling}	0 to 50000 s (steps 1 s)
Times	
Pickup time (definite stage)	Approx. 50 ms
Drop-off time (definite stage)	Approx. 50 ms
Drop-off ratios I_2 perm.; $I_2 >>$	Approx. 0.95
Drop-off ratio thermal stage	Drop-off at fall below of I_2 perm.
Tolerances	
Pickup values I_2 perm.; $I_2 >>$	3 % of set value or 0.3 % negative
	sequence
Time delays	1 % or 10 ms
Thermal characteristic	5 % of nominal value +1 % current
Time for $2 \le I_2/I_2$ perm. ≤ 20	tolerance or 600 ms
Underexcitation protection (ANSI 40)	
Setting ranges	
Conductance thresholds 1/xd	0.25 to 3.0 (steps 0.01)

setting ranges	
Conductance thresholds 1/xd	0.25 to 3.0 (steps 0.01)
characteristic (3 characteristics)	
Inclination angle $\alpha_1, \alpha_2, \alpha_3$	50 to 120 ° (steps 1 °)
Time delay T	0 to 50 s (steps 0.01 s) or indefinite
Гimes	
Stator criterion 1/xd	Approx. 60 ms
characteristic; α	
Undervoltage blocking	Approx. 50 ms
Drop-off ratio	
Stator criterion 1/xd	Approx. 0.95
characteristic; α	
Undervoltage blocking	Approx. 1.1
Folerances	
Stator criterion 1/xd	3 % of set value
characteristic	5 / 0 01 000 / unde
Stator criterion α	1 ° electrical
Undervoltage blocking	1 % or 0.5 V
Time delane T	1 % 01 0.5 %
Time delays 1	1 % OF 10 IIIS
Reverse-nower protection (ANSL 32R)	

Setting ranges Reverse power $P_{\text{Rev.}}$ >/ S_{N} Time delays T-0.5 to -30 % (steps 0.01 %) 0 to 60 s (steps 0.01 s) or indefinite Pickup time Approx. 360 ms (50 Hz); Approx. 300 ms (50 Hz), Approx. 300 ms (60 Hz) Approx. 360 ms (50 Hz); Approx. 300 ms (60 Hz) Drop-off time Drop-off ratio P_{Rev.}> Approx. 0.6 Reverse power *P*_{Rev.}> Time delays *T* 0.25 % $S_{\rm N}$ \pm 3 % set value 1 % or 10 ms

Forward-power protection (ANSI 32F)

	/
Setting ranges Forward power P _{Forw.} N Forward power P _{Forw.} >/S _N Time delays T	0.5 to 120 % (steps 0.1 %) 1 to 120 % (steps 0.1 %) 0 to 60 s (steps 0.01 s) or indefinite
Times Pickup time (accurate measuring) Pickup time (fast measuring) Drop-off time (accurate measuring) Drop-off time (fast measuring)	Approx. 360 ms (50 Hz); Approx. 300 ms (60 Hz) Approx. 60 ms (50 Hz); Approx. 50 ms (60 Hz) Approx. 360 ms (50 Hz); Approx. 300 ms (60 Hz) Approx. 60 ms (50 Hz); Approx. 50 ms (60 Hz)
Drop-off ratio <i>P</i> _{Forw.} < Drop-off ratio <i>P</i> _{Forw.} >	1.1 or 0.5 % of $S_{\rm N}$ Approx. 0.9 or –0.5 % of $S_{\rm N}$
Tolerances Active power <i>P</i> _{Forw.} <, <i>P</i> _{Forw.} >	0.25 % $S_N \pm 3$ % of set value at $Q < 0.5 S_N$ at accurate measuring 0.5 % $S_N \pm 3$ % of set value at $Q < 0.5 S_N$ at fast measuring 1 % or 10 ms
Impedance protection (ANSI 21)	1 /0 01 10 113
Setting ranges	
Overcurrent pickup <i>I</i> >	0.1 to 4 A (steps 0.01 A); 5 times at $I_{\rm N} = 5$ A
Undervoltage seal-in V< Impedance Z1 (related to IN =1 A)	10 to 125 V (steps 0.1V) 0.05 to 130 Ω (steps 0.01 Ω)
Impedance Z1B (related to $I_N = 1$ A)	0.05 to 65 Ω (steps 0.01 Ω)
Impedance Z2 (related to <i>I</i> _N =1 A) Time delays <i>T</i>	0.05 to 65 Ω (steps 0.01 Ω) 0 to 60 s (steps 0.01 s) or indefinite
, Times	
Shortest tripping time Drop-off time	Approx. 40 ms Approx. 50 ms
Drop-off ratio Overcurrent pickup <i>I></i> Undervoltage seal-in <i>V</i> <	Approx. 0.95 Approx. 1.05
Tolerances Overcurrent pickup <i>I</i> > Undervoltage seal-in <i>V</i> < Impedance measuring Z1, Z2 Time delays <i>T</i>	1 % of set value. 10/50 mA 1 % of set value. or 0.5 V $ \Delta Z/Z ≤ 5$ % for 30 ° ≤ $φ_K ≤ 90$ ° 1 % or 10 ms
Undervoltage protection (ANSI 27)	
Setting range Undervoltage pickup V<, V<< (positive sequence as phase-to- phase values)	10 to 125 V (steps 0.1 V)
Time delays <i>T</i> Times	0 to 60 s (steps 0.01 s) or indefinite
Pickup time V<, V<< Drop-off time V<, V<<	Approx. 50 ms Approx. 50 ms
Drop-off ratio V<, V<<	1.01 to 1.1 (steps 0.01)
Tolerances Voltage limit values Time delays T	1 % of set value or 0.5 V 1 % or 10 ms

Times

Tolerances

Technical data

Overvoltage protection (ANSI 59)

Setting ranges Overvoltage pickup V>, V>> (maximum phase-to-phase voltage or phase-to-earthvoltage) Time delays T Time

Pickup times V>, V>> Drop-off times V>, V>> Drop-off ratio V>, V>>

Tolerances Voltage limit value Time delays *T*

Frequency protection (ANSI 81)

Setting ranges Steps; selectable f>, f<Pickup values f>, f<Time delays TUndervoltage blocking $V_1<$ Times Pickup times f>, f<

Drop-off times f>, f<Drop-off difference Δf

Drop-off ratio V₁<

Tolerances Frequency Undervoltage blocking Time delays *T* 30 to 170 V (steps 0.1 V)

0 to 60 s (steps 0.01 s) or indefinite

Approx. 50 ms Approx. 50 ms 0.9 to 0.99 (steps 0.01)

1 % of set value 0.5 V 1 % or 10 ms

4 40 to 65 Hz (steps 0.01 Hz) 0 to 60 s (steps 0.01 s) or indefinite 10 to 125 V (steps 0.1 V)

Approx. 100 ms Approx. 100 ms Approx. 20 mHz Approx. 1.05

 $\begin{array}{l} 10 \text{ mHz (at } V\!\!>\!0.5 V_{\mathrm{N}}) \\ 1 \ \% \text{ of set value or } 0.5 \text{ V} \\ 1 \ \% \text{ or } 10 \text{ ms} \end{array}$

Overexcitation protection (Volt/Hertz) (ANSI 24)

Setting ranges

Pickup threshold alarm stage Pickup threshold V/f>-stage Time delays TCharacteristic values of V/fand assigned times t(V/f)Cooling down time $T_{Cooling}$

Times (Alarm and *V*/*f*>>-stage) Pickup times at 1.1 of set value Drop-off times

Drop-off ratio (alarm, trip)

Tolerances

V/f-pickup Time delays *T* Thermal characteristic (time) 1 to 1.2 (steps 0.01) 1 to 1.4 (steps 0.01) 0 to 60 s (steps 0.01 s) or indefinite 1.1/1.15/1.2/1.25/1.3/1.35/1.4 0 to 20000 s (steps 1 s) 0 to 20000 s (steps 1 s)

Approx. 60 ms Approx. 60 ms 0.95

3 % of set value 1 % or 10 ms 5 % rated to *V*/*f* or 600 ms

90 % stator earth-fault protection, non-directional, directional (ANSI 59N, 64G, 67G)

Setting ranges Displacement voltage $V_0 >$ Earth current $3I_0 >$ Angle of direction element Time delays T	5 to 125 V (steps 0.1 V) 2 to 1000 mA (steps 1 mA) 0 to 360 ° (steps 1 °) 0 to 60 s (steps 0,01 s) or indefinite
Times Pickup times $V_0>$, $3I_0>$ Drop-off times $V_0>/3I_0>$	Approx. 50 ms Approx. 50 ms
Drop-off ratio <i>V</i> ₀ >, 3 <i>I</i> ₀ > Drop-off difference angle	0.7 10 ° directed to power system
Tolerances Displacement voltage Earth current Time delays T	1 % of set value or 0.5 V 1 % of set value or 0.5 mA 1 % or 10 ms
Sensitive earth-fault protection (ANSI	50/51GN, 64R)
Setting ranges Earth current pickup <i>I</i> _{EE} >, <i>I</i> _{EE} >> Time delays <i>T</i> Measuring circuit supervision <i>I</i> _{EE} <	2 to 1000 mA (steps 1 mA) 0 to 60 s (steps 0.01 s) or indefinite 1.5 to 50 mA (steps 0.1 mA)
Times Pickup times Drop-off times Measuring circuit supervision	Approx. 50 ms Approx. 50 ms Approx. 50 ms
Drop-off ratio <i>I</i> _{EE} >, <i>I</i> _{EE} >> Drop-off ratio measuring circuit supervision <i>I</i> _{EE} <	0.95 or 1 mA Approx. 1.1 or 1 mA
Tolerances Earth current pickup Time delays T	1 % of set value or 0.5 mA 1 % or 10 ms
100 % stator earth-fault protection w	ith 3 harmonics

100 % stator earth-fault protection with 3 harmonics (ANSI 59TN, 27TN (3 H.))

Time delay T

Setting ranges	
Displacement voltage	0.2 to 40 V (steps 0.1 V)
V0 (3 rd harm.)>, V0 (3 rd harm.)<	
Time delay T	0 to 60 s (steps 0.01 s) or indefinite
Active-power release	10 to 100 % (steps 1 %) or indefinite
Positive-sequence voltage release	50 to 125 V (steps 0.1 V) or indefinite
Times	
Pickup time	Approx. 80 ms
Drop-off time	Approx. 80 ms
Drop-off ratio	
Undervoltage stage $V_{0 (3^{rd} harm.)} <$	Approx. 1.4
Overvoltage stage $V_{0 (3^{rd} harm.)}$ >	Approx. 0.6
Active-power release	Approx. 0.9
Positive-sequence voltage release	Approx. 0.95
Tolerances	
Displacement voltage	3 % of set value or 0.1 V

3 % of set value or 0.1 V 1 % or 10 ms

Breaker failure protection (ANSI 50BF)

Setting ranges Current thresholds <i>I</i> >BF Time delay BF- <i>T</i>	0.04 to 1 A (steps 0.01 A) 0.06 to 60 s (steps 0.01 s) or indefinite
Time Pickup time Drop-off time	Approx. 50 ms Approx. 50 ms
Tolerances Current threshold <i>I</i> >BF/ <i>I</i> _N Time delay <i>T</i>	1 % of set value or 10/50 mA 1 % or 10 ms
Inadvertent energizing protection (A	NSI 50, 27)
Setting ranges Current pickup <i>I</i> >>>	0.1 to 20 A (steps 0.1 A); 5 times at I_{N} = 5 A
Time delay Drop-off time	0 to 60 s (steps 0.01 s) or indefinite 0 to 60 s (steps 0.01 s) or indefinite
Times Reaction time Drop-off time	Approx. 25 ms Approx. 35 ms
Drop-off ratio <i>I</i> >>> Drop-off ratio <i>V</i> ₁ <	Approx. 0.8 Approx. 1.05
Tolerances Current pickup Undervoltage seal-in V ₁ < Time delay <i>T</i>	5 % of set value or 20/100 mA 1 % of set value or 0.5 V 1 % or 10 ms
External trip coupling	
Number of external trip couplings	2 for 7UM611 4 for 7UM612
Trip circuit supervision (ANSI 74TC)	
Number of supervised trip circuits (only 7UM612)	1
Starting time supervision for motors ((ANSI 48)
Setting ranges Motor starting Current Istart may /IN	1.0 to 16 (steps 0.01)
Starting current pickup I _{Start, pickup.} /I _N	0.6 to 10 (steps 0.01)
Permissible starting time T _{Start max} Permissible locked rotor	1.0 to 180 s (steps 0.1 s) 0.5 to 120 s (steps 0.1 s) or indefinite
time T _{Blocking}	
Times	Depending on the settings
Drop-off ratio	Approx. 0.95

Tolerances Current threshold Time delays T

1.0 to 16 (steps 0.01)
0.6 to 10 (steps 0.01)
1.0 to 180 s (steps 0.1 s)
0.5 to 120 s (steps 0.1 s) or indefinit
Depending on the settings
Арргох. 0.95
1 % of set value, or 1 % of $I_{\rm N}$

5 % or 30 ms

Restart inhibit for motors (ANSI 66, 49 Rotor)

otting ranges	
Motor starting	3.0 to 10.0 (steps 0.01)
current I _{Start max} /I _N	(
Permissible starting	3.0 to 120.0 s (steps 0.1 s)
time T _{Start max} Rotor temperature equalization	0 to 60.0 min (steps 0,1 min)
time T _{Equali.} Minimum restart inhibit	0.2 to 120.0 min (steps 0.1 min)
time T _{Restart, min} Permissible number of warm	1 to 4
starts <i>n</i> W Difference between warm and	1 to 2
cold starts $n_{\rm K}$ - $n_{\rm W}$	1 10 2
Extensions of time constants (running and stop)	1.0 to 100.0
Tolerances	
Time delays T	1 % or 0.1 ms
Rate-of-frequency-change protection	(ANSI 81R)
Setting ranges	
Steps, selectable $+df/dt >$; - df/dt	4
Pickup value df/dt	0.2 to 10 Hz/s (steps 0.1 Hz/s); 0 to 60 s (steps 0.01 s) or indefinite
Undervoltage blocking $V_1 <$	10 to 125 V (steps 0.1 V)
Times	
Pickup times df/dt	Approx. 200 ms
Drop-off times d <i>f</i> /d <i>t</i>	Approx. 200 ms
Drop-off ratio dƒ/d <i>t</i> Drop-off ratio V<	Approx. 0.95 or 0.1 Hz/s Approx. 1.05
Folerances	
Rate-of-frequency change	Approx. 0.1 Hz/s at $V > 0.5 V_N$
Time delays T	1 % of set value of 0.5 v 1 % or 10 ms
/ector iump supervision (voltage)	
Setting ranges	
Stage $\Delta \varphi$	0.5 ° to 15 ° (steps 0.1 °)
Time delay <i>T</i>	0 to 60 s (steps 0.01 s) or indefinite
Undervoltage blocking $V_1 <$	10 to 125 V (steps 0.1 V)
Voctor jump	0.3° at V> 0.5 V/
Undervoltage blocking	1% of set value or 0.5 V
Time delay T	1 % or 10 ms
ncoupling of temperature via serial in	nterface (thermo-box) (ANSI 38)
Number of measuring sensors	6 or 12
Cemperature thresholds	40 to 250 °C or 100 to 480 °F (steps 1 °C or 1 °F)
Sensor types	Pt100; Ni 100, Ni 120
/1	

Technical data

Operational measured values

Description Currents Tolerance

Voltages

Tolerance

Impedance Tolerance Power

Tolerance

Phase angle Tolerance

Power factor Tolerance

Frequency Tolerance

Overexcitation Tolerance

Thermal measurement Tolerance

Min./max. memory

Memory

Reset manual

Values

Positive sequence voltage Positive sequence current Active power Reactive power Frequency Displacement voltage (3rd harmonics)

Energy metering

Meter of 4 quadrants Tolerance

Fault records

Number of fault records

Instantaneous values Storage time Sampling interval

Channels

R.m.s. values Storage period Sampling interval

Channels

Primary; secondary or per unit (%)
I_{L1} ; I_{L2} ; I_{L3} ; I_{EE} ; I_1 ; I_2 0.2 % of measured values or ± 10 mA ± 1 digit
$ \begin{array}{l} V_{L1}; \ V_{L2}; \ V_{L3}; \ V_E; \ V_{L12}; \ V_{L23}; \ V_{L31}; \\ V_1; \ V_2 \\ 0.2 \ \% \ of \ measured \ values \ or \ \pm \ 0.2 \ V \\ \pm \ 1 \ digit \end{array} $
R, X 1 %
S; P; Q 1 % of measured values or \pm 0.25 % S _N
φ <0.1 °
$ cos \varphi (p.f.) 1 \% \pm 1 digit $
f 10 mHz at (V> 0.5 V _N ; 40 Hz < f < 65 Hz)
V/f; 1 %
$ \Theta_{L1}; \Theta_{L2}, \Theta_{L3}, \Theta_{I2}, \Theta_{V/f}, $
Measured values with date and time Via binary input Via key pad Via communication
V_1 I_1 P Q f $V_{E(3^{rd} harm.)}$
W _{P+} ; W _{P-} ; W _{Q+} ; W _{Q-} 1 %

Max. 8 fault records Max. 5 s Depending on the actual frequency (e. g. 1.25 ms at 50 Hz; 1.04 ms at 60 Hz)) *v*L1, *v*L2, *v*L3, *v*E; *i*L1, *i*L2, *i*L3, *i*EE

Max. 80 s Fixed (20 ms at 50 Hz; 16.67 ms at 60 Hz) V₁, V_E, *I*₁, *I*₂, *I*_{EE}, *P*, *Q*, *φ*, *f*-*f*_n

Additional functions

Fault event logging	Storage of events of the last 8 faults Puffer length max. 600 indications Time solution 1 ms
Operational indications	Max. 200 indications Time solution 1 ms
Elapsed-hour meter	Up to 6 decimal digits (criterion: current threshold)
Switching statistics	Number of breaker operation Phase-summated tripping current

CE conformity

This product is in conformity with the Directives of the European Communities on the harmonization of the laws of the Member States relating to electromagnetic compatibility (EMC Council Directive 89/336/EEC) and electrical equipment designed for use within certain voltage limits (Council Directive 73/23/EEC).

This unit conforms to the international standard IEC 60255, and the German standard DIN 57435/Part 303 (corresponding to VDE 0435/Part 303).

The unit has been developed and manufactured for application in an industrial environment according to the EMC standards.

This conformity is the result of a test that was performed by Siemens AG in accordance with Article 10 of the Council Directive complying with the generic standards EN 50081-2 and EN 50082-2 for the EMC Directive and standard EN 60255-6 for the "low-voltage Directive".

Selection and ordering data

Selection and ordering data	Description	Order No.	Order Code
	7UM61 multifunction generator and		
	motor protection relay	7UM6100-0000]-00000000
	Housing, binary inputs and outputs		TTT TTT
	Housing 1/3 19", / BI, 11 BO, 1 live status contact		
	Housing 1/2 19", 15 BI, 19 BO, 1 live status contact	2	
	Current transformer I		
	$\frac{1}{1}$ A ¹ /	<u> </u>	
	5 A''	5	
	Rated auxiliary voltage (power supply, indication voltage)		
	24 to 48 V DC, threshold binary input 19 V ³	2	
	$\frac{60 \text{ to } 125 \text{ V DC}^2}{125 \text{ V DC}^2}$, threshold binary input 19 V ³	3) -	
	$110 \text{ to } 220 \text{ V DC}^{27}$, 115 to 230 V AC, threshold binary input 88	<u>3V³</u>	
	Unit version		
	For panel surface mounting, 2 tier screw-type terminals top/bo	ottom B	
	For panel flush mounting, plug-in terminals (2-/3- pin connec	ctor) D	
	Flush-mounting housing, screw-type terminal		
	(direct connection, ring-type cable lugs)	E	
	Region-specific default setting/function and language settings		
	Region DE, 50 Hz, IEC characteristics, language: German,		
	(language can be selected)	A	
	Region World, 50/60 Hz, IEC/ANSI characteristics, language:	English (UK),	
	(language can be selected)	В	
	Region US, 60 Hz, ANSI characteristics, language: English (US	5),	
	(language can be selected)	C	
	System interface (rear of units)		
	No system interface	0	
	IEC 60870-5-103 protocol, electrical RS232	1	
	IEC 60870-5-103 protocol, electrical RS485	2	
	IEC 60870-5-103 protocol, optical 820 nm, ST connector	3	
	PROFIBUS-DP slave, electrical RS485	9	
	PROFIBUS-DP slave, optical 820 nm, double ring, ST connect	tor* 9	L O B
	MODBUS, electrical RS485	9	L 0 D
	MODBUS, optical 820 nm, ST connector*	9	<i>L O E</i>
	DNP 3.0, electrical RS485	9	L 0 G
	DNP 3.0, optical 820 nm, ST connector*	9	L 0 H
	DIGSI 4/modem interface (rear of unit)		
	No interface	0	
	DIGSI 4, electrical RS232	1	
	DIGSI 4, temperature monitoring box, electrical RS485	2	
	DIGSI 4, temperature monitoring box, optical 820 nm, ST con	nnector 3	
	Measuring functions		
	Without		0
	Min /max values energy metering		3
1) Rated current can be selected by	wint, max. values, energy increasing		
means of jumpers.	Functions		
2) Transition between the two auxiliary	Generator Basic		A
voltage ranges can be selected by	Generator Standard		В
means of jumpers.	Generator Full		С
3) The binary input thresholds can be	Motor, asynchronous		F
selected in stages by means of			
jumpers.	Additional functions		
4) For more detailed information on the functions see Table 11/1 on page 11/4	Without		<u>A</u>
* Not with position 9 - P: :f 9 - "P"	Network decoupling $(df / dt \text{ and vector jump})$		E
please order 7UM61 unit with RS485			

ers.

port and separate fiber-optic convert-

Description	Order No.
DIGSI 4	
Software for configuration and operation of Siemens protection units	
running under MS Windows 2000/XP Profesional Edition	
device templates, Comtrade Viewer, electronic manual included	
as well as "Getting started" manual on paper, connecting cables (copper)	
Basis	
Full version with license for 10 computers, on CD-ROM	
(authorization by serial number)	7XS5400-0AA00
Professional	
DIGSI 4 Basis and additionally SIGRA (fault record analysis),	
CFC Editor (logic editor), Display Editor (editor for default	7////
and control displays) and DIGSI 4 Remote (remote operation)	/XS5402-0AA00
SIGRA 4	
(generally contained in DIGSI Professional, but can be ordered additionally)	
Software for graphic visualization, analysis and evaluation of fault records.	
Can also be used for fault records of devices of other manufacturers	
(Comtrade format). Running under MS Windows 2000/XP Professional Edition.	
Incl. templates, electronic manual with license for 10 PCs.	
Authorization by serial number. On CD-ROM.	7XS5410-0AA00
Connecting cable	
Cable between PC/notebook (9-pin connector)	
and protection unit (9-pin connector)	
(contained in DIGSI 4, but can be ordered additionally)	7XV5100-4
Coupling device for rotor earth-fault protection	7XR6100-0CA00
	Short code
Series resistor for rotor earth-fault protection (group: 013002)	3PP1336-0DZ K2Y
Resistor for stator earth-fault protection (voltage divider 5.1) (aroun 013001)	3PP1336-1C7 K2Y
resistor for states currin multiprotection (voltage united, 5.17) (group 015001)	5/11550 TCE N21
Temperature monitoring box (thermo-box)	
24 to 60 V AC/DC	7XV5662-2AD10
90 to 240 V AC/DC	7XV5662-5AD10
Manual for 7UM61	
English	C53000-G1176-C127-2
0	

Accessories

Accessories		Description		Order No.	Size of package	Supplier	Fig.
C.	B-at ben tif	Connector	2-pin 3-pin	C73334-A1-C35-1 C73334-A1-C36-1	1 1	Siemens Siemens	11/26 11/27
Fig. 11/25 Mounting rail for 19" rack		Crimp connector	CI2 0.5 to 1 mm ²	0-827039-1 0-827396-1	4000 1	AMP ¹⁾ AMP ¹⁾	
S	s		CI2 1 to 2.5 mm ²	0-827040-1 0-827397-1	4000 1	AMP ¹⁾ AMP ¹⁾	
90-af pen.ep	091-afpen.el		Type III+ 0.75 to 1.5 mm ²	0-163083-7 0-163084-2	4000 1	AMP ¹⁾ AMP ¹⁾	
LSP21	LSP2	Crimping	For Type III+	0-539635-1	1	AMP ¹⁾	
Fig. 11/26 2-pin connector	Fig. 11/27 3-pin connector	1001	For CI2 and matching female	0-539008-2 0-734372-1 1-734387-1	1	AMP ¹⁾ AMP ¹⁾	
sdə	s	Mounting rail		C73165-A63-D200-1	1	Siemens	11/25
2093-afpen.	2092-afpen.	Short-circuit lin	ks For current terminals For other terminals	C73334-A1-C33-1 C73334-A1-C34-1	1 1	Siemens Siemens	11/28 11/29
Fig. 11/28	Fig. 11/29	Safety cover for	terminals Large Small	C73334-A1-C31-1 C73334-A1-C32-1	1 1	Siemens Siemens	11/3 11/3

Short-circuit link for voltage terminals/indications terminals

11

¹⁾ Your local Siemens representative can inform you on local suppliers.

Connection diagram, IEC

1) NO or NC with jumper possible.

Fig. 11/30

7UM611 connection diagram (IEC standard)

11

Connection diagram, IEC

Surface-mounting housing

		Elush-moun	<u>y</u>						
	1		iting nousing					ļ	
25	Q1	$+ \cdot \cdot \cdot \cdot \cdot$	I_{L1}	7UM612	BO1	r	- F6 -		
50	<u>02</u>				BO2		- F8 -		
24	Q3	$+ \cdot m$	I_{12}				- F5 -		
49	04				BO3			52	٦
23		\downarrow	La				- F9 -		Ī
48			-L3			_د م		Ì	_
22		L.m.	Inc		BO4	┌╴└╍╍	— КЗ —	90	
47							<u>— К4</u> —		
					BO5		- <u>K6</u> -	65	
20	R15	$+ \cdot m$	V_{11}		BO6 •		— К7 —		
19		$\vdash \dots$	Via		BO7	<u> </u>	- <u>K8</u> -	64	
44		L.m.	V _{L2}				<u> К5</u>	89	
45			- L3		BO8		— К9 —	87	
21	,	↓.	ı Vr				- <u>K10</u> -	63	
46			. E		BO9		-[K11]-	86	
							- <u>K12</u> -	62	
55	F10-		BI1		BO10			85	٦
80			BI2					61	Ī
600					BO11				T
56			BI3				— К16—	60	ī
81	F13		BI4		BO12		- R1 -	74	ī
82	F15	$\vdash \Box$	BI5		BO13 •		R2		ī
58	F16		BI6		BO14		- R3 -		ī
57	 				BO15 •		- R4 -		ī
02		Ĺ	BI7		BO16 •	<u> </u>	R6		ī
50			517				- R5 -	97	ī
59					BO17 ¹⁾		- R7 -	96	Ī
43	<u>K17</u>		BI8				- R8 -		Ī
18	K18				BO18				T
42	J1	$+ \square$	B I 9					70	ī
17					BO19			94	ī
41			BI10		2010			- 69	ī
					Live status	_0_0 -			-
40					contact			<u>_ 54</u>	
39			BI12		(NC or NO				٦
14	J5	+	I		with jumper)				_
38	J7	μZh	BI13		Power				
13					supply	=	<u>F2</u>	16	
37			BI14				O		
12					IEC 6087	0-5-103			
					PROFIBL	JS DP	네		
36			BI15						
11	<u>J12</u>		I		DIGSI 4/N	Modem 🔶	HYL	сј	
		1			IRIG B/D	CF77	47	A	
sd							\square	i	
o.nec	! 1	Fr Fr	ont port				- ÷]		
i6q-6			port		Earth conne	ction (±)			
A245.		L				<u> </u>		-	
2S									

1) NO or NC with jumper possible.

Fig. 11/31 7UM612 connection diagram (IEC standard)

Connection diagram, ANSI

1) NO or NC with jumper possible.

Fig. 11/32

7UM611 connection diagram (ANSI standard)

Connection diagram, ANSI

Surface-mounting housing

	Surface-mour				···	-1
	1	Flush-mounting house	ing			
25			7UM612	BO1		76
50		V A		во2		- 77]
24						- 51
49				B03	+ [F7]	- 52
23	 			÷	F9]	- 53
48				BO4	——————	- 90
22				*		- 66
47				BO5	К6]	- 65
20	 _ _ _			воб 🔶 📙 🛄	́н к7 ј	- 88
19				B07	K8	64
					н <u>к</u> 5	- 89
44	B16	VC		B08	— <u> </u>	- 87
21					——————————————————————————————————————	- 63
46		ľ VN		B09		- 86
40					K12	62
55	F10	БТАТЯ	11	BO10	K13]	- 85
80	 [F11]		10			- 61
50		╎┥ <u>┻¥╶╲</u> ष	12	BO11	K15	84
56		Г АУ ≈ С В	13			60
81	F13		14	BO12		- 74
82				во13 +	R2]	- 99
		┆╻┻҈Ӯ҂Ҁӏҝ	5	BO14		- 73
58	F16	Ĭ ▲ ▼ ≈	6	BO15		- 98
5/	<u> </u>			BO16		- 72
83	F17-	- <u></u>	17			- 97
59	F18			BO17 ¹⁾		96
43	K17		IQ	₹ <u>⊤</u>		71
18	K18		10	BO18		95
42		Ĩ T T T S C B	9	τ		- 70
17				BO19		94
41	J3	ТТТ₩₩	110	τ		- 69
40	' ├────────────────────────────			Live status		- 54
		<u>↓ [4 ¥ 🌫 [</u> B	111			
39		Т Т Т № С В	12	with jumper)	F4	79
14				Pouvor =		
38	J7		113	supply		16
13		┆─────────────────				
37	<u></u>		14.4			-
12	J10	┆──────────	114	IEC 60870-5-103		
36	[]111]			PROFIBUS DP		ľ
11	J12	<u> </u>	15			
				DIGSI 4/Modem		
	1 					
		i		IRIG B/DCF77	- A	
eps						i
Jpen.	l [-	Front PC port	:	Г		-
i-09;				Ground (‡)	
SA24						

1) NO or NC with jumper possible.

Fig. 11/33

7UM612 connection diagram (ANSI standard)

SIPROTEC 4 7UM62

Multifunction Generator, Motor and Transformer Protection Relay

-ig. 11/34 SIPROTEC 4 /UM62 multifunction protection relay generators, motors and transformers

Description

The SIPROTEC 4 7UM62 protection relays can do more than just protect. They also offer numerous additional functions. Be it earth faults, short-circuits, overloads, overvoltage, overfrequency or underfrequency asynchronous conditions, protection relays assure continued operation of power stations. The SIPROTEC 4 7UM62 protection relay is a compact unit which has been specially developed and designed for the protection of small, medium-sized and large generators. They integrate all the necessary protection functions and are particularly suited for the protection of:

- Hydro and pumped-storage generators
- Co-generation stations
- Private power stations using regenerative energy sources such as wind or biogases
- Diesel generator stations
- Gas-turbine power stations
- Industrial power stations
- Conventional steam power stations.

The SIPROTEC 4 7UM62 includes all necessary protection functions for large synchronous and asynchronous motors and for transformers.

The integrated programmable logic functions (continuous function chart CFC) offer the user high flexibility so that adjustments can easily be made to the varying power station requirements on the basis of special system conditions. The flexible communication interfaces are open for modern communication architectures with the control system.

The following basic functions are available for all versions:

Current differential protection for generators, motors and transformers, stator earth-fault protection, sensitive earth-fault protection, stator overload protection, overcurrent- time protection (either definite time or inverse time), definite-time overcurrent protection with directionality, undervoltage and overvoltage protection, underfrequency and overfrequency protection, overexcitation and underexcitation protection, external trip coupling, forward-power and reversepower protection, negative-sequence protection, breaker failure protection, rotor earth-faults protection (f_n , *R*-measuring), motor starting time supervision and restart inhibit for motors.

Function overview

Standard version

Scope of basic version plus:

- Inadvertent energization protection
- 100 %-stator earth-fault protection with 3rd harmonic
- Impedance protection

Full version

Scope of standard version plus:

- DC voltage protection
- Overcurrent protection during start-ups
- Earth-current differential protection
- Out-of-step protection

Additional version

- Available for each version:
- Sensitive rotor earth-fault protection (1-3 Hz method)
- Stator earth-fault protection with 20 Hz voltage
- Rate-of-frequency-change protection
- Vector jump supervision

Monitoring function

- Trip circuit supervision
- Fuse failure monitor
- Operational measured values V, I, f, ...
- Energy metering values $W_{\rm p}$, $W_{\rm q}$
- Time metering of operating hours
- Self-supervision of relay
- 8 oscillographic fault records

Communication interfaces

- System interface
 - IEC 61850 protocol
 - IEC 60870-5-103 protocol
- PROFIBUS-DP
- MODBUS RTU
- DNP 3.0

Hardware

- Analog inputs
- 8 current transformers
- 4 voltage transformers
- 7/15 binary inputs
- 12/20 output relays

Front design

- User-friendly local operation
- 7/14 LEDs for local alarm
- Function keys
- Graphic display with 7UM623

Application

The 7UM6 protection relays of the SIPROTEC 4 family are compact multifunction units which have been developed for small to medium-sized power generation plants. They incorporate all the necessary protective functions and are especially suitable for the protection of:

- Hydro and pumped-storage generators
- Co-generation stations
- Private power stations using regenerative energy sources such as wind or biogases
- Power generation with diesel generators
- Gas turbine power stations
- Industrial power stations
- Conventional steam power stations.

They can also be employed for protection of motors and transformers.

The numerous other additional functions assist the user in ensuring cost-effective system management and reliable power supply. Measured values display current operating conditions. Stored status indications and fault recording provide assistance in fault diagnosis not only in the event of a disturbance in generator operation.

Combination of the units makes it possible to implement effective redundancy concepts.

Protection functions

Numerous protection functions are necessary for reliable protection of electrical machines. Their extent and combination are determined by a variety of factors, such as machine size, mode of operation, plant configuration, availability requirements, experience and design philosophy.

This results in multifunctionality, which is implemented in outstanding fashion by numerical technology.

In order to satisfy differing requirements, the combination of functions is scalable (see Table 11/3). Selection is facilitated by division into five groups.

Generator Basic

One application concentrates on small and medium generators for which differential protection is required. The function mix is also suitable as backup protection. Protection of synchronous motors is a further application.

Generator Standard

In the case of medium-size generators (10 to 100 MVA) in a unit connection, this scope of functions offers all necessary protection functions. Besides inadvertent energization protection, it also includes powerful backup protection for the transformer or the power system. The scope of protection is also suitable for units in the second protection group.

Generator Full

Here, all protection functions are available and the main application focuses on large block units (more than 100 MVA). The function mix includes all necessary protection functions for the generator as well as backup protection for the block transformer including the power system. Additional functions such as protection during start-up for generators with starting converters are also included.

The scope of functions can be used for the second protection group, and functions that are not used, can be masked out.

Asynchronous motor

Besides differential protection, this function package includes all protection functions needed to protect large asynchronous motors (more than 1 MVA). Stator and bearing temperatures are measured by a separate thermo-box and are transmitted serially to the protection unit for evaluation.

Transformer

This scope of functions not only includes differential and overcurrent protection, but also a number of protection functions that permit monitoring of voltage and frequency stress, for instance. The reversepower protection can be used for energy recovery monitoring of parallel-connected transformers.

Construction

The SIPROTEC 4 units have a uniform design and a degree of functionality which represents a whole new quality in protection and control.

Local operation has been designed according to ergonomic criteria. Large, easy-toread displays were a major design aim. The 7UM623 is equipped with a graphic display thus providing and depicting more information especially in industrial applications. The DIGSI 4 operating program considerably simplifies planning and engineering and reduces commissioning times.

The 7UM621 and 7UM623 are configured in 1/2 19 inches width. This means that the units of previous models can be replaced. The height throughout all housing width increments is 243 mm.

All wires are connected directly or by means of ring-type cable lugs. Alternatively, versions with plug-in terminals are also available. These permit the use of prefabricated cable harnesses.

In the case of panel surface mounting, the connecting terminals are in the form of screw-type terminals at top and bottom. The communication interfaces are also arranged on the same sides.

Fig. 11/35 Rear view with wiring terminal safety cover and serial interface

Protection functions	Abbre-	ANSI No.	Gene-	Gene-	Gene-	Motor	Trans-
	viation		rator Basic	rator Standard	rator Full	Asyn- chronous	former
Current differential protection	ΔI	87G/87T/87M	Х	Х	Х	Х	Х
Stator earth-fault protection non-directional, directional	$V_0>, 3I_0>$ \($V_0, 3I_0$)	59N, 64G 67G	Х	Х	Х	Х	Х
Sensitive earth-fault protection (also rotor earth-fault protection)	$I_{\rm EE}>$	50/51GN (64R)	Х	Х	Х	Х	Х
Sensitive earth-fault prot. B (e.g. shaft current prot.)	$I_{\rm EE-B} > I_{\rm EE-B} <$	51GN	Х	Х	Х	Х	Х
Stator overload protection	$I^2 t$	49	Х	Х	Х	Х	Х
Definite-time overcurrent prot. with undervolt. seal-in	I > +V <	51	Х	Х	Х	Х	Х
Definite-time overcurrent protection, directional	<i>I>></i> , Direc.	50/51/67	Х	Х	Х	Х	Х
Inverse-time overcurrent protection	t = f(I) + V <	51V	Х	Х	Х	Х	Х
Overvoltage protection	V>	59	Х	Х	Х	Х	Х
Undervoltage protection	V <, t = f(V)	27	Х	Х	Х	Х	Х
Frequency protection	f<, f>	81	Х	Х	Х	Х	Х
Reverse-power protection	-P	32R	Х	Х	Х	Х	Х
Overexcitation protection (Volt/Hertz)	V/f	24	Х	Х	Х	Х	Х
Fuse failure monitor	$V_2/V_1, I_2/I_1$	60FL	Х	Х	Х	Х	Х
External trip coupling	Incoup.		4	4	4	4	4
Trip circuit supervision	T.C.S.	74TC	Х	Х	Х	Х	Х
Forward-power protection	P>, P<	32F	Х	Х	Х	Х	Х
Underexcitation protection (loss-of-field protection)	1/xd	40	Х	Х	Х		
Negative-sequence protection	$I_2 >, t = f(I_2)$	46	Х	Х	Х	Х	
Breaker failure protection	I _{min} >	50BF	Х	Х	Х	Х	Х
Motor starting time supervision	$I_{\text{start}}^2 t$	48	Х	Х	Х	Х	
Restart inhibit for motors	$I^2 t$	66, 49 Rotor	Х	Х	Х	Х	
Rotor earth-fault protection (<i>f</i> _n , R-measuring)	R<	64R (<i>f</i> _n)	Х	Х	Х		
Inadvertent energization protection	<i>I>, V<</i>	50/27		Х	Х		
100 % stator earth-fault protection with 3 rd harmonics	V0(3rd harm.)	59TN, 27TN 3 rd h	1	Х	Х		
Impedance protection with (<i>I</i> >+ <i>V</i> <) pickup	Z<	21		Х	Х		
Interturn protection	UInterturn>	59N(IT)		Х	Х		
DC voltage / DC current time protection	$V_{ m dc}$ > $I_{ m dc}$ >	59N (DC) 51N (DC)			Х		
Overcurrent protection during startup (for gas turbines)	I>	51			Х		
Earth-current differential protection	ΔI_{e}	87GN/TN	X ¹⁾	X ¹⁾	Х	$X^{1)}$	X ¹⁾
Out-of-step protection	$\Delta Z / \Delta t$	78			Х		
Rotor earth-fault protection (1-3 Hz square wave voltage)	R _{RFF} <	64R (1–3 Hz)	X ¹⁾	X ¹⁾	X ¹⁾		
100 % stator earth-fault protection with 20 Hz voltage	Repres	64G (100 %)	X ¹⁾	X ¹⁾	X ¹⁾		
Rate-of-frequency-change protection	df/dt >	81R	x ¹⁾	x ¹⁾	x ¹⁾	x ¹⁾	x ¹⁾
Vector jump supervision (voltage)	Δφ >		X ¹⁾	X ¹⁾	X ¹⁾	X ¹⁾	X ¹⁾
Threshold supervision	Δψ.		x	X	X	X	X
Supervision of phase rotation	A. B. C	47	X	X	X	X	X
Undercurrent via CFC	1<	37	X	X	X	X	X
External temperature monitoring via serial interface	n (Thermo-box)	38	x	x	x	x	x
Enternal temperature monitoring via serial interface	(Thermo-box)	50	4 h	4 L	**	**	4 x

Table 11/3 Scope of functions of the 7UM62

Current differential protection (ANSI 87G, 87M, 87T)

This function provides undelayed short-circuit protection for generators, motors and transformers, and is based on the current differential protection principle (Kirchhoff's current law).

The differential and restraint (stabilization) current are calculated on the basis of the phase currents. Optimized digital filters reliably attenuate disturbances such as aperiodic component and harmonics. The high resolution of measured quantities permits recording of low differential currents (10 % of I_N) and thus a very high sensitivity.

An adjustable restraint characteristic permits optimum adaptation to the conditions of the protected object. Software is used to correct the possible mismatch of the current transformers and the phase angle rotation through the transformer (vector group). Thanks to harmonic analysis of the differential current, inrush (second harmonic) and overexcitation (fifth harmonic) are reliably detected, and unwanted operation of the differential protection is prevented. The current of internal short-circuits is reliably measured by a fast measuring stage $(I_{\text{Diff}} >>)$, which operates with two mutually complementary measuring processes. An external short-circuit with transformer saturation is picked up by a saturation detector with time and status monitoring. It becomes active when the differential current (I_{Diff}) moves out of the add-on restraint area.

11

If a motor is connected, this is detected by monitoring the restraint current and the restraint characteristic is briefly raised. This prevents false tripping in the event of unequal current transmission by the current transformers.

Figure 11/36 shows the restraint characteristic and various areas.

Earth-current differential protection (ANSI 87GN, 87TN)

The earth-current differential protection permits high sensitivity to single-pole faults. The zero currents are compared. On the one hand, the zero-sequence current is calculated on the basis of the phase currents and on the other hand, the earth current is measured directly at the star-point current transformer.

Fig. 11/36 Restraint characteristic of current differential protection

Fig. 11/37 Restraint characteristic of earth-current differential protection

The differential and restraint quantity is generated and fitted into the restraint characteristic (see Fig. 11/37).

DC components in particular are suppressed by means of specially dimensioned filters. A number of monitoring processes avoid unwanted operation in the event of external short-circuits. In the case of a sensitive setting, multiple measurement ensures the necessary reliability.

However, attention must be drawn to the fact that the sensitivity limits are determined by the current transformers.

The protection function is only used on generators when the neutral point is earthed with a low impedance. In the case of transformers, it is connected on the neutral side. Low impedance or solid earthing is also required.

Definite-time overcurrent protection *I*>, *I*>> (ANSI 50, 51, 67)

This protection function comprises the short-circuit protection for the generator and also the backup protection for upstream devices such as transformers or power system protection.

An undervoltage stage at *I*> maintains the pickup when, during the fault, the current drops below the threshold. In the event of a voltage drop on the generator terminals, the static excitation system can no longer be sufficiently supplied. This is one reason for the decrease of the short-circuit current.

The *I*>> stage can be implemented as high-set instantaneous trip stage. With the integrated directional function it can be used as backup protection on the transformer high-voltage side. With the information of the directional element, impedance protection can be controlled via the CFC.

Inverse-time overcurrent protection (ANSI 51V)

This function also comprises short-circuit and backup protection and is used for power system protection with currentdependent protection devices.

IEC and ANSI characteristics can be selected (Table 11/4).

The current function can be controlled by evaluating the generator terminal voltage.

The "controlled" version releases the sensitive set current stage.

With the "restraint" version, the pickup value of the current is lowered linearly with decreasing voltage.

The fuse failure monitor prevents unwanted operation.

Stator overload protection (ANSI 49)

The task of the overload protection is to protect the stator windings of generators and motors from high, continuous overload currents. All load variations are evaluated by a mathematical model. The thermal effect of the r.m.s. current value forms the basis of the calculation. This conforms to IEC 60255-8. In dependency of the current, the cooling time constant is automatically extended. If the ambient temperature or the temperature of the coolant are injected via a transducer (TD2) or PROFIBUS-DP, the model automatically adapts to the ambient conditions; otherwise a constant ambient temperature is assumed.

Negative-sequence protection (ANSI 46)

Asymmetrical current loads in the three phases of a generator cause a temperature rise in the rotor because of the negativesequence field produced.

This protection detects an asymmetrical load in three-phase generators. It functions on the basis of symmetrical components and evaluates the negative sequence of the phase currents. The thermal processes are taken into account in the algorithm and form the inverse characteristic. In addition, the negative sequence is evaluated by an independent stage (alarm and trip) which is supplemented by a time-delay element (see Figure 11/38). In the case of motors, the protection function is also used to monitor a phase failure.

Available inverse-time characteristics

Characteristics	ANSI	IEC 60255-3	
Inverse	•	•	
Moderately inverse	•		
Very inverse	•	•	
Extremely inverse	•	•	
Definite inverse	•		

Table 11/4

Underexcitation protection (Loss-of-field protection) (ANSI 40)

Derived from the generator terminal voltage and current, the complex admittance is calculated and corresponds to the generator diagram scaled in per unit. This protection prevents damage due to loss of synchronism resulting from underexcitation. The protection function provides three characteristics for monitoring static and dynamic stability. Via a transducer, the excitation voltage (see Figure 11/52) can be injected and, in the event of failure, a swift reaction of the protection function can be achieved by timer changeover. The straight-line characteristics allow the protection to be optimally adapted to the generator diagram (see Figure 11/39). The per-unit-presentation of the diagram allows the setting values to be directly read out.

The positive-sequence systems of current and voltage are used to calculate the admittance. This ensures that the protection always operates correctly even with asymmetrical network conditions.

If the voltage deviates from the rated voltage, the admittance calculation has the advantage that the characteristics move in the same direction as the generator diagram.

Reverse-power protection (ANSI 32R)

The reverse-power protection monitors the direction of active power flow and picks up when the mechanical energy fails. This function can be used for operational shutdown (sequential tripping) of the generator but also prevents damage to the steam turbines. The reverse power is calculated from the positive-sequence systems of current and voltage. Asymmetrical power system faults therefore do not cause reduced measuring accuracy. The position of the emergency trip valve is injected as binary information and is used to switch between two trip command delays. When applied for motor protection, the sign (\pm) of the active power can be reversed via parameters.

Forward-power protection (ANSI 32F)

Monitoring of the active power produced by a generator can be useful for starting up and shutting down generators. One stage monitors exceeding of a limit value, while another stage monitors falling below another limit value. The power is calculated using the positive-sequence component of current and voltage. The function can be used to shut down idling motors.

Impedance protection (ANSI 21)

This fast short-circuit protection protects the generator and the unit transformer and is a backup protection for the power system. This protection has two settable impedance stages; in addition, the first stage can be switched over via binary input. With the circuit-breaker in the "open" position the impedance measuring range can be extended (see Figure 11/40).

The overcurrent pickup element with undervoltage seal-in ensures a reliable pickup and the loop selection logic ensures a reliable detection of the faulty loop. With this logic it is possible to perform correct measurement via the unit transformer.

Undervoltage protection (ANSI 27)

The undervoltage protection evaluates the positive-sequence components of the voltages and compares them with the threshold values. There are two stages available.

The undervoltage function is used for asynchronous motors and pumped-storage sta-

tions and prevents the voltage-related instability of such machines.

The function can also be used for monitoring purposes.

Overvoltage protection (ANSI 59)

This protection prevents insulation faults that result when the voltage is too high.

Either the maximum line-to-line voltages or the phase-to-earth voltages (for lowvoltage generators) can be evaluated. The measuring results of the line-to-line voltages are independent of the neutral point displacement caused by earth faults. This function is implemented in two stages.

Frequency protection (ANSI 81)

The frequency protection prevents impermissible stress of the equipment (e.g. turbine) in case of under or overfrequency. It also serves as a monitoring and control element.

The function has four stages; the stages can be implemented either as underfrequency or overfrequency protection. Each stage can be delayed separately.

Even in the event of voltage distortion, the frequency measuring algorithm reliably identifies the fundamental waves and determines the frequency extremely precisely. Frequency measurement can be blocked by using an undervoltage stage.

Overexcitation protection Volt/Hertz (ANSI 24)

The overexcitation protection serves for detection of an unpermissible high induction (proportional to V/f) in generators or transformers, which leads to thermal overloading. This may occur when starting up, shutting down under full load, with weak systems or under isolated operation. The inverse characteristic can be set via eight points derived from the manufacturer data.

In addition, a definite-time alarm stage and an instantaneous stage can be used. For calculation of the V/f ratio, frequency and also the highest of the three line-toline voltages are used. The frequency range that can be monitored comprises 11 to 69 Hz.

90% stator earth-fault protection, non-directional, directional (ANSI 59N, 64G, 67G)

Earth faults manifest themselves in generators that are operated in isolation by the occurence of a displacement voltage. In case of unit connections, the displacement voltage is an adequate, selective criterion for protection.

For the selective earth-fault detection, the direction of the flowing earth current has to be evaluated too, if there is a direct connection between generator and busbar.

The protection relay measures the displacement voltage at a VT located at the transformer star point or at the broken delta winding of a VT As an option, it is also possible to calculate the zero-sequence voltage from the phase-to-earth voltages.

Depending on the load resistor selection, 90 to 95 % of the stator winding of a generator can be protected.

A sensitive current input is available for earth-current measurement. This input should be connected to a core-balance current transformer. The fault direction is deduced from the displacement voltage and earth current. The directional characteristic (straight line) can be easily adapted to the system conditions. Effective protection for direct connection of a generator to a busbar can therefore be established. During startup, it is possible to switch over from the directional to the displacement voltage measurement via an externally injected signal.

Depending on the protection setting, various earth-fault protection concepts can be implemented with this function (see Figures 11/51 to 11/54).

Sensitive earth-fault protection (ANSI 50/51GN, 64R)

The sensitive earth-current input can also be used as separate earth-fault protection. It is of two-stage form. Secondary earth currents of 2 mA or higher can be reliably handled.

Alternatively, this input is also suitable as rotor earth-fault protection. A voltage with rated frequency (50 or 60 Hz) is connected in the rotor circuit via the interface unit 7XR61. If a higher earth current is flowing, a rotor earth fault has occurred. Measuring circuit monitoring is provided for this application (see Figure 11/56).

100 % stator earth-fault protection with 3. harmonic (ANSI 59TN, 27TN (3H.))

Owing to the creative design, the generator produces a 3rd harmonic that forms a zero phase-sequence system. It is verifiable by the protection on a broken delta winding or on the neutral transformer. The magnitude of the voltage amplitude depends on the generator and its operation.

In the event of an earth fault in the vicinity of the neutral point, there is a change in the amplitude of the 3rd harmonic voltage (dropping in the neutral point and rising at the terminals).

Depending on the connection the protection must be set either as undervoltage or overvoltage protection. It can also be delayed. So as to avoid overfunction, the active power and the positive-sequence voltage act as enabling criteria.

The picked-up threshold of the voltage stage is restrained by the active power. This increases sensitivity at low load.

The final protection setting can be made only by way of a primary test with the generator.

Breaker failure protection (ANSI 50BF)

In the event of scheduled downtimes or a fault in the generator, the generator can remain on line if the circuit-breaker is defective and could suffer substantial damage.

Breaker failure protection evaluates a minimum current and the circuit-breaker auxiliary contact. It can be started by internal protective tripping or externally via binary input. Two-channel activation avoids overfunction (see Figure 11/41).

Inadvertent energization protection (ANSI 50, 27)

This protection has the function of limiting the damage of the generator in the event of an unintentional switch-on of the circuitbreaker, whether the generator is standing still or rotating without being excited or synchronized. If the power system voltage is connected, the generator starts as an asynchronous machine with a large slip and this leads to excessively high currents in the rotor.

A logic circuit consisting of sensitive current measurement for each phase, measured value detector, time control and blocking as of a minimum voltage, leads to an instantaneous trip command. If the fuse failure monitor responds, this function is ineffective.

Rotor earth-fault protection (ANSI 64R)

This protection function can be realized in three ways with the 7UM62. The simplest form is the method of rotor-current measurement (see sensitive earth-current measurement).

Resistance measurement at systemfrequency voltage

The second form is rotor earth resistance measurement with voltage at system frequency (see Fig. 11/56). This protection measures the voltage injected and the flowing rotor earth current. Taking into account the complex impedance from the coupling device (7XR61), the rotor earth resistance is calculated by way of a mathematical model. By means of this method, the disturbing influence of the rotor earth capacitance is eliminated, and sensitivity is increased. Fault resistance values up to 30 k Ω can be measured if the excitation voltage is without disturbances. Thus, a two-stage protection function, which features a warning and a tripping stage, can be realized. An additionally implemented undercurrent stage monitors the rotor circuit for open circuit and issues an alarm.

Resistance measurement with a square wave voltage of 1 to 3 Hz

A higher sensitivity is required for larger generators. On the one hand, the disturbing influence of the rotor earth capacitance must be eliminated more effectively and, on the other hand, the noise ratio with respect to the harmonics (e.g. sixth harmonic) of the excitation equipment must be increased. Injecting a low-frequency square wave voltage into the rotor circuit has proven itself excellently here (see Figure 11/57).

The square wave voltage injected through the controlling unit 7XT71 leads to permanent recharging of the rotor earth capacitance. By way of a shunt in the controlling unit, the flowing earth current is measured and is injected into the protection unit (measurement input). In the absence of a fault ($R_{\rm F} \approx \infty$), the rotor earth current after charging of the earth capacitance is close to zero. In the event of an earth fault, the fault resistance including the coupling resistance (7XR6004), and also the injecting voltage, defines the stationary current. The current square wave voltage and the frequency are measured via the second input (control input). Fault resistance values up to 80 k Ω can be measured by this measurement principle. The rotor earth circuit is monitored for discontinuities by evaluation of the current during the polarity reversals.

100% stator earth-fault protection with 20 Hz injection (ANSI 64 G (100%))

Injecting a 20 Hz voltage to detect earth faults even at the neutral point of generators has proven to be a safe and reliable method. Contrary to the third harmonic criterion (see page 11/8), it is independent of the generator's characteristics and the mode of operation. Measurement is also possible during system standstill (Fig. 11/55).

This protection function is designed so as to detect both earth faults in the entire generator (genuine 100 %) and all electrically connected system components.

The protection unit measures the injected 20 Hz voltage and the flowing 20 Hz current. The disturbing variables, for example stator earth capacitance, are eliminated by way of a mathematical model, and the ohmic fault resistance is determined.

On the one hand, this ensures high sensitivity and, on the other hand, it permits use of generators with large earth capacitance values, e.g. large hydroelectric generators. Phase-angle errors through the earthing or neutral transformer are measured during commissioning and are corrected in the algorithm.

The protection function has a warning and tripping stage. The measurement circuit is also monitored and failure of the 20 Hz generator is measured.

Independent of earth resistance calculation, the protection function additionally evaluates the amount of the r.m.s. current value.

Starting time supervision (motor protection only) (ANSI 48)

Starting time supervision protects the motor against long unwanted start-ups, which might occur as a result of excessive load torque or excessive voltage drops within the motor, or if the rotor is locked.

The tripping time is dependent on the square of the start-up current and the set start-up time (Inverse Characteristic). It adapts itself to the start-up with reduced voltage. The tripping time is determined in accordance with the following formula:

$$t_{\rm Trip} = \left(\frac{I_{\rm start}}{I_{\rm rms}}\right)^2 \cdot t_{\rm start\,max}$$

tTripTripping timeIstartPermissible start-up current

tstart max Permissible start-up time

*I*_{rms} Measured r.m.s. current value

Calculation is not started until the current $I_{\rm rms}$ is higher than an adjustable response value (e.g. 2 $I_{\rm N, MOTOR}$).

If the permissible locked-rotor time is less than the permissible start-up time (motors with a thermally critical rotor), a binary signal is set to detect a locked rotor by means of a tachometer generator. This binary signal releases the set locked-rotor time, and tripping occurs after it has elapsed.

DC voltage time protection/DC current time protection (ANSI 59N (DC) 51N (DC))

Hydroelectric generators or gas turbines are started by way of frequency starting converters. An earth fault in the intermediate circuit of the frequency starting converter causes DC voltage displacement and thus a direct current. As the neutral or earthing transformers have a lower ohmic resistance than the voltage transformers, the largest part of the direct current flows through them, thus posing a risk of destruction from thermal overloading. As shown in Fig. 11/55, the direct current is measured by means of a shunt transformer (measuring transducer) connected directly to the shunt. Voltages or currents are fed to the 7UM62 depending on the version of the measuring transducer. The measurement algorithm filters out the DC component and takes the threshold value decision. The protection function is active as from 0 Hz.

If the measuring transducer transmits a voltage for protection, the connection must be interference-free and must be kept short.

The implemented function can also be used for special applications. Thus, the r.m.s. value can be evaluated for the quantity applied at the input over a wide frequency range.

Overcurrent protection during start-up (ANSI 51)

Gas turbines are started by means of frequency starting converters. Overcurrent protection during start-up measures shortcircuits in the lower frequency level (as from about 5 Hz) and is designed as independent overcurrent-time protection. The pickup value is set below the rated current. The function is only active during start-up. If frequencies are higher than 10 Hz, sampling frequency correction takes effect and the further short-circuit protection functions are active.

Out-of-step protection (ANSI 78)

This protection function serves to measure power swings in the system. If generators feed to a system short-circuit for too long, low frequency transient phenomena (active power swings) between the system and the generator may occur after fault clearing. If the center of power swing is in the area of the block unit, the "active power surges" lead to unpermissible mechanical stressing of the generator and the turbine.

As the currents and voltages are symmetrical, the positive-sequence impedance is calculated on the basis of their positivesequence components and the impedance trajectory is evaluated. Symmetry is also monitored by evaluation of the negativephase-sequence current. Two characteristics in the R/X diagram describe the active range (generator, unit transformer or power system) of the out-of-step protection. The associated counters are incremented depending on the range of the characteristic in which the impedance vector enters or departs. Tripping occurs when the set counter value is reached.
Protection functions

The counters are automatically reset if power swing no longer occurs after a set time. By means of an adjustable pulse, every power swing can be signaled. Expansion of the characteristic in the R direction defines the power swing angle that can be measured. An angle of 120 ° is practicable. The characteristic can be tilted over an adjustable angle to adapt to the conditions prevailing when several parallel generators feed into the system.

Inverse undervoltage protection (ANSI 27)

Motors tend to fall out of step when their torque is less than the breakdown torque. This, in turn, depends on the voltage. On the one hand, it is desirable to keep the motors connected to the system for as long as possible while, on the other hand, the torque should not fall below the breakdown level. This protection task is realized by inverse undervoltage protection. The inverse characteristic is started if the voltage is less than the pickup threshold V_p <. The tripping time is inversely proportional to the voltage dip (see equation). The protection function uses the positive-sequence voltage, for the protection decision.

$$t_{\rm TRIP} = \frac{I}{I - \frac{V}{V_{\rm p}}} \cdot T_{\rm M}$$

$$t_{\text{TRIP}}$$
Tripping time V Voltage V_{p} Pickup value T_{M} Time multiplier

System disconnection

Take the case of in-plant generators feeding directly into a system. The incoming line is generally the legal entity boundary between the system owner and the in-plant generator. If the incoming line fails as the result of auto-reclosure, for instance, a voltage or frequency deviation may occur depending on the power balance at the feeding generator. Asynchronous conditions may arise in the event of connection, which may lead to damage on the generator or the gearing between the generator and the turbine. Besides the classic criteria such as voltage and frequency, the following two criteria are also applied: vector jump, rate-of-frequency-change protection.

Fig. 11/42 Ranges of the characteristic and possible oscillation profiles.

Rate-of-frequency-change protection (ANSI 81)

The frequency difference is determined on the basis of the calculated frequency over a time interval. It corresponds to the momentary rate-of-frequency change. The function is designed so that it reacts to both positive and negative rate-offrequency changes. Exceeding of the permissible rate-of-frequency change is monitored constantly. Release of the relevant direction depends on whether the actual frequency is above or below the rated frequency. In total, four stages are available, and can be used optionally.

Vector jump

Monitoring the phase angle in the voltage is a criterion for identifying an interrupted infeed. If the incoming line should fail, the abrupt current discontinuity leads to a phase angle jump in the voltage. This is measured by means of a delta process. The command for opening the generator or coupler circuit-breaker is issued if the set threshold is exceeded.

Restart inhibit for motors (ANSI 66, 49Rotor)

When cold or at operating temperature, motors may only be connected a certain number of times in succession. The start-up current causes heat development in the rotor which is monitored by the restart inhibit function.

Contrary to classical counting methods, in the restart inhibit function the heat and

cooling phenomena in the rotor are simulated by a thermal replica. The rotor temperature is determined on the basis of the stator currents. Restart inhibit permits restart of the motor only if the rotor has enough thermal reserve for a completely new start. Fig. 11/43 illustrates the thermal profile for a permissible triple start out of the cold state. If the thermal reserve is too low, the restart inhibit function issues a blocking signal with which the motor starting circuit can be blocked. The blockage is canceled again after cooling down and the thermal value has dropped below the pickup threshold.

As the fan provides no forced cooling when the motor is off, it cools down more slowly. Depending on the operating state, the protection function controls the cooling time constant. A value below a minimum current is an effective changeover criterion.

Sensitive earth-fault protection B (ANSI 51 GN)

The $I_{\text{EE-B}}$ sensitive earth-fault protection feature of 7UM62 provides greater flexibility and can be used for the following applications:

- Any kind of earth-fault current supervision to detect earth faults (fundamental and 3rd harmonics)
- Protection against load resistances
- Shaft current protection in order to detect shaft currents of the generator shaft and prevent that bearings take damage.

Protection functions

The sensitive earth-current protection $I_{\text{EE-B}}$ uses either the hardware input I_{EE1} or I_{EE2} . These inputs are designed in a way that allows them to cut off currents greater than 1.6 A (thermal limit, see technical data). This has to be considered for the applications or for the selection of the current transformers.

The shaft current protection function is of particular interest in conjunction with hydro-electric generators. Due to their construction, the hydroelectric generators have relatively long shafts. A number of factors such as friction, magnetic fields of the generators and others can build up a voltage across the shaft which then acts as voltage source (electro-motive force-emf). This inducted voltage of approx. 10 to 30 V is dependent on the load, the system and the machine.

If the oil film covering a bearing is too thin, breakdown can occur. Due to the low resistance (shaft, bearing and earthing), high currents may flow that destroy the bearing. Past experience has shown that currents greater than 1 A are critical for the bearings. As different bearings can be affected, the current entering the shaft is detected by means of a special transformer (folding transformer).

Interturn protection (ANSI 59N (IT))

The interturn fault protection detects faults between turns within a generator winding (phase). This situation may involve relatively high circulating currents that flow in the short-circuited turns and damage the winding and the stator. The protection function is characterized by a high sensitivity.

The displacement voltage is measured at the open delta winding by means of 3 two-phase isolated voltage transformers. So as to be insensitive towards earth faults, the isolated voltage transformer star point has to be connected to the generator star point by means of a high-voltage cable. The voltage transformer star point must not be earthed since this implies that the generator star point, too, would be earthed with the consequence that each fault would lead to a single-pole earth fault.

In the event of an interturn fault, the voltage in the affected phase will be reduced causing a displacement voltage that is detected at the broken delta winding. The sensitivity is limited rather by the winding asymmetries than by the protection unit.

Fig. 11/43 Temperature characteristic at rotor and thermal replica of the rotor (multiple start-ups)

An FIR filter determines the fundamental component of the voltage based an the scanned displacement voltage. Selecting an appropriate window function has the effect that the sensitivity towards higher-frequency oscillations is improved and the disturbing influence of the third harmonic is eliminated while achieving the required measurement sensitivity.

External trip coupling

For recording and processing of external trip information, there are 4 binary inputs. They are provided for information from the Buchholz relay or generator-specific commands and act like a protection function. Each input initiates a fault event and can be individually delayed by a timer.

Trip circuit supervision (ANSI 74TC)

One or two binary inputs can be used for monitoring the circuit-breaker trip coil including its incoming cables. An alarm signal occurs whenever the circuit is interrupted.

Phase rotation reversal

If the relay is used in a pumped-storage power plant, matching to the prevailing rotary field is possible via a binary input (generator/motor operation via phase rotation reversal).

2 pre-definable parameter groups

In the protection, the setting values can be stored in two data sets. In addition to the standard parameter group, the second group is provided for certain operating conditions (pumped-storage power stations). It can be activated via binary input, local control or DIGSI 4.

Lockout (ANSI 86)

All binary outputs (alarm or trip relays) can be stored like LEDs and reset using the LED reset key. The lockout state is also stored in the event of supply voltage failure. Reclosure can only occur after the lockout state is reset.

Fuse failure and other monitoring

The relay comprises high-performance monitoring for the hardware and software.

The measuring circuits, analog-digital conversion, power supply voltages, memories and software sequence (watch-dog) are all monitored.

The fuse failure function detects failure of the measuring voltage due to short-circuit or open circuit of the wiring or VT and avoids overfunction of the undervoltage elements in the protection functions.

The positive and negative-sequence system (voltage and current) are evaluated.

Filter time

All binary inputs can be subjected to a filter time (indication suppression).

Communication

With respect to communication, particular emphasis has been placed on high levels of flexibility, data integrity and utilization of standards common in energy automation. The design of the communication modules permits interchangeability on the one hand, and on the other hand provides openness for future standards (for example, Industrial Ethernet).

Local PC interface

The PC interface accessible from the front of the unit permits quick access to all parameters and fault event data. The use of the DIGSI 4 operating program during commissioning is particularly advantageous.

Rear-mounted interfaces

At the rear of the unit there is one fixed interface and two communication modules which incorporate optional equipment complements and permit retrofitting. They assure the ability to comply with the requirements of different communication interfaces (electrical or optical) and protocols (IEC 60870, PROFIBUS, DIGSI).

The interfaces make provision for the following applications:

Service interface (fixed)

In the RS485 version, several protection units can be centrally operated with DIGSI 4. By using a modem, remote control is possible. This provides advantages in fault clearance, in particular in unmanned substations.

System interface

This is used to communicate with a control or protection and control system and supports, depending on the module connected, a variety of communication protocols and interface designs. Furthermore, the units can exchange data through this interface via Ethernet and IEC 61850 protocol and can also be operated by DIGSI.

IEC 61850 protocol

The Ethernet-based IEC 61850 protocol is the worldwide standard for protection and control systems used by power supply corporations. Siemens is of the first manufacturer to support this standard. By means of this protocol, information can also be exchanged directly between bay units so as to set up simple masterless systems for bay and system interlocking. Access to the units via the Ethernet bus will also be possible with DIGSI.

IEC 60870-5-103

IEC 60870-5-103 is an internationally standardized protocol for communication in the protected area.

IEC 60870-5-103 is supported by a number of protection unit manufacturers and is used worldwide.

The generator protection functions are stored in the manufacturer-specific, published part of the protocol.

PROFIBUS-DP

PROFIBUS is an internationally standardized communication system (EN 50170).

PROFIBUS is supported internationally by several hundred manufacturers.

With the PROFIBUS-DP, the protection can be directly connected to a SIMATIC S5/S7. The transferred data are fault data, measured values and information from or to the logic (CFC).

MODBUS RTU

MODBUS is also a widely utilized communication standard and is used in numerous automation solutions.

DNP 3.0

DNP 3.0 (Distributed Network Protocol version 3) is a messaging-based communication protocol. The SIPROTEC 4 units are fully Level 1 and Level 2 compliant with DNP 3.0. DNP 3.0 is supported by a number of protection device manufacturers.

Safe bus architecture

• RS485 bus

With this data transmission via copper conductors, electromagnetic interference influences are largely eliminated by the use of twisted-pair conductor. Upon failure of a unit, the remaining system continues to operate without any faults.

• Fiber-optic double ring circuit The fiber-optic double ring circuit is immune to electromagnetic interference. Upon failure of a section between two units, the communication system continues to operate without disturbance.

Fig. 11/44

IEC 60870-5-103 star-type RS232 copper conductor connection or fiber-optic connection

Fig. 11/45 Bus structure for station bus with Ethernet and IEC 61850, fiber-optic ring

Communication

System solution

SIPROTEC 4 is tailor-made for use in SIMATIC-based automation systems.

Via the PROFIBUS-DP, indications (pickup and tripping) and all relevant operational measured values are transmitted from the protection unit.

Via modem and service interface, the protection engineer has access to the protection devices at all times. This permits remote maintenance and diagnosis (cyclic testing).

Parallel to this, local communication is possible, for example, during a major inspection.

For IEC 61850, an interoperable system solution is offered with SICAM PAS. Via the 100 Mbit/s Ethernet bus, the unit are linked with PAS electrically or optically to the station PC. The interface is standardized, thus also enabling direct connection of units of other manufacturers to the Ethernet bus. With IEC 61850, however, the units can also be used in other manufacturers' systems (see Fig. 11/45).

Analog output 0 to 20 mA

Alternatively to the serial interfaces up to two analog output modules (4 channels) can be installed in the 7UM62.

Several operational measured values (I_1 , I_2 , V, P, Q, f, PF(cos φ), Θ_{stator} , Θ_{rotor}) can be selected and transmitted via the 0 to 20 mA interfaces.

Fig. 11/46 RS232/RS485 electrical communication module

Fig. 11/47 820 nm fiber-optic communication module

Fig. 11/48 PROFIBUS communication module, optical, double-ring

Fig. 11/49 Optical Ethernet communication module for IEC 61850 with integrated Ethernet switch

Fig. 11/50 System solution: Communications

11/44

11

Direct generator - busbar connection

Figure 11/51 illustrates the recommended standard connection when several generators supply one busbar. Phase-to-earth faults are disconnected by employing the directional earth-fault criterion. The earthfault current is driven through the cables of the system.

If this is not sufficient, an earthing transformer connected to the busbar supplies the necessary current (maximum approximately 10 A) and permits a protection range of up to 90 %. The earth-fault current should be detected by means of core-balance current transformers in order to achieve the necessary sensitivity. The displacement voltage can be used as earth-fault criterion during starting operations until synchronization is achieved.

Differential protection embraces protection of the generator and of the outgoing cable. The permissible cable length and the current transformer design (permissible load) are mutually dependent. Recalculation is advisable for lengths of more than 100 m.

Fig. 11/51

Direct generator - busbar connection with low-resistance earthing

If the generator neutral point has low-resistance earthing, the connection illustrated in Fig. 11/52 is recommended. In the case of several generators, the resistance must be connected to only one generator, in order to prevent circulating currents (3rd harmonic).

For selective earth-fault detection, the earth-current input should be looped into the common return conductor of the two current transformer sets (differential connection). The current transformers must be earthed at only one point. The displacement voltage $V_{\rm E}$ is utilized as an additional enabling criterion.

Balanced current transformers (calibration of windings) are desirable with this form of connection. In the case of higher generator power (for example, I_N approximately 2000 A), current transformers with a secondary rated current of 5 A are recommended.

Earth-current differential protection can be used as an alternative (not illustrated).

Fig. 11/52

Unit connection with isolated star point

This configuration of unit connection is a variant to be recommended (see Fig. 11/53). Earth-fault detection is effected by means of the displacement voltage. In order to prevent unwanted operation in the event of earth faults in the system, a load resistor must be provided at the broken delta winding. Depending on the plant (or substation), a voltage transformer with a high power (VA) may in fact be sufficient. If not, an earthing transformer should be employed. The available measuring winding can be used for the purpose of voltage measurement.

In the application example, differential protection is intended for the generator. The unit transformer is protected by its own differential relay (e.g. 7UT612).

As indicated in the figure, additional protection functions are available for the other inputs. They are used on larger generator/transformer units (see also Figures 11/56 and 11/58).

Fig. 11/53

Unit connection with neutral transformer

With this system configuration, disturbance voltage reduction and damping in the event of earth faults in the generator area are effected by a load resistor connected to the generator neutral point.

The maximum earth-fault current is limited to approximately 10 A. Configuration can take the form of a primary or secondary resistor with neutral transformer. In order to avoid low secondary resistance, the transformation ratio of the neutral transformer should be below

$$\left(\frac{V_{Gen}}{\sqrt{3}} \middle/ 500 \, \mathrm{V}\right)$$

The higher secondary voltage can be reduced by means of a voltage divider.

Electrically, the circuit is identical to the configuration in Fig. 11/53.

In the application opposite, the differential protection is designed as an overall function and embraces the generator and unit transformer. The protection function carries out vector group adaptation as well as other adaptations.

Fig. 11/54

Voltage transformer in open delta connection (V-connection)

Protection can also be implemented on voltage transformers in open delta connection (Fig. 11/55). If necessary, the operational measured values for the phase-toearth voltages can be slightly asymmetrical. If this is disturbing, the neutral point (R16) can be connected to earth via a capacitor.

In the case of open delta connection, it is not possible to calculate the displacement voltage from the secondary voltages. It must be passed to the protection relay along a different path (for example, voltage transformer at the generator neutral point or from the earthing transformer).

100 % stator earth-fault protection, earth-fault protection during start-up

Fig. 11/56 illustrates the interfacing of 100 % stator earth-fault protection with voltage injection of 20 Hz, as meant for the example of the neutral transformer. The same interfacing connection also applies to the broken delta winding of the earthing transformer.

The 20 Hz generator can be connected both to the DC voltage and also to a powerful voltage transformer (>100 VA). The load of the current transformer 4NC1225 should not exceed 0.5 Ω .

The 7XT33, 7XT34 and load resistance connection must be established with a low resistance ($R_{\text{Connection}} < R_{\text{L}}$). If large distances are covered, the devices are accommodated in the earthing cubicle.

Connection of the DC voltage protection function (TD 1) is shown for systems with a starting converter. Depending on the device selection, the 7KG6 boosts the measured signal at the shunt to 10 V or 20 mA.

The TD 1 input can be jumpered to the relevant signal.

Rotor earth-fault protection with voltage injection at rated frequency

Fig. 11/57 shows the connection of rotor earth-fault protection to a generator with static excitation. If only the rotor current is evaluated, there is no need for voltage connection to the relay.

Earth must be connected to the earthing brush. The external resistors 3PP1336 must be added to the coupling device 7XR61 if the circulating current can exceed 0.2 A as the result of excitation (sixth harmonic). This is the case as from a rated excitation voltage of >150 V, under worst-case conditions.

Rotor earth-fault protection with a square wave voltage of 1 to 3 Hz

The measuring transducers TD1 and TD2 are used for this application. The controlling unit 7XT71 generates a square wave voltage of about \pm 50 V at the output. The frequency can be jumpered and depends on the rotor earth capacitance. Voltage polarity reversal is measured via the control input and the flowing circular current is measured via the measurement input. Earth must be connected to the earthing brush.

Fig. 11/58

Protection of an asynchronous motor

Fig. 11/59 shows a typical connection of the protection function to a large asynchronous motor. Differential protection embraces the motor including the cable. Recalculation of the permissible current transformer burden is advisable for lengths of more than 100 m.

The voltage for voltage and displacement voltage monitoring is generally tapped off the busbar. If several motors are connected to the busbar, earth faults can be detected with the directional earth-fault protection and selective tripping is possible. A core balance current transformer is used to detect the earth current. The chosen pickup value must be slightly higher if there are several cables in parallel.

The necessary shutdown of the motor in the event of idling can be realized with active power monitoring.

Fig. 11/59

Use of selected analog inputs

Several protection functions take recourse to the same analog inputs, thus ruling out certain functions depending on the application. One input may only be used by one protection function. A different combination can be used by the unit belonging to Protection Group 2, for example.

Multiple use refers to the sensitive earth-current inputs and the displacement voltage input (see Table 11/5).

The same applies to the measuring transducers (Table 11/6).

Current transformer requirements

The requirements imposed on the current transformer are determined by the differential protection function. The instantaneous trip stage (I_{Diff} >>) reliably masters (via the instantaneous algorithm) any high-current internal shortcircuits.

The external short-circuit determines the requirements imposed on the current transformer as a result of the DC component. The non-saturated period of a flowing short-circuit current should be at least 5 ms. Table 11/7 shows the design recommendations. IEC 60044-1 and 60044-6 were taken into account. The necessary equations are shown for converting the requirements into the kneepoint voltages. The customary practice which presently applies should also be used to determine the rated primary current of the current transformer rated current. It should be greater than or equal to the rated current of the protected object.

	$I_{\rm EE1}$	$I_{\rm EE2}$	$V_{\rm E}$	
Sensitive earth-fault protection	$\mathbf{X}^{1)}$	$\mathbf{X}^{1)}$		
Directional stator earth-fault protection		Х	Х	
Rotor earth-fault protection (f _n , <i>R</i> -measuring)	Х		Х	
100 % stator earth-fault protection with 20 Hz voltage	Х		Х	
Earth-current differential protection	$\mathbf{X}^{1)}$	$\mathbf{X}^{1)}$		

1) optional (either I_{EE1} or I_{EE2})

Table 11/5: Multiple use of analog inputs

	TD1	TD2	TD3	
Injection of excitation voltage			Х	
DC voltage time/DC current time protection	Х			
Injection of a temperature		Х		
Rotor earth-fault protection (1 to 3 Hz)	Х	Х		
Processing of analog values via CFC	Х	X	X	

 Table 11/6:
 Multiple use of measuring transducers

Symmetrical short-circuit limiting factor

Required actual accuracy limiting factor

 $\mathbf{K'}_{\rm ssc} = \mathbf{K}_{\rm td} \cdot \frac{I_{\rm pssc}}{I_{\rm pn}}$

Resulting rated accuracy limiting factor

$$\mathbf{K}_{\rm ssc} = \frac{R'_{\rm b} + R_{\rm Ct}}{R_{\rm BN} + R_{\rm Ct}} \cdot \mathbf{K'}_{\rm ssc}$$

Current transformer requirements

	Transformer	Generator
Transient dimensioning factor K _{td}	$\geq 4 \\ \tau_{\rm N} \leq 100 \text{ ms}$	$> (4 \text{ to } 5) \\ \tau_N > 100 \text{ ms}$
Symmetrical short-circuit current <i>I</i> _{pssc}	$\approx \frac{1}{v_{\rm sc}} \cdot I_{\rm pn, Tr}$	$\approx \frac{1}{x''_{\rm d}} \cdot I_{\rm pn, G}$
Example	$\nu_{sc} = 0.1$ K' _{ssc} > 40	$x_{d}^{"} = 0.12$ K' _{ssc} > (34 to 42)
Note: Identical transformers have to be employed	Rated power ≥ 10 or 15 VA	Note: Secondary winding resistance
	Example: Network transformer 10P10: (10 or 15) VA $(I_{sn} = 1 \text{ or 5 A})$	Example: I _{N, G} approx. 1000 to 2000 A 5P15: 15 VA (I _{sn} = 1 or 5 A)
		$I_{N, G} > 5\ 000$ A 5P20: 30 VA $(I_{sn} = 1 \text{ or } 5 \text{ A})$

Knee	-point voltage		
IEC	British Standard		ANSI
<i>V</i> = K	$S_{\rm ssc}(R_{\rm ct}+R_{\rm b})I_{\rm sn}$ $V = \frac{(R_{\rm ct}+R_{\rm b})I_{\rm sn}}{1.3}$ K	- ssc	$V = 20 \cdot I_{\rm sn} \cdot \left(R_{\rm ct} + R_{\rm b}\right) \cdot \frac{K_{\rm ssc}}{20}$ $I_{\rm sn} = 5 \text{ (typical value)}$
K _{td} I _{pssc} I _{pn}	Rated transient dimensioning factor Primary symmetrical short-circuit curre Rated primary current (transformer)	$\begin{array}{c} R_{ct} \\ nt \\ x^{"}_{d} \end{array}$	Secondary winding resistance Short-circuit voltage (impedance voltage) Subtransient reactance
$\dot{R}'_{\rm b}$ $R_{\rm b}$	Connected burden Rated resistive burden	$I_{ m sn} \ au_{ m N}$	Rated secondary current (transformer) Network time constant

 Table 11/7: Recommendations for dimensioning

Hardware	
Analog input	
Rated frequency	50 or 60 Hz
Rated current I _N	1 or 5 A
Earth current, sensitive I_{Emax}	1.6 A
Rated voltage $V_{\rm N}$ (at 100 V)	100 to 125 V
Measuring transducer	- 10 to + 10 V ($R_i = 1 M\Omega$) or - 20 to + 20 mA ($R_i = 10 \Omega$)
Power consumption With $I_N = 1$ A With $I_N = 5$ A For sensitive earth current Voltage inputs (with 100 V)	Approx. 0.05 VA Approx. 0.3 VA Approx. 0.05 VA Approx. 0.3 VA
Capability in CT circuits Thermal (r.m.s. values)	100 $I_{\rm N}$ for 1 s 30 $I_{\rm N}$ for 10 s 4 $I_{\rm N}$ continuous
Dynamic (peak)	250 $I_{\rm N}$ (one half cycle)
Earth current, sensitive	300 A for 1 s 100 A for 10 s 15 A continuous 750 A (one helf cycle)
Canability in voltage noths	220 V continuous
Capability of monouring transducer	230 V continuous
As current input	60 V continuous 100 mA continuous
Auxiliary voltage	
Rated auxiliary voltage	24 to 48 V DC 60 to 125 V DC 110 to 250 V DC and 115 V/230 V AC with 50/60 Hz
Permitted tolerance	-20 to +20 %
Superimposed (peak-to-peak)	≤ 15 %
Power consumption During normal operation 7UM621 7UM622 7UM623 During pickup with all inputs and outputs activated 7UM621 7UM622 7UM623	Approx. 5.3 W Approx. 5.5 W Approx. 8.1 W Approx. 12 W Approx. 15 W Approx. 14.5 W
Bridging time during auxiliary volt- age failure at $V_{aux} = 48$ V and $V_{aux} \ge 110$ V at $V_{aux} = 24$ V and $V_{aux} = 60$ V	≥ 50 ms > 20 ms
$a_1 v_{auv} = 24 v d_{11} v_{auv} = 00 v$	- 40 113

Binary inputs

Number	
7UM621, 7UM623	7
7UM622	15
3 pickup thresholds Range is selectable with jumpers	10 to 19 V DC or 44 to 88 V DC 88 to 176 V DC
Maximum permissible voltage	300 V DC
Current consumption energized	Approx 1.8 mA

Output relays	
Number 7UM621 7UM622	12 (1 NO; 4 optional as NC, via jumper) 21 (1 NO; 5 optional as NC, via jumper)
Switching capacity Make Break Break (for resistive load) Break (for L/R ≤ 50 ms)	1000 W / VA 30 VA 40 W 25 VA
Switching voltage	250 V
Permissible current	5 A continuous 30 A for 0.5 seconds
LED	
Number RUN (green) ERROR (red)	1 1
Assignable LED (red)	14
Unit design	
7XP20 housing	For dimensions see dimension drawings, part 15
Degree of protection acc. to EN 60529 For surface-mounting housing For flush-mounting housing Front Rear For the terminals Weight Flush-mounting housing 7UM621/7UM623 (1/2 x 19") 7UM622 (1/1 x 19") Surface-mounting housing 7UM621/7UM623 (1/2 x 19") 7UM622 (1/1 x 19")	IP 51 IP 51 IP 50 IP 2x with terminal cover put on Approx. 7 kg Approx. 9.5 kg Approx. 12 kg Approx. 15 kg
Serial interfaces	
Operating interface for DIGSI 4	
Connection	Non-isolated, RS232, front panel 9-pin subminiature connector
Baud rate	4800 to 115200 baud

Data Tate	4000 to 115200 badd	
Time synchronization IRIG B / DCF 77	signal (Format: IRIG-B000)	
Connection	9-pin subminiature connector, terminal with surface-mounting case	
Voltage levels	Selectable 5 V, 12 V or 24 V	
Service/modem interface (Port C) for DIGSI 4 / modem / service		
Isolated RS232/RS485 Test voltage Distance for RS232 Distance for RS485	9-pin subminiature connector 500 V / 50 Hz Max. 15 m Max. 1000 m	

System interface (Port B)

IEC 60870-5-103 protocol, PROFIBUS-DP, MODBUS RTU

Isolated RS232/RS485 Baud rate Test voltage Distance for RS232 Distance for RS485

PROFIBUS RS485 Test voltage Baud rate Distance

PROFIBUS fiber-optic Only for flush-mounting housing For surface-mounting housing Baud rate Optical wavelength Permissible path attenuation Distance

500 V / 50 Hz Max. 12 MBaud 1000 m at 93.75 kBaud; 100 m at 12 MBaud ST connector

9-pin subminiature connector

4800 to 115200 baud

500 V / 50 Hz

Max. 15 m

Max. 1000 m

Optical interface with OLM1) Max. 1.5 MBaud $\lambda = 820 \text{ nm}$ Max. 8 dB for glass-fiber 62.5/125 µm 1.6 km (500 kB/s) 530 m (1500 kB/s) 2 ports with 0 to 20 mA

Rear panel, mounting location "B",

LC connector receiver/transmitter

Max. 5 dB for glass fiber 62.5/125 µm

Glass fiber 50/125 um or

glass fiber 62/125µm

Max. 800 m/0.5 mile

Analog output module (electrical)

System interface (Port B) IEC 61850

Ethernet, electrical (EN 100) for IEC 61850 and DIGSI

Connection for flush-mounting case Rear panel, mounting location "B", two RJ45 connector, 100 Mbit/s acc. to IEEE802.3 for surface-mounting case At bottom part of the housing Test voltage 500 V; 50 Hz Transmission speed 100 Mbits/s Distance 20 m/66 ft

Ethernet, optical (EN 100) for IEC 61850 and DIGSI

Connection for flush-mounting case for panel surface-mounting case Optical wavelength

Laser class 1 acc. to EN 60825-1/-2 Permissible path attenuation Distance

Transmission speed

Electrical tests

Specifications

Standards

IEC 60255 (product standards) ANSI/IEEE C37.90.0/.1/.2 UL 508 DIN 57435, part 303 For further standards see below

Insulation tests

Standards

Voltage test (100 % test) All circuits except for auxiliary supply, binary inputs communication and time synchronization interfaces

Voltage test (100 % test) Auxiliary voltage and binary inputs

Voltage test (100 % test) only isolated communication interfaces and time synchronization interface

IEC 60255-5

Not available

 $\lambda = 1350 \text{ nm}$

100 Mbits/s

2.5 kV (r.m.s.), 50/60 Hz

3.5 kV DC

500 V (r.m.s. value), 50/60 Hz

Impulse voltage test (type test) All circuits except for communication interfaces and time synchronization interface, class III

5 kV (peak); 1.2/50 µs; 0.5 J; 3 positive and 3 negative impulses at intervals of 5 s

EMC tests for noise immunity; type test

High frequency test IEC 60255-22-1, class III and DIN 57435 part 303, class III

Electrostatic discharge IEC 60255-22-2 class IV EN 61000-4-2, class IV

Irradiation with RF field, non-modulated IEC 60255-22-3 (report), class III

Irradiation with RF field, amplitudemodulated, IEC 61000-4-3, class III

Irradiation with RF field, pulse-modulated

IEC 61000-4-3/ ENV 50204, class III

Fast transient interference bursts IEC 60255-22-4, IEC 61000-4-4, class IV

High-energy surge voltages (SURGE), Impulse: 1.2/50 µs IEC 61000-4-5 installation, class III Auxiliary supply

Measurement inputs, binary inputs and relay outputs

Line-conducted HF, amplitude-modulated IEC 61000-4-6, class III

Magnetic field with power frequency IEC 61000-4-8, class IV; IEC 60255-6

Oscillatory surge withstand capability ANSI/IEEE C37.90.1

Fast transient surge withstand capability ANSI/IEEE C37.90.1

Radiated electromagnetic interference 35 V/m; 25 to 1000 MHz ANSI/IEEE C37.90.2

Damped oscillations IEC 60894, IEC 61000-4-12 IEC 60255-6, IEC 60255-22 (product standards) EN 50082-2 (generic standard)

DIN 57435 part 303 2.5 kV (peak value), 1 MHz; $\tau = 15 \text{ ms}$

400 pulses per s; duration 2 s

8 kV contact discharge; 15 kV air discharge; both polarities; 150 pF; $R_i = 330 \Omega$ 10 V/m; 27 to 500 MHz

10 V/m; 80 to 1000 MHz; 80 % AM; 1 kHz

10 V/m; 900 MHz; repetition frequency 200 Hz; duty cycle 50 %

4 kV; 5/50 ns; 5 kHz; burst length = 15 ms; repetition rate 300 ms; both polarities; $R_i = 50 \Omega$; test duration 1 min

Common (longitudinal) mode: 2 kV; 12 Ω, 9 μF Differential (transversal) mode: 1 kV; 2 Ω, 18 µF

Common (longitudinal) mode: 2 kV; 42 Ω, 0.5 μF Differential (transversal) mode: 1 kV; 42 Ω, 0.5 µF

10 V; 150 kHz to 80 MHz; 80 % AM; 1 kHz

30 A/m continuous; 300 A/m for 3 s; 50 Hz 0.5 mT; 50 Hz

2.5 to 3 kV (peak); 1 to 1.5 MHz damped wave; 50 surges per second; duration 2 s; $R_i = 150$ to 200 Ω

4 to 5 kV; 10/150 ns; 50 surges per second; both polarities; duration 2 s; $R_{\rm i} = 80 \ \Omega$

2.5 kV (peak value), polarity alternating 100 kHz, 1 MHz, 10 and 50 MHz, $R_{\rm i} = 200 \,\Omega$

1) Conversion with external OLM For fiber-optic interface please complete order number at 11th position with 4 (FMS RS485) or 9 and Order code LOA (DP RS485) and additionally order:

For single ring: SIEMENS OLM 6GK1502-3AB10 For double ring: SIEMENS OLM 6GK1502-4AB10

EMC tests for interference emission; type tests

Standard Conducted interference voltage on lines only auxiliary supply IEC-CISPR 22 Interference field strength IEC-CISPR 22

EN 50081-1 (generic standard) 150 kHz to 30 MHz Limit class B 30 to 1000 MHz Limit class B

IEC 60255-21 and IEC 60068

Mechanical stress tests

Vibration, shock stress and seismic vibration

During operation Standards

Vibration IEC 60255-21-1, class 2 IEC 60068-2-6

Shock IEC 60255-21-2, class 1 IEC 60068-2-27

Seismic vibration IEC 60255-21-2, class 1 IEC 60068-3-3

During transport

Standards

Vibration IEC 60255-21-1, class 2 IEC 60068-2-6

Shock IEC 60255-21-2, class 1 IEC 60068-2-27

Continuous shock IEC 60255-21-2, class 1 IEC 60068-2-29

Climatic stress test

Tem	peratures
-----	-----------

Type-tested acc. to IEC 60068-2-1 -25 °C to +85 °C / -13 °F to +185 °F and -2, test Bd, for 16 h Temporarily permissible operating –20 °C to +70 °C / –4 °F to +158 °F temperature, tested for 96 h

Recommended permanent operating -5 °C to +55 °C / +25 °F to +131 °F temperature acc. to IEC 60255-6 (Legibility of display may be impaired above +55 °C / +131 °F)

- Limiting temperature during -25 °C to +55 °C / -13 °F to +131 °F permanent storage -25 °C to +70 °C / -13 °F to +158 °F Limiting temperature during

Sinusoidal 10 to 60 Hz: \pm 0.075 mm amplitude; 60 to 150 Hz: 1 g acceleration Frequency sweep 1 octave/min 20 cycles in 3 orthogonal axes Half-sinusoidal Acceleration 5 g, duration 11 ms, 3 shocks each in both directions of the 3 axes Sinusoidal 1 to 8 Hz: ± 3.5 mm amplitude (horizontal axis) 1 to 8 Hz: ± 1.5 mm amplitude (vertical axis) 8 to 35 Hz: 1 g acceleration (horizontal axis) 8 to 35 Hz: 0.5 g acceleration (vertical axis) Frequency sweep 1 octave/min 1 cycle in 3 orthogonal axes

IEC 60255-21 and IEC 60068-2 Sinusoidal 5 to 8 Hz: ±7.5 mm amplitude; 8 to 150 Hz: 2 g acceleration Frequency sweep 1 octave/min 20 cycles in 3 orthogonal axes

Half-sinusoidal Acceleration 15 g, duration 11 ms, 3 shocks each in both directions 3 axes

Half-sinusoidal Acceleration 10 g, duration 16 ms, 1000 shocks in both directions of the 3 axes

Humiditv

Permissible humidity stress It is recommended to arrange the units in such a way that they are not exposed to direct sunlight or pronounced temperature changes that could cause condensation

Annual average \leq 75 % relative humidity; on 56 days a year up to 93 % relative humidity; condensation is not permitted

Functions General

٦

Т

T

٦

Frequency range

Definite-time overcurrent protection, directional (ANSI 50, 51, 67)

11 to 69 Hz

Setting ranges

Overcurrent I>, I>>	0.05 to 20 A (steps 0.01 A);
	5 times at $I_{\rm N} = 5$ A
Time delay T	0 to 60 s (steps 0.01 s) or indefinite
Undervoltage seal-in V<	10 to 125 V (steps 0.1 V)
Seal-in time of V<	0.1 to 60 s (steps 0.01 s)
Angle of the directional element	- 90 ° to + 90 ° (steps 1 °)
(at <i>I</i> >>)	
Times	
Pickup time <i>I</i> >, <i>I</i> >>	
at 2 times of set value	Approx. 35 ms
at 10 times of set value	Approx. 25 ms
Drop-off time <i>I</i> >, <i>I</i> >>	Approx. 50 ms
Drop-off ratio	<i>I</i> >: 0.95; <i>I</i> >>: 0.9 to 0.99 (steps 0.01)
Drop-off ratio V<	Approx. 1.05
olerances	
Current pickup (starting) I>, I>>	1 % of set value or 10/50 mA
Undervoltage seal-in $V <$	1 % of set value or 0.5 V
Angle of the directional element	1 °
Time delays	1 % or 10 ms

Inverse-time overcurrent protection (ANSI 51V)

Setting ranges	
Pickup overcurrent $I_{\rm P}$	0.1 to 4 A (steps 0.01 A); 5 times at
	$I_{\rm N} = 5 {\rm A}$
Time multiplier	0.05 to 3.2 s (steps 0,01 s)
IEC-characteristics T	or indefinite
Time multiplier ANSI- characteristics D	0.5 to 15 (steps 0.01) or indefinite
Undervoltage release V<	10 to 125 V (steps 0.1 V)
Trip characteristics	
IEC	Normal inverse; very inverse;
	extremely inverse

ANSI

Pickup threshold Drop-off threshold

Tolerances Pickup threshold $I_{\rm P}$ Pickup threshold V< Time for $2 \le I/I_P \le 20$ Inverse; moderately inverse; very inverse; extremely inverse; definite inverse Approx. 1.1 IP Approx. 1.05 I_P for $I_P/I_N \ge 0.3$

1 % of set value or 10/50 mA 1 % of set value or 0.5 V 5 % of nominal value + 1 % current tolerance or 40 ms

transport

Stator overload protection, thermal (ANSI 49)

Setting ranges Factor k according to IEC 60255-8 0.5 to 2.5 (steps 0.01) Time constant 30 to 32000 s (steps 1 s) Time delay factor at stand still 1 to 10 (steps 0.01) Alarm overtemperature 70 to 100 % related to the trip temperature (steps 1 %) $\Theta_{Alarm} / \Theta_{Trip}$ Overcurrent alarm stage I_{Alarm} 0.1 to 4 A (steps 0.01 A); 5 times at $I_{\rm N} = 5 \, {\rm A}$ Temperature at I_N 40 to 200 °C (steps 1 °C) or 104 to 392 °F (steps 1 °F) Scaling temperature of cooling 40 to 300 °C (steps 1 °C) or 104 to 572 °F (steps 1 °F) medium 0.5 to 8 A (steps 0.01), 5 times at Limit current ILimit $I_{\rm N} = 5 \text{ A}$ Reset time at emergency start 20 to 150000 s (steps 1 s) Drop-off ratio Θ / Θ_{Trip} Drop-off with Θ_{Alarrn} Θ / Θ_{Alarrm} Approx. 0.99 I/I_{Alarm} Approx. 0.95 Tolerances Regarding k x IN 2 % or 10/50 mA; class 2 % according to IEC 60255-8 Regarding trip time 3 % or 1 s: class 3 % according to IEC 60255-8 for *I*/(k *I*_N)>1.25

Negative-sequence protection (ANSI 46)

Setting ranges

Permissible negative sequence $I_{2 \text{ perm.}}/I_N$ Definite time trip stage $I_2 >>/I_N$ Time delays T_{Alarm} ; $T_{12}>>$ Negative-sequence factor K Cooling down time T_{Cooling}

Times

Pickup time (definite stage) Drop-off time (definite stage)

Drop-off ratios I_2 perm.; $I_2 >>$ Drop-off ratio thermal stage

Tolerances Pickup values I_2 perm.; $I_2 >>$

Time delays Thermal characteristic

Time for $2 \le I_2/I_2$ perm. ≤ 20

3 to 30 % (steps 1 %) 10 to 200 % (steps 1 %) 0 to 60 s (steps 0.01 s) or indefinite 1 to 40 s (steps 0.1 s) 0 to 50000 s (steps 1 s)

Approx. 50 ms Approx. 50 ms Approx. 0.95

Drop-off at fall below of $I_{2 \text{ perm.}}$

3 % of set value or 0.3 % negative sequence 1 % or 10 ms 5 % of set point + 1 % current tolerance or 600 ms

Underexcitation protection (ANSI 40)

······	
Setting ranges Conductance thresholds 1/xd characteristic	0.20 to 3.0 (steps 0.01)
(3 characteristics) Inclination angle $\alpha_1, \alpha_2, \alpha_3$ Time delay <i>T</i> Undervoltage blocking <i>V</i> <	50 to 120 ° (steps 1 °) 0 to 50 s (steps 0.01 s) or indefinite 10 to 125 V (steps 0.1 V)
Times Stator criterion 1/xd characteristic; α Undervoltage blocking	Approx. 60 ms Approx. 50 ms
Drop-off ratio Stator criterion 1/xd characteristic; α Undervoltage blocking	Approx. 0.95 Approx. 1.1
Tolerances Stator criterion 1/xd characteristic Stator criterion α Undervoltage blocking Time delays T	3 % of set value 1 ° electrical 1 % or 0.5 V 1 % or 10 ms
Reverse-power protection (ANSI 32R)	
Setting ranges Reverse power P _{Rev.} >/S _N Time delays T	- 0.5 to - 30 % (steps 0.01 %) 0 to 60 s (steps 0.01 s) or indefinite
Times Pickup time	Approx. 360 ms (50 Hz); Approx. 300 ms (60 Hz)
Drop-off time	Approx. 360 ms (50 Hz); Approx. 300 ms (60 Hz);
Drop-off ratio $P_{\text{Rev.}}>$	Approx. 0.6
Tolerances	
Reverse power <i>P</i> _{Rev.} > Time delays <i>T</i>	1% or 10 ms
Forward-power protection (ANSI 32F)	
Setting ranges Forward power P _{Forw.} N Forward power P _{Forw.} >/S _N Time delays T	0.5 to 120 % (steps 0.1 %) 1 to 120 % (steps 0.1 %) 0 to 60 s (steps 0.01 s) or indefinite
Times Pickup time (accurate measuring)	Approx. 360 ms (50 Hz); Approx. 300 ms (60 Hz)
Pickup time (fast measuring)	Approx. 60 ms (50 Hz);
Drop-off time (accurate measuring)	Approx. 360 ms (60 Hz) Approx. 360 ms (50 Hz); Approx. 300 ms (60 Hz)
Drop-off time (fast measuring)	Approx. 60 ms (50 Hz); Approx. 50 ms (60 Hz)
Drop-off ratio <i>P</i> _{Forw.} < Drop-off ratio <i>P</i> _{Forw.} >	1.1 or 0.5 % of $S_{\rm N}$ Approx. 0.9 or – 0.5 % of $S_{\rm N}$
Tolerances	
Active power <i>P</i> _{Forw.} <, <i>P</i> _{Forw.} >	0.25 % $S_N \pm 3$ % of set value at $Q < 0.5 S_N$ at accurate measuring 0.5 % $S_N \pm 3$ % of set value at $Q < 0.5 S_N \pm 4$ % of set value
Time delays T	1 % or 10 ms

Impedance protection (ANSI 21)

inpedance protection (7 mor 2 1)	
Setting ranges Overcurrent pickup <i>I</i> >	0.1 to 20 A (steps 0.01 A); 5 times at $L = 5$ A
Undervoltage seal-in V< Impedance Z1 (related to $I_N = 1$ A) Impedance Z1B (related to $I_N = 1$ A) Impedance Z2 (related to $I_N = 1$ A) Time delays T	5 times at $I_N = 5A$ 10 to 125 V (steps 0.1V) 0.05 to 130 Ω (steps 0.01 Ω) 0.05 to 65 Ω (steps 0.01 Ω) 0.05 to 65 Ω (steps 0.01 Ω) 0 to 60 s (steps 0.01 s) or indefinite
Times Shortest tripping time Drop-off time	Approx. 40 ms Approx. 50 ms
Drop-off ratio Overcurrent pickup <i>I></i> Undervoltage seal-in <i>V</i> <	Approx. 0.95 Approx. 1.05
Tolerances Overcurrent pickup <i>I></i> Undervoltage seal-in <i>V<</i> Impedance measuring Z1, Z2 Time delays <i>T</i>	1 % of set value or 10/50 mA 1 % of set value or 0.5 V $ \Delta Z/Z ≤ 5$ % for 30 ° ≤ $φ_K ≤ 90$ ° 1 % or 10 ms
Undervoltage protection (definite-tim	e and inverse-time function) (ANSI 27)
Setting range Undervoltage pickup V<, V<<, V _p < (positive sequence as phase- to-phase values)	10 to 125 V (steps 0.1 V)
Time delays T Time multiplier $T_{\rm M}$	0 to 60 s (steps 0.01 s) or indefinite 0.1 to 5 s (steps 0.01 s)
Times Pickup time V<, V<< Drop-off time V<, V<<	Approx. 50 ms Approx. 50 ms
Drop-off ratio V<, V<<, V _p <	1.01 or 0.5 V
Folerances Voltage limit values Time delays T	1 % of set value or 0.5 V 1 % or 10 ms
Inverse-time characteristic	1 % of measured value of voltage
Overvoltage protection (ANSI 59)	
Setting ranges Overvoltage pickup V>, V>> (maximum phase-to-phase voltage or phase-to-earth-voltage) Time delays T	30 to 170 V (steps 0.1 V) 0 to 60 s (steps 0.01 s) or indefinite
Times Pickup times V>, V>> Drop-off times V>, V>>	Approx. 50 ms Approx. 50 ms
Drop-off ratio V>, V>>	0.9 to 0.99 (steps 0.01)
Folerances Voltage limit value Time delays T	1 % of set value 0.5 V 1 % or 10 ms

Fraguency protection (ANSI 81)

4 40 to 65 Hz (steps 0.01 Hz) 3 stages 0 to 100 s, 1 stage up to 600 s
(steps 0.01 s) 10 to 125 V (steps 0.1 V)
Approx. 100 ms Approx. 100 ms
Approx. 20 mHz Approx. 1.05
10 mHz (at V> 0.5 V _N) 1 % of set value or 0.5 V 1 % or 10 ms
:) (ANSI 24)
1 to 1.2 (steps 0.01) 1 to 1.4 (steps 0.01) 0 to 60 s (steps 0.01 s) or indefinite 1.05/1.1/1.15/1.2/1.25/1.3/1.35/1.4 0 to 20000 s (steps 1 s) 0 to 20000 s (steps 1 s)
Approx. 60 ms Approx. 60 ms
0.95
3 % of set value 1 % or 10 ms 5 % rated to <i>V/f</i> or 600 ms
n-directional, directional
2 to 125 V (steps 0.1 V) 2 to 1000 mA (steps 1 mA) 0 to 360 ° (steps 1 °) 0 to 60 s (steps 0.01 s) or indefinite
Approx. 50 ms Approx. 50 ms
0.95 10 ° directed to power system
1 % of set value or 0.5 V 1 % of set value or 0.5 mA 1 % or 10 ms

Sensitive earth-fault protection (ANSI 50/51GN, 64R)

Setting ranges Earth current pickup I_{EE} , I_{EE} >> Time delays T Measuring circuit supervision I_{EE} <	2 to 1000 mA (steps 1 mA) 0 to 60 s (steps 0.01 s) or indefinite 1.5 to 50 mA (steps 0.1 mA)
Times Pickup times Drop-off times Measuring circuit supervision	Approx. 50 ms Approx. 50 ms Approx. 2 s
Drop-off ratio <i>I</i> _{EE} >, <i>I</i> _{EE} >> Drop-off ratio measuring circuit supervision <i>I</i> _{EE} <	0.95 or 1 mA Approx. 1.1 or 1 mA
Tolerances Earth current pickup Time delays T	1 % of set value or 0.5 mA 1 % or 10 ms
100 % stator earth-fault protection w (ANSI 59TN, 27TN) (3rd H.)	ith 3 rd harmonic
Setting ranges Displacement voltage $V_{0 (3^{cd} harm.)}$, $V_{0 (3^{cd} harm.)}$ Time delay T Active-power release Positive-sequence voltage release	0.2 to 40 V (steps 0.1 V) 0 to 60 s (steps 0.01 s) or indefinite 10 to 100 % (steps 1 %) or indefinite 50 to 125 V (steps 0.1 V) or indefinite
Times Pickup time Drop-off time	Approx. 80 ms Approx. 80 ms
Drop-off ratio Undervoltage stage $V_{0 (3^{rd} harm.)} <$ Overvoltage stage $V_{0 (3^{rd} harm.)} >$ Active-power release Positive-sequence voltage release	Approx. 1.4 Approx. 0.6 Approx. 0.9 Approx. 0.95
Tolerances Displacement voltage Time delay T	3 % of set value or 0.1 V 1 % or 10 ms
Breaker failure protection (ANSI 50BF,)
Setting ranges Current thresholds <i>I</i> >BF Time delay BF- <i>T</i>	0.04 to 1 A (steps 0.01 A) 0.06 to 60 s (steps 0.01 s) or indefi- nite
Times Pickup time Drop-off time	Approx. 50 ms Approx. 50 ms
Tolerances Current threshold <i>I</i> >BF/ <i>I</i> _N Time delay <i>T</i>	1 % of set value or 10/50 mA 1 % or 10 ms

Inadvertent energizing protection (ANSI 50, 27)

Setting ranges	
Current pickup <i>I</i> >>>	0.1 to 20 A (steps 0.1 A);
	5 times at $I_{\rm N}$ = 5 A
Voltage release $V_1 <$	10 to 125 V (steps 1 V)
Time delay	0 to 60 s (steps 0.01 s) or indefinite
Drop-off time	0 to 60 s (steps 0.01 s) or indefinite
Times	
Reaction time	Approx. 25 ms
Drop-off time	Approx. 35 ms
Drop-off ratio <i>I</i> >>>	Approx. 0.8
Drop-off ratio $V_1 <$	Approx. 1.05
Tolerances	
Current pickup	5 % of set value or 20/100 mA
Undervoltage seal-in $V_1 <$	1 % of set value or 0.5 V
Time delay T	1 % or 10 ms
Current differential protection (ANSIS	27C 97M 97T)
Current unterential protection (ANS) a	5/G, 8/M, 8/T)
Setting ranges	
Differential current $I_{\rm D} > I_{\rm N}$	0.05 to 2 (steps 0.01)
High-current stage $I_{\rm D} >> I_{\rm N}$	0.8 to 12 (steps 0.1)
Inrush stabilization ratio I_{2fN}/I_N	10 to 80 (steps 1 %)
Harmonic stabilization ratio $I_{\rm nfN}/I_{\rm N}$	10 to 80 (steps 1 %)
$(n=3^{10} \text{ or } 4^{11} \text{ or } 5^{11} \text{ harmonics})$	
Additional trip time delay T	0 to 60 s (steps 0.01 s) or indefinite
Times	
Pickup time	Approx. 35 ms
$(I_{\rm D} \ge 1.5 \text{ setting value } I_{\rm D} >)$	
Pickup time	Approx. 20 ms
$(I_{\rm D} \ge 1.5 \text{ setting value } I_{\rm D} >>)$	
Drop-off time	Approx. 35 ms
Drop-off ratio	Approx. 0.7
Toloran cos	11
Dickup characteristic	3 % of set value or 0.01 <i>l/b</i>
Inrush stabilization	3% of set value or $0.01 I/I_N$
Additional time delays	1.9% or 10 ms
Earth-current differential protection	(ANSI 87GN, 87TN)
Setting ranges	
Differential current $I_{E-D} > /I_N$	0.01 to 1 (steps 0.01)
Additional trip time delay	0 to 60 s (steps 0.01 s) or indefinite
Times	
Pickup time	Approx. 50 ms
$(I_{E-D} \ge 1.5 \text{ setting value } I_{E-D} >)$	
Drop-off time	Approx. 50 ms
Drop_off ratio	Approx 0.7
Diop-on fauo	11pp101. 0.7

Drop-off ratio

Tolerances Pickup characteristic Additional time delay 3 % of set value 1 % or 10 ms

Rotor earth-fault protection with f_N (ANSI 64R) (f_N)

Setting ranges Alarm stage R_{E, Alarm} < 3 to 30 k\Omega (steps 1 kΩ) Trip stage R_{E, Trip} < 1.0 to 5 k Ω (steps 0.1 k Ω) 0 to 60 s (steps 0.01 s) or indefinite Time delays T Correction angle -15° to $+15^{\circ}$ (steps 1 °) Times Pickup time $\leq 80 \text{ ms}$ Drop-off time $\leq 80 \text{ ms}$ Drop-off ratio Approx. 1.25 Tolerances Trip stage R_{E, Trip} <, Approx. 10 % of set value Alarm stage R_{E, Alarm} < Time delays T 1 % or 10 ms Permissible rotor earth capacitance 0.15 to 3 µF

Approx. 5 % of set value

Sensitive rotor fault protection with 1 to 3 Hz (ANSI 64R) (1 to 3 Hz)

Setting ranges Alarm stage R_{E,Alarm} < Trip stage R_{E, Trip} < Time delays T Pickup value of meas. circuit

5 to 80 k Ω (steps 1 k Ω) 1 to 10 k Ω (steps 1 k Ω) 0 to 60 s (steps 0.01 s) or indefinite 0.01 to 1 mAs (steps 0.01 mAs)

Times Pickup time

supervision Q_C<

Drop-off time

Drop-off ratio R_E Drop-off ratio $Q_{\rm C} <$

Tolerances Trip stage $(R_{E,Trip} <; Alarm stage R_{E, Alarm} <)$ quency of 7XT71) Approx. 1 to 1.5 s Approx 1.25 1.2 or 0.01 mAs Approx. 5 % or 0.5 k Ω at $0.15 \,\mu\text{F} \le C_{\text{E}} < 1\mu\text{F}$

Approx. 10 % or 0.5 kΩ at $1 \mu F \leq C_E < 3 \mu F$ 1 % or 10 ms

20 to 500 Ω (steps 1 Ω)

0.15 to 3 µF

Approx. 1 to 1.5 s (depends on fre-

Time delays T Permissible rotor earthcapacitance

100 % stator earth-fault protection with 20 Hz (ANSI 64G) (100 %)

Setting ranges

Alarm stage $R_{SEF} <$ Trip stage R_{SEF} << Earth current stage $I_{\text{SEF}} >$ Time delays T Supervision of 20 Hz generator $V_{20\,\mathrm{Hz}}$ $I_{20 \,\mathrm{Hz}}$ Correction angle

Times Pickup times *R*_{SEF}<, *R*_{SEF}<< Pickup time ISEF>

Drop-off times R_{SEF}<, R_{SEF}<< Drop-off time I_{SEF} >

Drop-off ratio

Tolerances Resistance (R_{SEF}) Earth current stage (I_{SEF} >) Time delays T

10 to 300 Ω (steps 1 Ω) 0.02 to 1.5 A (steps 0.01 A) 0 to 60 s (steps 0.01 s) or indefinite 0.3 to 15 V (steps 0.1 V) 5 to 40 mA (steps 1 mA) - 60 ° to + 60 ° (steps 1 °) $\leq 1.3 \text{ s}$

≤ 250 ms $\leq 0.8 \text{ s}$ $\leq 120 \text{ ms}$ Approx. 1.2 to 1.7

ca. 5 % or 2 Ω 3 % or 3 mA 1 % or 10 ms

Out-of-step protection (ANSI 78)

Setting ranges	0.2 to AI/I (stop-0.1 I/I)
Positive sequence current pickup $I_1 >$	0.2 to $4 I_1 / I_N$ (steps 0.1 I_1 / I_N)
Negative-sequence current	0.05 to 1 $I_2/I_{\rm N}$ (steps 0.01 $I_2/I_{\rm N}$)
Impedances Z_a to Z_d (based on $D_1 = 1$ A)	0.05 to 130 Ω (steps 0.01 $\Omega)$
Inclination angle of polygon $\varphi_{\rm P}$ Number of out-of-step periods	60 to 90 ° (steps 1 °) 1 to 10
Number of out-of-step periods characteristic 2	1 to 20
Holding time of pickup <i>t</i> _H Holding time for out-of-step annunciation	0.2 to 60 s (steps 0.01 s) 0.02 to 0.15 s (steps 0.01 s)
Times	
Typical trip time	Depending from the out-of-step frequency
Tolerances	
Impedance measurement	$ \Delta Z/Z \le 5$ % for 30 ° $\le \varphi_{SC} \le 90$ ° or 10 m Ω
Time delays T	1 % to 10 ms
DC voltage time / DC current time pro	tection (ANSI 59N (DC) ; 51N (DC))
Setting ranges	
Voltage pickup $V = >, <$ Current pickup $I = >, <$ Time delays T	0.1 to 8.5 V (steps 0.1 V) 0.2 to 17 mA (steps 0.1 mA) 0 to 60 s (steps 0.01 s) or indefinite
Time delays 1	o to oo s (steps 0.01 s) of indefinite
Pickup time (operational condition 1)	Approx. 60 ms
Pickup time (operational condition 0) Dron-off time	Approx. 200 ms
Drop-off ratio	0.9 or 1.1
	0.9 01 1.1
Voltage	1.04 of act value or 0.1 V
Current	1 % of set value, or 0.1 w
Time delays T	1 % or 10 ms
Starting time supervision for motors (ANSI 48)
Sotting ranges	,
Motor starting	1.0 to 16 (steps 0.01)
Starting current	0.6 to 10 (steps 0.01)
Permissible starting	1.0 to 180 s (steps 0.1 s)
time T _{Start max} Permissible locked rotor time T _{Blocking}	0.5 to 120 s (steps 0.1 s) or indefinite
Times	Depending on the settings
Drop-off ratio	Approx. 0.95
Tolerances	
Current threshold Time delays T	1 % of set value, or 1 % of $I_{\rm N}$ 5 % or 30 ms

Restart inhibit for motors (ANSI 66, 49 Rotor)

Setting ranges	
Motor starting	3.0 to 10.0 (steps 0.01)
current I _{Start max} /I _N	
Permissible starting	3.0 to 120.0 s (steps 0.1 s)
time T _{Start max}	
Rotor temperature equalization	0 to 60.0 min (steps 0.1 min)
time $T_{ m Equali.}$	
Minimum restart inhibit	0.2 to 120.0 min (steps 0.1 min)
time $T_{\text{Restart, min}}$	
Permissible number of warm	1 to 4
starts $n_{\rm W}$	
Difference between warm and	1 to 2
cold starts $n_{\rm K}$ - $n_{\rm W}$	
Extensions of time constants	1.0 to 100.0
(running and stop)	
Tolerances	
Time delays T	1 % or 0.1 ms

4

0.2 to 10 Hz/s (steps 0.1 Hz/s); 0 to 60 s (steps 0.01 s) or indefinite

10 to 125 V (steps 0.1 V)

Approx. 0.95 or 0.1 Hz/s

1 % of set value or 0.5 V

0.5 ° to 15 ° (steps 0.1 °)

10 to 125 V (steps 0.1 V)

0 to 60 s (steps 0.01 s) or indefinite

Approx. 0.1 Hz/s at $V > 0.5 V_N$

Approx. 200 ms Approx. 200 ms

Approx. 1.05

1 % or 10 ms

Rate-of-frequency-change protection (ANSI 81R)

Setting ranges Steps, selectable +df/dt >; - df/dt

Pickup value df/dtTime delays TUndervoltage blocking $V_1 <$ Times

Pickup times df/dt Drop-off times df/dt Drop-off ratio df/dt

Drop-off ratio V< Tolerances

Rate-of-frequency change Undervoltage blocking Time delays *T*

Vector jump supervision (voltage)

Setting ranges Stage $\Delta \varphi$ Time delay T Undervoltage blocking $V_1 <$ Tolerances

Vector jump Undervoltage blocking Time delay *T* 0.3 ° at V> 0.5 V_N 1 % of set value or 0.5 V 1 % or 10 ms

Sensitive earth-fault protection B (ANSI 51GN)

Setting ranges Earth current *I*_{EE-B}>, Earth current *I*_{EE-B}<, Time delays *T* Measuring method

Times Pick-up times Drop-off times

Drop-off ratio $I_{\text{EE-B}}$ > Drop-off ratio $I_{\text{EE-B}}$ <

Tolerances Earth current Time delays T 0.3 to 1000 mA (steps 0.1 A) 0.3 to 500 mA (steps 0.1 mA) 0 to 60 s (steps 0.01 s) or indefinite - Fundamental, - 3rd harmonica - 1^{rst} and 3rd harmonics Approx. 50 ms

Approx. 50 ms 0.90 or 0.15 mA 1.1 or 0.15 mA

1 % of set value or 0.1 mA 1 % of set value or 10 ms

Interturn protection (ANSI 59N(IT))

• • • • • • • • •	
Setting ranges Displacement voltage V _{Interturn} > Time delays T	0.3 to 130 V (steps 0.1 V) 0 to 60 s (steps 0.01 s) or indefinite
Times Pick-up times V _{Interturn} > Drop-off times V _{Interturn} >	Approx. 60 ms Approx. 60 ms
Drop-off ratio V _{Interturn} >	0.5 to 0.95 adjustable
Tolerances Displacement voltage Time delays T	1 % of set value or 0.5 V 1 % of set value or 10 ms
Incoupling of temperature via serial i	nterface (thermo-box) (ANSI 38)
Number of measuring sensors	6 or 12
Temperature thresholds	40 to 250 °C or 100 to 480 °F (steps 1 °C or 1 °F)
Sensors types	Pt100; Ni 100, Ni 120
External trip coupling	
Number of external trip couplings	4
Threshold supervision	
Setting ranges Threshold of measured values MV ₁ > to MV ₁₀ < Assignable measured values	-200 % to +200 % (steps 1 %) <i>P</i> , active power <i>Q</i> , reactive power change of active power ΔP Voltage V_{L1} , V_{L2} , V_{L3} , V_E , V_0 , V_1 , V_2 , V_{E3h} Current $3I_0$, I_1 , I_2 , I_{EE1} , I_{EE2} Power angle φ Power factor cos φ Value at TD1
Times Pick-up times Drop-off times	Approx. 20 - 40 ms Approx. 20 - 40 ms
Drop-off to pick-up ratio Threshold MV _x > Threshold MV _x <	0.95 1.05
Trip circuit supervision (ANSI 74TC)	
Number of supervised trip circuits	1

Operational measurea value

 V_1

 I_1

Ρ Q

1 %

VE(3rd harm.)

W_{P+}; W_{P-}; W_{Q+}; W_{Q-}

max. 4 (depending on variant)

 $I_1, I_2, I_{\text{EE1}}, I_{\text{EE2}}, V_1, V_0, V_{03h}, |P|, |Q|,$

Description

Currents

Tolerance

Differential protection currents

Tolerances

Phase angles of currents

Tolerances

Voltages

Tolerance

Impedance Tolerance Power Tolerance

Phase angle

Tolerance Power factor

Tolerance Frequency

Tolerance

Overexcitation Tolerance

Thermal measurement Tolerance

Min./max. memory

Memory

Reset manual

Values

Positive sequence voltage Positive sequence current Active power Reactive power Frequency Displacement voltage (3rd harmonics)

Energy metering

Meter of 4 quadrants Tolerance Analog outputs (optional)

Number

Possible measured values

	$\begin{split} & S , \cos \varphi f, V/f, \varphi, \Theta_S/\Theta_{S \text{ Trip}}, \\ &\Theta_{\text{Rotor}}/\Theta_{\text{Rotor Trip}}, R_{\text{E}, \text{REF}}, R_{\text{E}, \text{REF}} 1_{\text{-}3\text{Hz}}, \\ &R_{\text{E} \text{ SEF}} \end{split}$
Range	0 to 22.5 mA
Minimum threshold (limit of validity)	0 to 5 mA (steps 0.1 mA)
Maximum threshold	22 mA (fixed)
Configurable reference value 20 mA	10 to 1000 % (steps 0.1 %)

	Fault re
Primary; secondary or per unit (%)	Numbe
$\begin{array}{l} I_{\rm L1,S1},I_{\rm L2,S1},I_{\rm L3,S1},I_{\rm L1,S2},I_{\rm L2,S2},I_{\rm L3,S2};\\ I_{\rm EE1},I_{\rm EE2},I_{\rm I},I_{\rm 2},I_{\rm 20Hz}\\ 0.2~\%~of~measurement~values\\ or~\pm~10~mA~\pm~1~digit \end{array}$	Instant Stor Sam
$I_{\text{Diffl,1}}; I_{\text{Diffl,2}}; I_{\text{Diffl,3}}; I_{\text{RestL,1}}; I_{\text{RestL,2}}; I_{\text{RestL,3}}; 0.1\% \text{ of measured or } \pm 10 \text{ mA} \pm 1$	Cha
$\begin{aligned} \varphi I_{L1,S1}; \varphi I_{L2,S1}; \varphi I_{L3,S1}; \varphi I_{L1,S2}; \varphi I_{L2,S2}; \\ \varphi I_{L3,S2}; \\ < 0.5^{\circ} \end{aligned}$	K.m.s. Stora
$V_{L1}; V_{L2}; V_{L3}; V_E; V_{L12}; V_{L23}; V_{L31}; V_1;$	Cha
0.2 % of measured values	Additic
or $\pm 0.2 \text{ V} \pm 1$ digit R, X	Fault ev
1 % S: D: O	Operat
3, P, Q 1 % of measured values or ± 0.25 % S _N	Elapsed
φ <0.1 °	Switchi
$ \cos \varphi \text{ (p.f.)} \\ 1 \% \pm 1 \text{ digit} $	
f	CE con
10 mHz (at V> 0.5 V _N ; 40 Hz < f < 65 Hz) V/f;	This pr nities o electror
ALL ALL ALL ALL AVE SERVICES	Directi
5 %	This ur
	man sta
Measured values with date and time	The un trial en
Via binary input Via key pad Via communication	This co accorda generic standar

-ault records	
Number of fault records	Max. 8 fault records
Instantaneous values Storage time Sampling interval Channels	Max. 5 s Depending on the actual frequency (e. g. 1.25 ms at 50 Hz; 1.04 ms at 60 Hz) <i>v</i> _{L1} , <i>v</i> _{L2} , <i>v</i> _{L3} , <i>v</i> _E ; <i>i</i> _{L1,S1} ; <i>i</i> _{L2,S1} ; <i>i</i> _{L3,S1} ; <i>i</i> _{EE1} ; <i>i</i> _{L1,S2} ; <i>i</i> _{L2,S2} ; <i>i</i> _{L3,S2} ; <i>i</i> _{EE2} ; TD1; TD2; TD3
R.m.s. values Storage period Sampling interval Channels	Max. 80 s Fixed (20 ms at 50 Hz; 16.67 ms at 60 Hz) V ₁ , V _E , <i>I</i> ₁ , <i>I</i> ₂ , <i>I</i> _{EE1} , <i>I</i> _{EE2} , <i>P</i> , <i>Q</i> , φ, R, X, <i>f</i> -f _n
Additional functions	
Fault event logging	Storage of events of the last 8 faults Puffer length max. 600 indications Time solution 1 ms
Operational indications	Max. 200 indications Time solution 1 ms
Elapsed-hour meter	Up to 6 decimal digits (criterion: current threshold)
Switching statistics	Number of breaker operation Phase-summated tripping current

formity

oduct is in conformity with the Directives of the European Commuon the harmonization of the laws of the Member States relating to magnetic compatibility (EMC Council Directive 89/336/EEC) and al equipment designed for use within certain voltage limits (Council ve 73/23/EEC).

nit conforms to the international standard IEC 60255, and the Gerandard DIN 57435/Part 303 (corresponding to VDE 0435/Part 303).

it has been developed and manufactured for application in an indusvironment according to the EMC standards.

nformity is the result of a test that was performed by Siemens AG in ance with Article 10 of the Council Directive complying with the standards EN 50081-2 and EN 50082-2 for the EMC Directive and d EN 60255-6 for the "low-voltage Directive".

Selection and ordering data				
	Soloct	ion and	ordering	a data
	JEIELL	1011 0110	uruerinu	i uutu

Description	Order No.	Order Cod
7UM62 multifunction generator,		
motor and transformer protection relay	7UM6200-0000	
Housing, binary inputs and outputs		
Housing 1/2 19", 7 BI, 12 BO, 1 live status contact	1	
Housing 1/1 19", 15 BI, 20 BO, 1 live status contact	2	
Graphic display, 1/2 19", 7BI, 12 BO, 1 live status contact	3	
Current transformer I		
1 A^{1} , I_{EE} (sensitive)	1	
5 A^{1} , I_{EE} (sensitive)	5	
Rated auxiliary voltage (power supply, indication voltage)		
24 to 48 V DC, threshold binary input 19 V ²		
$\frac{60 \text{ to } 125 \text{ V DC}^2}{120 \text{ threshold binary input 19 V}^2}$	4	
110 to 220 V DC ² , 115 V/230 V AC, threshold binary inp	<u>ut 88 V³⁷ 5</u>	
220 to 250 V DC, 115 V/230 V AC, threshold binary input	t 176 V 6	
Unit version		
For panel surface mounting, 2-tier screw-type terminals to	op/bottom B	
For panel flush mounting, plug-in terminals (2-/3- pin co	onnector) D	
Flush-mounting housing, screw-type terminal		
(direct connection, ring-type cable lugs)	<u>E</u>	
Region-specific default setting/function and language set	tings	
Region DE, 50 Hz, IEC characteristics, language: German	,	
(language can be selected)	A	
Region World, 50/60 Hz, IEC/ANSI characteristics, langu	age: English (UK),	
(language can be selected)	В	
Region US, 60 Hz, ANSI characteristics, language: English	1 (US),	
(language can be selected)	C	
Port B (System interface)		
No system interface	0	
IEC 60870-5-103 protocol, electrical RS232	1	
IEC 60870-5-103 protocol, electrical RS485	2	
IEC 60870-5-103 protocol, optical 820 nm, ST connector	3	
Analog output 2 x 0 to 20 mA	7	
PROFIBUS-DP slave electrical RS485	9	
PROFIBUS-DP slave ontical 820 nm double ring ST cor	nnector* 9	
MODBUS electrical R\$485		
MODBUS, optical 820 nm, ST connector*	9	
DNP 3.0 electrical RS485	9	
DNP 3.0 optical 820 nm ST connector*	9	
IFC 61850 100 Mbit Ethernet electrical double RI45 con	nnectors 9	
IEC 61850, 100 Mbit Ethernet, optical, double, LC connec	ctor ⁴⁾ 9	
University Port C (Service Interface)		
DIGSI 4 / modem, electrical RS232	1	
DIGSI 4 / modem, temperature monitoring box, electrica	1 RS485 2	
Port C (Service interface) and Port D (Additional Interfac	.e) 9	
Port C (Service Interface)		
DIGSI 4 / modem, electrical RS232		1
DIGSI 4 / modem, temperature monitoring box, electrica	l RS485	2
Port D (Additional Interface)		
Temperature monitoring box optical 820 pm ST connec	tor	Δ
Temperature monitoring box, optical 020 mil, 51 connec		
Analog outputs 2 x 0 to 20 m 4		

1) Rated current can be selected by means of jumpers.

- 2) Transition between the two auxiliary voltage ranges can be selected by means of jumpers.
- 3) The binary input thresholds can be selected in stages by means of jumpers.
- 4) Not available with position 9 = "B"
- * Not with position 9 = *B*; if 9 = "*B*", please order 7UM62 unit with RS485 port and separate fiber-optic converters.

Cont'd on next page

7UM6200-000-0000

Order No.

Selection and ordering data

Description 7UM62 multifunction generator, motor and transformer protection Measuring functions Without extended measuring functions

Without extended measuring functions 0 3 Min./max. values, energy metering Functions A Generator Basic В Generator Standard С Generator Full Asynchronous Motor F Н Transformer

Functions (additional functions)

Without	A
Sensitive rotor earth-fault protection and 100 % stator earth-fault protection	В
Restricted earth-fault protection	С
Network decoupling (df/dt and vector jump)	Ε
All additional functions	G

Accessories

Description	Order No.
DIGSI 4	
Software for configuration and operation of Siemens protection units	
running under MS Windows 2000/XP Professional Edition	
device templates, Comtrade Viewer, electronic manual included	
as well as "Getting started" manual on paper, connecting cables (copper)	
Basis	
Full version with license for 10 computers, on CD-ROM	
(authorization by serial number)	7XS5400-0AA00
Professional	
DIGSI 4 Basis and additionally SIGRA (fault record analysis).	
CFC Editor (logic editor), Display Editor (editor for default	
and control displays) and DIGSI 4 Remote (remote operation)	7XS5402-0AA00
Professional + IEC 61850	
Complete version	
DIGSI 4 Basis and additionally SIGRA (fault record analysis),	
CFC Editor (logic editor), Display Editor (editor for default	
and control displays) and DIGSI 4 Remote (remote operation)	
+ IEC 61850 system configurator	7XS5403-0AA00
IEC 61850 System configurator	
Software for configuration of stations with IEC 61850 communication under	
DIGSI, running under MS Windows 2000 or XP Professional Edition	
Optional package for DIGSI 4 Basis or Professional	
License for 10 PCs. Authorization by serial number. On CD-ROM	7XS5460-0AA00
SIGRA 4	
(generally contained in DIGSI Professional, but can be ordered additionally)	
Software for graphic visualization, analysis and evaluation of fault records.	
Can also be used for fault records of devices of other manufacturers	
(Comtrade format). Running under MS Windows 95/98/ME/NT/2000/XP Professional	
Incl. templates, electronic manual with license for 10 PCs.	
Authorization by serial number. On CD-ROM.	7XS5410-0AA00

1) For more detailed information on the functions see Table 11/3.

Accessories

Description	Order No.
Connecting cable	
Cable between PC/notebook (9-pin connector)	
and protection unit (9-pin connector)	
(contained in DIGSI 4, but can be ordered additionally)	7XV5100-4
Cable between thermo-box and relay	
- length 5 m / 5.5 yd	7XV5103-7AA05
- length 25 m / 27.3 yd	7XV5103-7AA25
- length 50 m / 54.7 yd	7XV5103-7AA50
Coupling device for rotor earth-fault protection	/XR6100-0CA00
	Short code
Series resistor for rotor earth-fault protection (group: 013002)	3PP1336-0DZ K2Y
Resistor for underexcitation protection (voltage divider, 20:1) (group: 012009)	3PP1326-0BZ K2Y
Resistor for stator earth-fault protection (voltage divider, 5:1) (group 013001)	3PP1336-1CZ K2Y
20 Hz generator	7XT3300-0CA00
20 Hz band pass filter	7773400 00400
	7X13400-0CA00
Current transformer (400 A /5 A, 5 VA)	4NC5225-2CE20
Controlling unit f. rotor earth-fault protection (0.5 to 4 Hz)	/X1/100-0EA00
Resistor for 1 to 3 Hz rotor earth-fault protection	7XR6004-0CA00
Temperature monitoring box (thermo-box)	714/5662 24 040
24 to 60 V AC/DC	/XV5662-2AD10
90 to 240 V AC/DC	/AV3002-3AD10

Description		Order No.	Size of package	Supplier	Fig.
Connector	2-pin	C73334-A1-C35-1	1	Siemens	11/61
	3-pin	C73334-A1-C36-1	1	Siemens	11/62
Crimp	CI2 0.5 to 1 mm ²	0-827039-1	4000	AMP ¹⁾	
connector		0-827396-1	1	AMP ¹⁾	
	CI2 1 to 2.5 mm ²	0-827040-1	4000	AMP ¹⁾	
		0-827397-1	1	AMP ¹⁾	
	Type III+ 0.75 to 1.5 mm^2	0-163083-7	4000	AMP ¹⁾	
	/1	0-163084-2	1	AMP ¹⁾	
Crimping	For Type III+	0-539635-1	1	AMP ¹⁾	
tool	and matching female	0-539668-2		AMP ¹⁾	
	For CI2	0-734372-1	1	AMP ¹⁾	
	and matching female	1-734387-1		AMP ¹⁾	
Mounting rail		C73165-A63-D200-1	1	Siemens	11/60
Short-circuit	For current terminals	C73334-A1-C33-1	1	Siemens	11/63
links	For other terminals	C73334-A1-C34-1	1	Siemens	11/64
Safety cover	Large	C73334-A1-C31-1	1	Siemens	11/35
for terminals	Small	C73334-A1-C32-1	1	Siemens	11/35

1) Your local Siemens representative can inform you on local suppliers.

Connection diagram, IEC

Fig. 11/65 7UM621 and 7UM623 connection diagram (IEC standard)

Connection diagram, IEC

Fig. 11/66 7UM622 connection diagram (IEC standard)

Connection diagram, ANSI

Fig. 11/67

7UM621 and 7UM623 connection diagram (ANSI standard)

Connection diagram, ANSI

Fig. 11/68 7UM622 connection diagram (ANSI standard)

SIPROTEC 7UW50 Tripping Matrix

Fig. 11/69 SIPROTEC 7UW50 tripping matrix

Description

The tripping matrix 7UW50 is a component of the Siemens numerical generator protection system. The tripping matrix provides a transparent, easily programmable facility for combining output commands of the trip outputs of individual protection devices with plant items such as the circuit-breakers, de-excitation etc. The matrix was developed for marshalling tripping commands of large power stations.

With its help, the tripping schematic can be temporarily changed, e.g., on the basis of a generator circuit-breaker revision. If the software matrix incorporated in each generator protection unit is used for marshalling the tripping commands, the marshalling in the protection units must be changed for this purpose.

Function overview

Functions

- Hardware tripping matrix
- 28 inputs
- 10 outputs
- One LED is assigned to each input and output

Features

- Easy marshalling of trip signals via diode plugs
- Plexiglass cover prevents unauthorized marshalling

Selection and ordering data

Description	Order No.
7UW50 tripping matrix	7UW5000-□□A00
Rated auxiliary voltage 60 V, 110 V, 125 V DC	4
220 V, 250 V DC	5
Unit design	
For panel surface mounting	В
For panel flush mounting or cubicle mounting	С

SIPROTEC 7RW600 Numerical Voltage, Frequency and Overexcitation Protection Relay

Fig. 11/70 SIPROTEC 7RW600 voltage, frequency and overexcitation protection relay

Description

The SIPROTEC 7RW600 is a numerical multifunction protection relay for connection to voltage transformers. It can be used in distribution systems, on transformers and for electrical machines. If the SIPROTEC 7RW600 detects any deviation from the permitted voltage, frequency or overexcitation values, it will respond according to the values set. The SIPROTEC 7RW600 can be used for the purposes of system decoupling and for load shedding if ever there is a risk of a system collapse as a result of inadmissibly large frequency drops. Voltage and frequency thresholds can also be monitored.

The SIPROTEC 7RW600 voltage, frequency and overexcitation relay can be used to protect generators and transformers in the event of defective voltage control, of defective frequency control, or of full load rejection, or furthermore islanding generation systems.

This device is intended as a supplement to Siemens substation systems and for use in individual applications. It has two voltage inputs (V; V_x) to which a variety of functions have been assigned. While input Vserves all of the implemented functions, input V_x is exclusively dedicated to the voltage protection functions. The scope of functions can be selected from three ordering options.

Function overview

Line protection

- Voltage protection
- Frequency protection

Generator protection

- Voltage protection
- Frequency protection
- Overexcitation protection

Transformer protection

- Voltage protection
- Overexcitation protection

Power system decoupling

- Voltage protection
- Frequency protection

Load shedding

- Frequency protection
- Rate-of-frequency-change protection

Status measured values

Monitoring functions

- Hardware
- Software
- Event logging
- Fault recording
- Continuous self-monitoring

Hardware

- Auxiliary voltages:
 - 24, 48 V DC
 - 60, 110, 125 V DC
 - 220, 250 V DC, 115 V AC
- Local operation
- LCD for setting and analysis
- Housing for
 - Flush-mounting 1/6 19-inch 7XP20;
 - Surface-mounting 1/6 19-inch 7XP20

Communication ports

- Personal computer
- Via RS485 RS232 converter
- Via modem
- SCADA
 - IEC 60870-5-103 protocol
- Bus-capable

Application

The SIPROTEC 7RW600 is a numerical multifunction protection relay for connection to voltage transformers. It can be used in distribution systems, on transformers and for electrical machines. If the SIPROTEC 7RW600 detects any deviation from the permitted voltage, frequency or overexcitation values, it will respond according to the values set. The SIPROTEC 7RW600 can be used for the purposes of system decoupling and for load shedding if ever there is a risk of a system collapse as a result of inadmissibly large frequency drops. Voltage and frequency thresholds can also be monitored.

The SIPROTEC 7RW600 voltage, frequency and overexcitation relay can be used to protect generators and transformers in the event of defective voltage control, of defective frequency control, or of full load rejection, or furthermore islanding generation systems.

Applications

Fig. 11/71 Function diagram

Fig. 11/72

Construction

The SIPROTEC 7RW600 relay contains, in a compact form, all the components needed for:

- Acquisition and evaluation of measured values
- Operation and display
- Output of messages, signals and commands
- Input and evaluation of binary signals
- Data transmission (RS485) and
- Auxiliary voltage supply.

The SIPROTEC 7RW600 receives AC voltages from the primary voltage transformer. The secondary rated voltage range, 100 to 125 V, is adapted internally on the device.

There are two device variants available:

- The first version, for panel flush mounting or cubicle mounting, has its terminals accessible from the rear.
- The second version for panel surface mounting, has its terminals accessible from the front.

Fig. 11/73 Rear view of surfacemounting case

Protection function

Overvoltage protection

The overvoltage protection has the function of detecting inadmissible overvoltages in power systems and electrical machines and, in such event, it initiates system decoupling or shuts down the generators.

Two voltage measuring inputs (V, V_x) are provided on the unit. These must be connected to two phase-to-phase voltages. The input voltages are processed separately in two two-stage protective functions. From these, two principle connection variants are derived.

Fig. 11/76, Fig. 11/77, and Fig. 11/78, on page 11/75, show the following connection examples:

<u>Fig. 11/76:</u> Separated connection, used for overvoltage protection and earth-fault detection

<u>Fig. 11/77:</u> Two-phase connection to a voltage transformer

<u>Fig. 11/78:</u> Alternative V connection

Undervoltage protection

The main function of the undervoltage protection is protecting electrical machines (e.g. pumped-storage power generators and motors) against the consequences of dangerous voltage drops. It separates the machines from the power system and thus avoids inadmissible operating states and the possible risk of stability loss. This is a necessary criterion in system decoupling.

To ensure that the protection functions in a physically correct manner, when used in conjunction with electrical machines, the positive-sequence system must be evaluated.

The protection function can be blocked, via a binary input, causing a drop in energizing power. The auxiliary contact of the circuit-breaker can be used for this purpose with the circuit-breaker open. Alternatively, undervoltage acquisition can be activated on a conductor-separated basis $(V<,V_x<)$.

Additionally, it is possible to use an inverse-time undervoltage protection function for motor protection. The tripping time depends in the undervoltage drop. A time grading is possible.

Frequency protection

The frequency protection can be used to protect against overfrequency or against underfrequency. It protects electrical machines and plants/substations against adverse effects in the event of deviations in the rated speed (e.g. vibration, heating, etc.), detects and records frequency fluctuations in the power system, and disconnects certain loads according to the thresholds set. It can also be used for the purposes of system decoupling, and thus improves the availability of in-plant power generation.

The frequency protection function is implemented via voltage input *V*. From the sampled voltage, the frequency is measured by means of various filter functions. The system thus remains unaffected by harmonics, ripple control frequencies and other disturbances.

The frequency protection function operates over a wide frequency range (25-70 Hz).

It is implemented (optionally for overfrequency or for underfrequency) on a fourstage basis; each stage can be individually delayed. The frequency stages can be blocked either via the binary input or by an undervoltage stage.

Rate-of-frequency-change protection

The rate-of-frequency-change protection calculates, from the measured frequency, the gradient of frequency change df/dt. It is thus possible to detect and record any major active power overloading in the power system, to disconnect certain consumers accordingly, and to restore the system to stability. Unlike frequency protection, rate-of-frequency-change protection already reacts before the frequency threshold is undershot. To ensure effective protection settings, power system studies are recommended. The rate-of-frequency-change protection function can also be used for the purposes of system decoupling.

The rate-of-frequency-change protection function is implemented on a four-stage basis; each stage can be individually delayed. It detects and records any negative or positive frequency gradient. The measured result is generally released as soon as the rated frequency is undershot or overshot.

Rate-of-frequency-change protection can also be enabled by an underfrequency or overfrequency stage.

Protection function

Overexcitation protection

The overexcitation protection detects and records any inadmissibly high induction

$$(B \sim \frac{V}{f})$$

in electrical equipment, e.g. generators or transformers, that may occur as a result of a voltage increase and/or frequency drop. Increased induction of this nature may lead to saturation of the iron core, excessive eddy current losses, and thus to inadmissible heating.

It is recommended to use the overexcitation protection function in power systems subject to large frequency fluctuations (e.g. systems in island configuration or with weak infeed) and for electrical block units that are separated from the system.

The overexcitation protection function calculates, from the maximum voltage (V, V_x) and the frequency, the ratio V/f. This function incorporates an independent warning and tripping stage and a curve which is dependent on and adaptable to the object to be protected and which takes due account of the object's thermal behavior. Incorrect adaptation of the voltage transformer is also corrected. The over-excitation protection function is effective over a broad frequency range (25 to 70 Hz) and voltage range (10 to 170 V).

Feature

11

Serial data transmission

The SIPROTEC 7RW600 relay is fitted with an RS485 port, via which a PC can be connected, thus providing, in conjunction with the DIGSI operating and analysis program, a convenient tool for configuring and parameter setting. The DIGSI program (which runs under MS-Windows) also performs fault recording and fault evaluation. The SIPROTEC 7RW600 relay can also be linked, via the appropriate converters, either directly or over an optoelectronic connection (optical fiber) to the interface of the PC or substation control system (IEC 60870-5-103 protocol).

Fig. 11/76 Connection of a phase-to-phase voltage *V* and a displacement voltage *V*

Fig. 11/78 Connection to voltage transformers in V-configuration

Fig. 11/80 Typical auxiliary voltage wiring

Fig. 11/77 Connection of two phase-to-phase voltages *V* to one voltage transformer set

Fig. 11/79 Communication port

Hardware	
Measuring circuits (v.t. circuits)	
Rated voltage $V_{\rm N}$	100 to 125 V
Rated frequency <i>f</i> _N	50 or 60 Hz
Dynamic range	170 V
Power consumption	$\leq 0.2 \text{VA}$
Thermal overload capacity, continuous for ≤ 10 s	200 V 230 V
Power supply via integrated DC/DC c	onverter
Rated auxiliary voltage V _{aux}	24/48 V DC 60/110/125 V DC 220/250 V DC, 115 V AC
Maximum ripple at rated voltage	≤ 12 %
Power consumption Quiescent Energized	Approx. 2 W Approx. 4 W
Maximum bridging time following failure of auxiliary voltage	$\geq 20 \text{ ms at } V_{AUX} (24 \text{ V DC})$ $\geq 50 \text{ ms at } V_{AUX} (110 \text{ V DC})$
Binary inputs	
Number	3
Voltage range	24 to 250 V DC
Current consumption, independent of operating voltage	Approx. 2.5 mA
2 switching thresholds (adjustable)	17 V, 75 V
Command contacts	
Number of relays, total Number of relays with 2-channel energization	6 2
Contacts per relay (K1 to K5) Contact for relay (K6)	1 NO contact 1 NC contact or 1 NO contact (set via jumper)
Switching capacity Make Break	1000 W/VA 30 W/VA
Switching voltage	250 V (AC/DC)
Permissible current, continuous 0.5 s	5 A 30 A
LEDs	
Ready-to-operate (green)	1
Marshallable displays (red)	4
Fault indication (red)	1

Serial port (isolated)	
Type	R \$485
Test voltage	2 kV AC for 1 min
Connections	Data cable at housing two data
Connections	wires, one frame reference for con- nection of a PC or similar
Transmission speed	At least 1200 baud, max. 19200 baud
Unit design	
Case 7XP20	For dimensions, see dimension drawings, part 15
Weight Flush mounting/cubicle mounting Surface mounting	Approx. 4 kg Approx. 4.5 kg
Degree of protection to IEC 60529/EN 60529	IP 51
Electrical test	
Specifications	
Standards	IEC 60255-5, ANSI / IEEE C37.90.0
Insulation tests	
Voltage test (routine test) All circuits except auxiliary voltage and R5485	2.0 kV (rms), 50 Hz
Auxiliary voltage and RS485 only	2.8 kV DC
Over open command contacts	1.5 kV (rms), 50 Hz
Impulse withstand capability (SWC) test (type test)	5 kV (peak); 1.2 / 50 μs; 0.5 J
All circuits, class III	3 positive and 3 negative impulses at intervals of 5 s
Test crosswise: Measurement circuits pilot-wire	
connections, power supply, binary	
inputs, class III, (no tests crosswise	
over open contacts, RS485 interface	
FMC tests immunity: type tests	
Standards	IFC 60255-22 (product standard)
	EN 50082-2 (generic standard) DIN VDE 0435, Part 303
High-frequency test IEC 60255-22-1, class III and DIN VDE 0435 Part 303, class III	2.5 kV (peak), 1 MHz, $\tau = 15 \mu s$, 400 shots/s duration 2 s
Electrostatic discharge	4 kV/6 kV contact discharge.
IEC 60255-22-2, class III and IEC 61000-4-2, class III	8 kV air discharge, both polarities, 150 pF, $R_i = 330 \Omega$
Irradiation with RF field Non-modulated, IEC 60255-22-3	10 V/m, 27 to 500 MHz
(report), class III Amplitude-modulated, IEC 61000-4-3 class III	10 V/m, 80 to 1000 MHz,
Pulse-modulated, IEC 6100-4-3, class III	10 V/m, 900 MHz, repetition frequency 200 Hz, duty cycle 50 %
IEC 60255-21 and IEC 60068-2

5 to 8 Hz: \pm 7.5 mm amplitude;

8 to 150 Hz: 2 g acceleration

20 cycles in 3 orthogonal axes

acceleration 15 g, duration 11 ms,

acceleration 10 g, duration 16 ms,

1000 shocks in each direction of 3 orthogonal axes

(legibility may be impaired

Annual average \leq 75 % relative hu-

% relative humidity, condensation

midity, on 30 days during the year 95

3 shocks in each direction of 3

Sweep rate 1 octave/min

Sinusoidal

Half-sinusoidal

orthogonal axes

Half-sinusoidal

–5 to +55 °C

-20 to +70 °C

-25 to +55 °C

-25 to +70 °C

not permitted!

 $> +55 \,^{\circ}C)$

Technical data

EMC tests, immunity; type tests

Fast transients IEC 60255-22-4 and IEC 61000-4-4, 15 ms, repetition rate 300 ms, both class III

Conducted disturbances induced by radio-frequency fields, amplitudemodulated, IEC 61000-4-6, class III

Power frequency magnetic field IEC 61000-4-8, class IV

Oscillatory surge withstand capability ANSI/IEEE C37.90.1 (common mode)

Fast transient surge withstand capability ANSI/IEEE C37.90.1 (common mode)

Radiated electromagnetic interference ANSI/IEEE C37.90.2

High-frequency test Document 17C (SEC) 102

EMC tests, emission; type tests

Standard

Conducted interference voltage, aux. voltage only CISPR 11, EN 55022, DIN VDE 0878 Part 22, limit value, class B

Interference field strength CISPR 11, 30 to 1000 MHz EN 55011, DIN VDE 0875 Part 11, limit value, class A

Mechanical stress tests

Vibration, shock stress and seismic vibration

During operation

Standards

Vibration IEC 60255-21-1, class 2 IEC 60068-2-6

Shock IEC 60255-21-2, class 1 IEC 60068-2-27

Seismic vibration IEC 60255-21-3, class 1

IEC 60068-2-59

2 kV, 5/50 ns, 5 kHz, burst length polarities, $R_i = 50 \Omega$, duration 1 min 10 V, 150 kHz to 80 MHz, 80 % AM, 1 kHz

30 A/m continuous, 50 Hz 300 A/m for 3 s, 50 Hz 0.5 mT; 50 Hz 2.5 kV to 3 kV (peak), 1 MHz to 1.5 MHz, decaying oscillation, 50 shots per s, duration 2 s, $R_{\rm i} = 150$ to 200 Ω

4 to 5 kV, 10/150 ns, 50 shots per s, both polarities, duration 2 s, $R_i = 80 \Omega$

10 to 20 V/m, 25 to 1000 MHz, amplitude- and pulse-modulated

2.5 kV (peak, alternating polarity), 100, 1, 10 and 50 MHz, decaying oscillation, $R_i = 50 \Omega$

EN 50081-* (generic standard) 150 kHz to 30 MHz

IEC 60255-21 and IEC 60068-2

60 to 150 Hz: 0.5 g acceleration Sweep rate 1 octave/min

20 cycles in 3 orthogonal axes

acceleration 5 g, duration 11 ms

3 shocks in each direction of

1 to 8 Hz: ± 4 mm amplitude

1 to 8 Hz: ± 2 mm amplitude

8 to 35 Hz: 1 g acceleration (horizontal axis)

8 to 35 Hz: 0.5 g acceleration

Sweep rate 1 octave/min

1 cycle in 3 orthogonal axes

10 to 60 Hz: \pm 0.035 mm amplitude

Sinusoidal

Half-sinusoidal

3 orthogonal axes

(horizontal axis)

(vertical axis)

(vertical axis)

Sinusoidal

During transport

Standards Vibration IEC 60255-21-1, class 2 IEC 60068-2-6

> Shock IEC 60255-21-2, class 1 IEC 60068-2-27

Continuous shock IEC 60255-21-2, class 1 IEC 60068-2-29

Climatic stress tests

Temperatures

Recommended temperature during service

Temperature tolerances: During service During storage During transport (storage and transport in standard works packaging)

Humidity

Permissible humidity stress It is recommended to arrange the units in such a way that they are not exposed to direct sunlight or pronounced temperature changes that could cause condensation

Functions

Undervoltage protection

Setting range V<, V _x <v<sub>p<</v<sub>	20 to 120 V (in steps of 1 V)
Delay times	0 to 60 s (in steps of 0.01 s) or ∞ (i.e. non-effective)
Time multiplier for inverse characteristic Pickup time Reset time Reset ratio	0.1 to 5 s ≤ 50 ms ≤ 50 ms 1.05
Tolerances Voltage pickup Delay times	3 % of setting value or 1 V 1 % of setting value or 10 ms
Overvoltage protection	
Setting range V >, V >> $V_x >, V_x >>$	20 to 170 V (in steps of 1 V) 10 to 170 V (in steps of 1 V)
Delay times	0 to 60 s or ∞ (in steps of 0.01 s)
Pickup time Reset time Reset ratio	≤ 50 ms ≤ 50 ms 0.95
Tolerances Voltage pickup	3 % of setting value or 1 V $<$ 1 % of setting value for $V\!>V_{\rm n}$
Delay times	1 % of setting value or 10 ms

Technical data

4
40 to 68 Hz (in steps of 0.01 Hz)
0 to 60 s or ∞ (in steps of 0.01 s)
20 to 100 V or ∞ (in steps of 1 V)
Approx. 100 ms Approx. 100 ms Approx. 20 mHz 1.05
5 mHz at $f = f_N$ and $V = V_N$ 10 mHz at $f = f_N$ 3 % of setting value or 1 V 1 % of setting value or 10 ms
n
4

Setting range $\frac{\mathrm{d}f}{\mathrm{d}t}$	0.4 to 10 Hz/s or ∞ (in steps of 0.1 Hz/s)
Delay times	0 to 60 s or ∞ (in steps of 0.01 s)
Undervoltage blocking	20 to 100 V or ∞ (in steps of 1 V)
Pickup time $\frac{\mathrm{d}f}{\mathrm{d}t}$	Approx. 200 ms
Reset ratio pickup $rac{\mathrm{d}f}{\mathrm{d}t}$	Approx. 0.6
Reset ratio (undervoltage blocking)	1.05
Tolerances Changes of frequencies $\frac{df}{dt}$	
In the 45 to 50 Hz range In the 54 to 60 Hz range	100 mHz/s at f_N = 50 Hz and $V = V_N$ 150 mHz/s at f_N = 60 Hz and $V = V_N$
Undervoltage blocking V<	3 % of setting value or 1 V
Delay times	1 % of setting value or 10 ms
Overexcitation protection	
Warning stage $\frac{V/V_{\rm N}}{f/f_{\rm N}}$	1 to 1.2 (in steps of 0.01)
Tripping stage $\frac{V/V_{\rm N}}{f/f_{\rm N}}$	1 to 1.4 (in steps of 0.01)
Delay times,	0 to 60 s, or ∞ (in steps of 0.01 s)
warning and tripping stages Curve values <i>V/f</i> Associated delay times Cooling-down time	1.1 / 1.15 / 1.2 / 1.25 / 1.3 / 1.35 / 1.4 0 to 20000 s (in steps of 1 s) 0 to 20000 s (in steps of 1 s)
Voltage transformer adaption factor	0.5 to 2 (in steps 0.01)
Pickup response time (stage curve)	$\leq 50 \text{ ms}$
Reset time (stage curve) Reset ratio	≤ 60 ms 0.95
Tolerances Overexcitation V/f Delay times (stage curve) Delay times (dependent curve)	3 % of setting value 1 % of setting value or 10 ms 5 % with respect to V/f value \pm 0.5 s

Fault recording

-	
Instantaneous value fault record Measured values Pattern Fault record duration Start signal C.m.s. fault record Measured values Pattern Fault record duration Starting signal	V, V_x 1.00 ms (50 Hz) 0.83 ms (60 Hz) Max. 5 s Tripping, energization, binary input, PC V, V_{xy} , f - f_N 10 ms (50 Hz) 8.3 ms (60 Hz) Max. 50 s Tripping, energization, binary input,
	РС
Operational measured values	
Measured values	$V, V_x, V_1, V/f, f$
Measuring range voltage Folerance	0 to 170 V ≤ 2 V or 5 %
Measuring range overexcitation Folerance	$\begin{array}{l} 0 \text{ to } 2.4 \\ \leq 5 \% \end{array}$
Measuring range frequency Folerance	25 to 70 Hz ≤ 0.05 Hz or 5 MHz at $f = f_N$

CE conformity

This product is in conformity with the Directives of the European Communities on the harmonization of the laws of the Member States relating to electromagnetic compatibility (EMC Council Directive 89/336/EEC) and electrical equipment designed for use within certain voltage limits (Council Directive 73/23/EEC).

This unit conforms to the international standard IEC 60255, and the German standard DIN 57435/Part 303 (corresponding to VDE 0435/Part 303).

The unit has been developed and manufactured for application in an industrial environment according to the EMC standards.

This conformity is the result of a test that was performed by Siemens AG in accordance with Article 10 of the Council Directive complying with the generic standards EN 50081-2 and EN 50082-2 for the EMC Directive and standard EN 60255-6 for the "low-voltage Directive".

Selection and ordering data

Description

7RW600 numerical voltage, frequency and overexcitation protection relay

Order No. *7RW6000-*□□*A*□*0-*□*DA0*

Rated auxiliary voltage 24, 48 V DC 60, 110, 125 V DC Λ 220, 250 V DC, 115 V AC Unit design For panel surface mounting, terminals on the side For panel surface mounting, terminals on the top and bottom D For panel flush mounting/cubicle mounting, terminals on the rear Ε Languages English German 1 Spanish 3 French Scope of functions Voltage and frequency protection Voltage, frequency and rate-of-frequency-change protection Voltage and overexcitation protection DIGSI 4 Software for configuration and operation of Siemens protection units running under MS Windows 2000/XP Professional Edition device templates, Comtrade Viewer, electronic manual included as well as "Getting started" manual on paper, connecting cables (copper) Basis Full version with license for 10 computers, on CD-ROM (authorization by serial number) 7XS5400-0AA00 Professional DIGSI 4 Basis and additionally SIGRA (fault record analysis), CFC Editor (logic editor), Display Editor (editor for default and control displays) and DIGSI 4 Remote (remote operation) 7XS5402-0AA00 SIGRA 4 (generally contained in DIGSI Professional, but can be ordered additionally) Software for graphic visualization, analysis and evaluation of fault records. Can also be used for fault records of devices of other manufacturers (Comtrade format). Running under MS Windows 2000/XP Professional. Incl. templates, electronic manual with license for 10 PCs. Authorization by serial number. On CD-ROM. 7XS5410-0AA00 Converter RS232 - RS485* With communication cable for the SIPROTEC 7RW600 numerical voltage, frequency and overexcitation relay; length 1 m 7XV5700-0000¹⁾ With plug-in power supply unit 230 V AC 7XV5700-1000¹⁾ With plug-in power supply unit 110 V AC Converter, full-duplex FO cable, RS485, with built-in power supply unit Auxiliary voltage 24 - 250 V DC and 110 / 230 V AC 7XV5650-0BA00 Manual for 7RW600 English C53000-G1176-C117-4

Accessories

1) Possible versions see part 13, 7XV57 RS232-RS485 Converter

 RS485 bus system up to 115 kbaud RS485 cable and adaptor
 7XV5103-□AA□□see part 13

Fig. 11/81 Connection circuit diagram of 7RW600 voltage and frequency protection with presetting of marshallable binary inputs and command contacts. (Ordering Code: 7RW600x-xBxxx-; 7RW600x-xExxx-).

Fig. 11/82

Connection circuit diagram of 7RW600 voltage and overexcitation protection with presetting of marshallable binary inputs and command contacts. (Ordering Code: 7RW600x-xBxxx-; 7RW600x-xExxx-).

SIPROTEC 7VE6 Multifunction Paralleling Device

Fig. 11/83 SIPROTEC 7VE6 multifunction paralleling device

Description

The 7VE61 and 7VE63 paralleling devices of the SIPROTEC 4 family are multifunctional compact units used for paralleling power systems and generators.

Their technical design ensures highly reliable paralleling due to their 1½-channel or 2-channel measurement method and their hardware design. This is supported by numerous monitoring functions.

The units automatically detect the operating conditions. The response to these conditions depends on settings.

In "synchronous network switching" mode, the frequency difference is measured with great accuracy. If the frequency difference is almost zero for a long enough time, the networks are already synchronous and a larger making angle is permissible.

If the conditions are asynchronous, as is the case when synchronizing generators, the generator speed is automatically matched to the system frequency and the generator voltage to the system voltage. The connection is then made at the synchronous point, allowing for circuit-breaker make-time.

The 7VE61 paralleling device is a 1½-channel unit (paralleling function + synchro-check) for use with small to medium-size generators and power systems. It is more reliable than 1-channel paralleling devices. It can also be used for synchro-check, with parallel operation of three synchronization points. For larger generators and power systems with high reliability requirements, the 2-channel 7VE63 is recommended. Two independent methods decide on the connection conditions. The unit also has the full control functions of the SIPROTEC 4 family.

Voltage and frequency functions (*V*>, *V*<, f>, f< df/dt) including voltage vector jump ($\Delta \varphi$) are optionally available for protection or network decoupling applications.

The integrated programmable logic functions (continuous function chart CFC) offer the user a high flexibility so that adjustments can easily be made to the varying requirements on the basis of special system conditions.

The flexible communication interfaces are open to modern communication architectures with control systems.

Function overview

Basic functions

- High reliability with a two-out-of-two design (1 ½ channels in 7VE61 and 2 channels in 7VE63)
- Paralleling of asynchronous voltage sources
- Balancing commands for voltage and speed (frequency)
- Paralleling of synchronous voltage sources
- Synchro-check function for manual synchronization
- Parameter blocks for use on several synchronizing points (7VE61 max. 4 and 7VE63 max. 8)

Additional functions

- Consideration of transformer vector group and tap changer
- Synchronization record (instantaneous or r.m.s. record)
- Commissioning support (CB-time measurement, test synchronization)
- Browser operation
- Full control functionality of SIPROTEC 4
- Analog outputs of operational measured values
- Functions for protection or network decoupling tasks

Protection functions (option)

- Undervoltage protection(27)
- Overvoltage protection (59)
- Frequency protection (81)
- Rate-of-frequency-change protection (81R)
- Jump of voltage vector monitoring

Monitoring functions

- Self-supervision of paralleling function
- Operational measured values
- 8 oscillographic fault records

Communication interfaces

- System interface
- IEC 60870-5-103
- IEC 61850 protocol
- PROFIBUS-DP
- MODBUS RTU and DNP 3.0
- Service interface for DIGSI 4 (modem)
- Front interface for DIGSI 4
- Time synchronization via IRIG B/ DCF77

Application

The 7VE61 and 7VE63 paralleling devices of the SIPROTEC 4 family are multifunctional compact units used for paralleling power systems and generators.

Their technical design ensures highly reliable paralleling due to their 1½-channel or 2-channel measurement method and their hardware design. This is supported by numerous monitoring functions.

The units automatically detect the operating conditions. The response to these conditions depends on settings.

In "synchronous network switching" mode, the frequency difference is measured with great accuracy. If the frequency difference is almost zero for a long enough time, the networks are already synchronous and a larger making angle is permissible.

If the conditions are asynchronous, as is the case when synchronizing generators, the generator speed is automatically matched to the system frequency and the generator voltage to the system voltage. The connection is then made at the synchronous point, allowing for circuit-breaker make-time.

The 7VE61 paralleling device is a 1½-channel unit (paralleling function + synchro-check) for use with small to medium-size generators and power systems.

It is more reliable than 1-channel paralleling devices. It can also be used for synchrocheck, with parallel operation of three synchronization points.

For larger generators and power systems with high reliability requirements, the 2-channel 7VE63 is recommended. Two independent methods decide on the connection conditions. The unit also has the full control functions of the SIPROTEC 4 family.

Voltage and frequency functions (*V*>, *V*<, f>, f< df/dt) including voltage vector jump ($\Delta \varphi$) are optionally available for protection or network decoupling applications.

Uniform design

The SIPROTEC 4 units have a uniform design and a degree of functionality which represents a whole new quality in protection and control and automation. Local operation has been designed according to ergonomic criteria. Large, easy-toread displays (graphic display for 7VE63) were a major design aim. The DIGSI 4 operating program considerably simplifies planning and engineering and reduces commissioning times.

Highly reliable

The 7VE6 hardware is based on 20 years of Siemens experience with numerical protection equipment. State-of-the-art technology and a high-efficiency, 32-bit microprocessor are employed. Production is subject to exacting quality standards.

Special attention has been paid to electromagnetic compatibility, and the number of electronic modules has been drastically reduced by the use of highly integrated circuits.

The software design incorporates accumulated experience and the latest technical knowledge. Object orientation and high-level language programming, combined with the continuous quality assurance system, ensure maximized software reliability.

Programmable logic

The integrated programmable logic function allows the user to implement his own functions for automation of switchgear (interlocking) via a graphic user interface. The user can also generate user-defined messages.

Adjustments can easily be made to the varying power station requirements.

Measurement method

Powerful and successful algorithms based on years of experience have been incorporated. They ensure both a high level of measurement accuracy and effective noise signal suppression. That makes for reliable paralleling even in networks with harmonics. Complementary measurement methods avoid unwanted operation.

Design

The units are available in two designs: the $\frac{1}{2}$ 19" wide 7VE61 and the $\frac{1}{2}$ 19" wide 7VE63. The 7VE61 features a four-line display. The 7VE63 is equipped with a graphic display for visualization of switching states. It also has a larger number of binary inputs and outputs than the 7VE61.

Communication

Flexible and powerful communication is paramount. That is why the paralleling devices have up to five serial interfaces (for details see chapter 4 "Communication"):

- Front interface for connecting a PC
- Service interface for connecting a PC (e.g. via a modem)
- System interface for connecting to a control system via
 IEC 60870-5-103, IEC 61850, PROFIBUS-DP, MODBUS RTU or DNP 3.0
- Interface for an analog output module (2 – 20 mA) and an input
- For time synchronization via DCF77 or IRIG B.

Operational measured values

In order to assist system management and for commissioning purposes, relevant measured values are displayed as primary and secondary values with unit and values relating to the object to be protected.

The measured values can also be transferred via the serial interfaces.

In addition, the programmable logic permits limit value scans and status indications derived therefrom.

Metered values are available in the form of energy metered values for the active and reactive energy supplied and are also provided by an elapsed-hour meter.

Application

Indications

The SIPROTEC 4 units provide detailed data for analysis of synchronization (fault events from activated protection functions) and for checking states during operation. All indications are protected against power supply failure.

• Synchronization indications (Fault indications)

The last eight synchronizations (faults) are stored in the unit at all times. A fresh synchronization (fault) will erase the oldest one. The fault indications have a time resolution of 1 ms. They provide detailed information on history. The buffer memory is designed for a total of 600 indications.

• Operational indications

All indications that are not directly associated with the synchronization (fault) (e.g. operating or switching actions) are stored in the status indication buffer. The time resolution is 1 ms, buffer size: 200 indications.

Fault recording at up to 10 or 100 seconds

An instantaneous value or r.m.s. value recorder is provided. The firmware permits storage of 8 fault recordings. Triggering can be effected by the synchronization function (starting or closing command), protection function (pickup or tripping), binary input, the DIGSI 4 operating program or by the control system.

The instantaneous value recording stores the voltage input values (v_a , v_b , v_c , v_d , v_e , v_f), voltage differences (v_a - v_d , v_b - v_e , v_c - v_f), and calculated r.m.s. values ΔV , Δf , $\Delta \alpha$ at 1-ms intervals (or 0.83-ms intervals for 60 Hz). The r.m.s. values are calculated every half cycle. The total duration of the fault recording is 10 seconds. If the time is exceeded, the oldest recording is overwritten.

If you want to record for a longer period for commissioning purposes (for example, to show the effect of balancing commands), r.m.s. value recording is advisable. The relevant calculated values (V_1 , V_2 , f_1 , f_2 , ΔV , Δf , $\Delta \alpha$) are recorded at half-cycle intervals. The total duration is 100 seconds.

Time synchronization

A battery-backed clock is a standard component and can be synchronized via a synchronization signal (DCF77; IRIG B via satellite receiver), binary input, system interface or SCADA (e.g. SICAM). A date and time are assigned to every indication.

Freely assignable binary inputs and outputs

Binary inputs, output relays, and LEDs can each be given separate user-specific assignments. Assignment is effected using a software matrix, which greatly simplifies the allocation of individual signals.

To ensure dual-channel redundancy, control of the CLOSE relay (relay R1 and R2) is prioritized and should not be altered. These two relays have a special, highly reliable control and monitoring logic (see Fig. 11/89).

Continuous self-monitoring

The hardware and software are continuously monitored. If abnormal conditions are detected, the unit signals immediately. In this way, a great degree of safety, reliability and availability is achieved.

Reliable battery monitoring

The battery buffers the indications and fault recordings in the event of power supply voltage failure. Its function is checked at regular intervals by the processor. If the capacity of the battery is found to be declining, an alarm indication is generated.

All setting parameters are stored in the Flash-EPROM which are not lost if the power supply or battery fails. The SIPROTEC 4 unit remains fully functional.

Functions

Functional scope of the paralleling function

The units contain numerous individually settable functions for different applications. They cover the following operating modes:

Synchro-check

In this mode, the variables ΔV , Δf , $\Delta \alpha$ are checked. If they reach set values, a release command is issued for as long as all three conditions are met, but at least for a settable time.

Switching synchronous networks

The characteristic of synchronous networks is their identical frequency ($\Delta f \approx 0$). This state is detected, and fulfillment of the ΔV and $\Delta \alpha$ conditions is checked. If the conditions remain met for a set time, the CLOSE command is issued.

Switching asynchronous networks

This state occurs in the power system and generator (open generator circuit-breaker). A check is made for fulfillment of ΔV and Δf conditions and the connection time is calculated, taking account of $\Delta \alpha$, and the circuit-breaker making time. By means of balancing commands (for voltage and frequency), the generator can automatically be put into a synchronous condition.

Switching onto dead busbars

The voltage inputs are checked here. The CLOSE command is issued depending on the set program and the result of measurement. A three-phase connection increases reliability because several voltages must fulfill the conditions (see Fig. 11/84).

- The following operating states are possible:
- -V1 < V2 >
 - (connection to dead busbar (side 1))
- V1> V2 < (connection to dead line (side 2))
- $-V_{1} < V_{2} <$
 - (forced closing)

Functions

Voltage and frequency band query

Synchronization is not activated until the set limits are reached. Then the remaining parameters (see above) are checked.

Vector group adaptation

If synchronization is effected using a transformer, the unit will take account of the phase-angle rotation of the voltage phasor in accordance with the vector group entry for the transformer. On transformers with a tap changer, the tap setting can be communicated to the unit, for example, as BCD code (implemented in the 7VE63). When using the IEC 61850 communication standard, it is possible to detect tap position indications with a bay control unit (e.g. 6MD66) and to transmit these indications via GOOSE to the 7VE6 paralleling device. Deviations from the rated transformation ratio result in the appropriate voltage amplitude adaptation.

Voltage and frequency balancing

If the synchronization conditions are not fulfilled, the unit will automatically issue balancing signals. These are the appropriate up or down commands to the voltage or speed controller (frequency controller). The balancing signals are proportional to the voltage or frequency difference, which means that if the voltage or frequency difference is substantial, longer balancing commands will be output. A set pause is allowed to elapse between balancing commands to allow the state change to settle. This method ensures rapid balancing of the generator voltage or frequency to the target conditions.

If identical frequency is detected during generator-network synchronization ("motionless synchronization phasor"), a kick pulse will put the generator out of this state.

For example, if the voltage is to be adjusted using the transformer tap changer, a defined control pulse will be issued.

Several synchronizing points

Depending on the ordered scope, several synchronization points can be operated. The data for synchronization of each circuit-breaker (synchronization function group) are stored individually. In the maximum version, the 7VE63 operates up to 8 synchronization points. Selection is made either via the binary input or the serial interface. With the CFC, it is also possible to control the connection of the measured variables or commands via a master relay.

Commissioning aids

The paralleling device is designed to be commissioned without an external tester/ recorder (see Fig. 11/84). For that purpose, it contains a codeword-protected commissioning section. This can be used to measure the make time automatically with the unit (internal command issue until the CB poles are closed). This process is logged by the fault recording function. The operational measured values also include all measured values required for commissioning. The behavior of the paralleling function or the unit is also documented in detail in the operational annunciation and synchronization annunciation buffer. The connection conditions are documented in the synchronization record. Test synchronization is also permitted. All actions inside the synchronizer are taken but the two CLOSE relays are not operated (R1 and R2). This state can also be initiated via a binary input.

Fig. 11/84

SIGRA 4, synchronization record with balancing commands

Functions

Great safety and reliability due to multi-channel redundancy

Generator synchronization especially requires units in which unwanted operation can be ruled out. The paralleling device achieves this multi-channel redundancy with a two-out-of-two decision. That means that two conditions for the CLOSE command must be fulfilled. Fig. 11/85 shows the structure of the two designs.

In the 1½-channel version (7VE61), the paralleling function is the function that gives the CLOSE command. The synchro-check function acts as a release criterion with rougher monitoring limit settings. Other monitoring functions are also active at the same time (see below).

In the two-channel version (7VE63), two independent methods work in parallel. The CLOSE command is given when the two methods simultaneously decide on CLOSE. Fig. 11/86 shows the consistent implementation of dual-channel redundancy.

The measured quantities are fed to two ADCs. The second ADC processes the values rotated through 180° (e.g. V1). The monitoring methods test all the transformer circuits including internal data acquisition for plausibility and they block measurement if deviations are found. The phase-sequence test detects connection errors. The measuring methods 1 and 2 include the measurement algorithms and logic functions.

In keeping with the two-channel redundancy principle, differing measurement methods are used to prevent unwanted operation due to systematic errors.

In addition, numerous methods are also active, such as closure monitoring (synchronism monitoring of both methods). Unwanted relay operation is avoided by two-channel operation of both CLOSE relays. The two measurement methods operate the transistors crossed over.

Moreover, coil operation is monitored in the background. For this purpose, transistors are activated individually and the response is fed back. Both interruptions and transistor breakdown are detected. When faults are found, the unit is blocked immediately.

The plausibility monitoring of set values (valid limits) and selection of the synchronization function groups (only one can be selected) are also supported. In the event of any deviations, messages are output and the paralleling function is blocked.

Fig. 11/86 Design of multi-channel redundancy

Fig. 11/85 Two-channel redundancy

Function

Internet technology simplifies commissioning

In addition to the universal DIGSI 4 operating program, the synchronizer contains a Web server that can be accessed via a telecommunications link using a browser (e.g. Internet Explorer). The advantage of this solution is that it is both possible to operate the unit with standard software tools and to make use of the Intranet/ Internet infrastructure. Moreover, information can be stored in the unit without any problems. In addition to numeric values, visualizations facilitate work with the unit. In particular, graphical displays provide clear information and a high degree of operating reliability. Fig. 11/88 shows an example of an overview that is familiar from conventional synchronizers. The current status of synchronization conditions is clearly visible. Of course, it is possible to call up further measured value displays and annunciation buffers. By emulation of integrated unit operation, it is also possible to adjust selected settings for commissioning purposes, (see Fig. 11/87).

Fig. 11/87 Browser-based operation

Fig. 11/88 Overview display of the synchronization function

Function

Protection and automation functions

Basic concept

The paralleling function is not performed constantly. Therefore the measured quantities provided at the analog inputs are available for other functions. Voltage and frequency protection or limit value monitoring of these quantities are typical applications. Another possible application is network decoupling. After network disconnection, automatic resynchronization using the CFC is possible on request. To allow for great flexibility, these functions can be assigned to the analog inputs. This is defined for the specific application.

Undervoltage protection (ANSI 27)

The protection function is implemented on two stages and evaluates the voltage at an input assigned to it. Analysis of a phase-to-phase voltage is beneficial as it avoids starting in the event of earth faults. The protection function can be used for monitoring and decoupling purposes or to prevent voltage-induced instability of generators by disconnection.

Overvoltage protection (ANSI 59)

The protection function is implemented on two stages and evaluates the voltage at an input assigned to it.

The overvoltage protection prevents impermissible stress on equipment due to excessive voltages.

Frequency protection (ANSI 81)

The protection function is implemented on four stages and evaluates the frequency of an input assigned to it. Depending on the frequency threshold setting, the function can provide overfrequency protection (setting $> f_n$) or underfrequency protection (setting $< f_n$. Each stage can be delayed separately. Stage 4 can be configured either as an overfrequency or underfrequency stage.

The application consists of frequency monitoring usually causing network disconnection in the event of any deviations. The function is suitable as a load shedding criterion.

Rate-of-frequency-change protection (ANSI 81R)

This function can also be assigned to an input. The frequency difference is determined on the basis of the calculated frequency over a time interval. It corresponds to the momentary rate-of-frequency change. The function is designed to react to both positive and negative rate-of-frequency changes. Exceeding of the permissible rate-of-frequency change is monitored constantly. Release of the relevant direction depends on whether the actual frequency is above or below the rated frequency. In total, four stages are available, and can be used optionally.

This function is used for fast load shedding or for network decoupling.

Jump of voltage vector monitoring

Smaller generating plants frequently require the vector jump function. With this criterion it is possible to detect a disconnected supply (e.g. due to the dead time during an automatic reclosure) and initiate generator disconnection. This avoids impermissible loads on the generating plant, especially the drive gearing, if reconnection to the network is asynchronous.

The vector jump function monitors the phase angle change in the voltage.

If the incoming line should fail, the abrupt current discontinuity leads to a phase angle jump in the voltage. This is measured by means of a delta process. The command for opening the generator or coupler circuitbreaker is issued if the set threshold is exceeded.

Vector jump monitoring is performed again for the assigned voltage input. This function is blocked during synchronization.

Threshold monitoring

The threshold function is provided for fast monitoring and further processing in the CFC. Optional monitoring of the calculated voltage (for violation of an upper or lower threshold) at the six voltage inputs is possible. A total of three greater-than and three less-than thresholds are available. The check is made once per cycle, resulting in a minimum operating time of about 30 ms for the voltage. The times can be extended by the internal check time, if necessary (about 1 cycle).

Connection to three-phase voltage transformer

If three-phase voltage transformers are available, connection as shown in Fig. 11/89 is recommended. This is the standard circuit because it provides a high level of reliability for the paralleling function. The phase-sequence test is additionally active, and several voltages are checked on connection to a dead busbar. Interruption in the voltage connection does not lead to unwanted operation. Please note that side 1 (that is, V_1) is always the feed side. That is important for the direction of balancing commands.

Fig. 11/89

Connection to open delta connection (V-connection) voltage transformer

Fig. 11/90 shows an alternative to Fig. 11/89 for substations in which the voltage transformers have to be V-connected. For the paralleling device, this connection is the electrical equivalent of the connection described above. It is also possible to combine the two: three one-pole isolated voltage transformers on one side and the V-connection on the other. If, additionally, a synchroscope is connected, it must be electrically isolated by means of an interposing transformer.

Fig. 11/90

Connection to unearthed voltage transformer

To save costs for the voltage transformer, two-phase isolated voltage transformers are used that are connected to the phase-tophase voltage (see Fig. 11/91). In that case, the phase-rotation supervision is inactive and reliability restrictions when connecting to the dead busbar must be accepted.

Full two-channel redundancy is ensured.

Connection to single-phase isolated voltage transformer

As an alternative to Fig. 11/91, some substations use single-phase isolated voltage transformers (see Fig. 11/92). In this case, only a phase-to-earth voltage is available. This connection should be avoided if possible. Especially in isolated or resonant-(star point) neutral-earthed networks, an earth fault would lead to a voltage value of zero. That does not permit synchronization and the busbar is detected as dead. If $V_1 < \text{and } V_2 > \text{connection is permitted}$, there is a high risk of incorrect synchronization. Furthermore, an earth fault in phase L2 leads to an angle rotation of - for instance -30° in phase L1. This means that the device switches at a large fault angle.

Fig. 11/92

Switching in 16.7 Hz networks for application in traction systems

The unit can also be used for synchronizing railway networks or generators. The connection has to be executed according to Fig. 11/93. No phase sequence test is available here. Two-channel redundancy is ensured.

The voltage inputs permit the application of the 16.7 Hz frequency without any difficulties.

On connection to a dead busbar, a broken wire in the external voltage transformer circuit is not detected. It is recommended to make another interrogation of a second voltage transformer.

Fig. 11/93

Synchro-check for several synchronizing points

To avoid unwanted operation during manual synchronization or during connection of circuit-breakers in the network, the synchro-check function is used as an enabling criterion. It is fully compatible with all of the connections described above (see Figs. 11/89 to 11/93). With the "synchro-check" ordering option, the paralleling device also allows up to three circuit-breakers to be monitored in parallel. That saves wiring, switching and testing. In particular, that is an application for the 1½ circuit-breaker method. Moreover, on smaller generating plants one unit can be used for up to three generators, which helps reduce costs.

The connection shown in Fig. 11/94 is a single-pole version, which is acceptable for the synchro-check function.

An alternative is the connection for two switching devices (see Fig. 11/95).

The two free voltage inputs can be used for monitoring purposes.

Fig. 11/94

Fig. 11/95

Fig. 11/96

Synchronization of a generator

Fig. 11/96 shows an example of the 7VE61 paralleling device connected to a mediumpower generator. Where three-phase voltage transformers are available, direct connection is recommended. The synchronization point and start of synchronization is selected via the binary inputs. If cancellation is necessary, the stop input must be used.

If synchronization onto a dead busbar is permitted, the alarm contact of the voltage transformer miniature circuit-breakers (m.c.b.) must be connected to the unit.

Relays R1 and R2 are used for a CLOSE command. The other relays are used for selected indications and for the balancing commands.

The live status contact operated by the unit self-supervision function must also be wired.

11

Tor	hni	ical			+0
rec		cui	u	u	ιu

Hardware	
Analog inputs	
Rated frequency	50, 60 or 16.7 Hz
Rated voltage $V_{\rm N}$	100 to 125 V
Power consumption	
Voltage inputs (at 100 V)	Approx. 0.3 VA
Capability in voltage paths	230 V continuous
Auxiliary voltage	
Rated auxiliary voltage	24 to 48 V DC 60 to 125 V DC 110 to 250 V DC 220 to 250 V DC 115 and 230 V AC (50/60 Hz)
Permitted tolerance	-20 to +20 %
Superimposed AC voltage (peak-to-peak)	≤ 15 %
Power consumption Quiescent 7VE61 7VE63 Energized 7VE61	Approx. 4 W Approx. 5.5 W Approx. 9.5 W
7VE63 Bridging time during auxiliary	Approx. 12 W
voltage failure at $V_{aux} = 48$ V and $V_{aux} \ge 110$ V at $V_{aux} = 24$ V and $V_{aux} = 60$ V	≥ 50 ms ≥ 20 ms
Binary inputs	
Quantity	
7VE61	6
7VE63	14
3 pickup thresholds Range is settable with jumpers	14 to 19 V DC, 66 to 88 V DC; 117 to 176 V DC
Maximum permissible voltage	300 V DC
Current consumption, energized	Approx. 1.8 mA
Output relays	
Quantity	
7VE61 7VE62 7VE61+7VE63	9 (each with 1 NO; 1 optional as NC, via jumper) 17 (each with 1 NO; 2 optional as NC, via jumper) 1 live status contact (NC, NO via jumper)
Switching capacity Make Break Break (for resistive load) Break (for L/R ≤ 50 ms) Switching voltage Permissible current	1000 W / VA 30 VA 40 W 25 W 250 V 5 A continuous
	30 A for 0.5 seconds
LEDs	
Quantity RUN (green) ERROR (red) Assignable LED (red) 7VE61 7VE63	1 1 7 14

Unit	d	esi	an
• · · · ·	-		J

Unit design	
7XP20 housing	For dimensions see dimension drawings part 15
Degree of protection acc. to EN 60529 For surface-mounting housing For flush-mounting housing Front Rear For the terminals	IP 51 IP 51 IP 50 IP 2x with terminal cover put on
Weight Flush-mounting housing 7VE61 (½ x 19") 7VE63 (½ x 19")	Approx. 5.2 kg Approx. 7 kg
Surface-mounting housing 7VE61 (½ x 19") 7VE63 (½ x 19")	Approx. 9.2 kg Approx. 12 kg
Serial interfaces	
Operating interface for DIGSI 4	
Connection	Non-isolated, RS232, front panel; 9-pin subminiature connector (SUB-D)
Baud rate	4800 to 115,200 baud
Time synchronization IRIG-B / DCF7	7 signal (Format: IRIG B000)
Connection	9-pin subminiature connector, (SUB-D), terminal with surface- mounting case
Voltage levels	Selectable 5, 12 or 24 V
Service / modem interface (Port C) for	or DIGSI 4 / modem / service
Isolated RS232/RS485 Test voltage Distance for RS232 Distance for RS232	9-pin subminiature connector (SUB-D) 500 V / 50 Hz Max. 15 m
System interface (Port P) IEC 60970	5 102 protocol PROEIRUS DR
MODBUS RTU, DNP 3.0) and interface	e (Port D)
Isolated RS232/RS485 Baud rate Test voltage Distance for RS232 Distance for RS485	9-pin subminiature connector (SUB-D) 4800 to 115200 Baud 500 V / 50 Hz Max. 15 m Max. 1000 m
<u>RS485</u> : PROFIBUS-DP, MODBUS RTU, DNP 3.0 Test voltage	9-pin subminiature connector (SUB-D) 500 V / 50 Hz
Baud rate PROFIBUS-DP MODBUS RTU, DNP 3.0	Max. 12 MBaud Max. 19200 Baud
Distance PROFIBUS-DP	Max. 1000 m with 93.75 kBaud; Max. 100 m with 12 MBaud
MODBUS RTU, DNP 3.0	1000 m
Fiber optic: IEC, PROFIBUS-DP, MODBUS RTU, DNP 3.0 PROFIBUS-DP IEC, MODBUS RTU, DNP 3.0 Baud rate	ST connector Double ring Point-to-point
PROFIBUS-DP MODBUS RTU, DNP 3.0	Max. 1.5 MBaud Max. 19200 Baud

Max. 1.5 MBaud Max. 19200 Baud $\lambda=820\ nm$ Max. 8 dB, for glass-fiber 62.5/125 μm Max. 1.5 km 2 ports with 0 to +20 mA

Optical wavelength

Distance

Permissible path attenuation

Analog output module (electrical)

Technical data

System interface (Port B) IÉC 61850

for surface-mounting case

Ethernet, electrical (EN 100) for IEC 61850 and DIGSI

Connection for flush-mounting case

Test voltage Transmission speed

Connection

Distance

Rear panel, mounting location "B", two RJ45 connector, 100 Mbit/s acc. to IEEE802.3 At bottom part of the housing 500 V; 50 Hz 100 Mbits/s 20 m/66 ft

Ethernet, optical (EN 100) for IEC 61850 and DIGSI

Connection	
for flush-mounting case	Rear panel, mounting location "B",
	LC connector receiver/transmitter
for panel surface-mounting case	Not available
Optical wavelength	$\lambda = 1350 \text{ nm}$
Transmission speed	100 Mbits/s
Laser class 1 acc. to EN 60825-1/-2	Glass fiber 50/125 µm or
	glass fiber 62/125 μm
Permissible path attenuation	Max. 5 dB for glass fiber
Distance	62 5/125um

Electrical tests

Specifications

Standards

Insulating tests

Standards

High frequency test

non-modulated

amplitude-modulated,

IEC 61000-4-3, class III

IEC 60255 (product standards) ANSI/IEEE C37.90.0/.1/.2 UL 508 DIN 57435, part 303 For further standards see below

2.5 kV (r.m.s.), 50/60 Hz

500 V (r.m.s. value), 50/60 Hz

5 kV (peak); 1.2/50 µs; 0.5 J;

at intervals of 5 s

3 positive and 3 negative impulses

IEC 60255-5

3.5 kV DC

Max. 800 m/0.5 mile

Standards Voltage test (100 % test) All circuits except for auxiliary supply, binary inputs, communication and time synchronization interfaces

Voltage test (100 % test) Auxiliary voltage and binary inputs

Voltage test (100 % test) only isolated communication interfaces and time synchronization interface

Impulse voltage test (type test) All circuits except for communication interfaces and time synchronization interface, class III

EMC tests for noise immunity (type test)

IEC 60255-6, IEC 60255-22 (product standards) EN 50082-2 (generic standard) DIN 57435 part 303 2.5 kV (peak value), 1 MHz; IEC 60255-22-1, class III $\tau = 15 \text{ ms}$ and DIN 57435 part 303, class III 400 pulses per s; duration 2 s Electrostatic discharge 8 kV contact discharge; IEC 60255-22-2, class IV 15 kV air discharge; EN 61000-4-2, class IV both polarities; 150 pF; $R_i = 330 \Omega$ Irradiation with RF field, 10 V/m; 27 to 500 MHz IEC 60255-22-3 (report), class III Irradiation with RF field,

10 V/m; 80 to 1000 MHz; 80 % AM; 1 kHz

Irradiation with RF field, pulse-modulated IEC 61000-4-3/ ENV 50204, class III Fast transient interference bursts IEC 60255-22-4, IEC 61000-4-4, class IV

High-energy surge voltages (SURGE), IEC 61000-4-5 installation, class III Auxiliary supply

Measurement inputs, binary inputs and relay outputs

Line-conducted HF, amplitude-modulated IEC 61000-4-6, class III

Magnetic field with power frequency 30 A/m continuous; IEC 61000-4-8, class IV; IEC 60255-6 300 A/m for 3 s; 50 Hz

Oscillatory surge withstand capability ANSI/IEEE C37.90.1

Fast transient surge withstand capability ANSI/IEEE C37.90.1

Radiated electromagnetic interference ANSI/IEEE C37.90.2

Damped oscillations IEC 60894, IEC 61000-4-12

EMC tests for interference emission (type test)

Standard Conducted interference voltage on lines only auxiliary supply **IEC-CISPR 22** Interference field strength **IEC-CISPR 22**

EN 50081-1 (generic standard) 150 kHz to 30 MHz Limit class B

10 V/m; 900 MHz; repetition

4 kV; 5/50 ns; 5 kHz;

Impulse: 1.2/50 µs

2 kV; 12 Ω, 9 μF

 $1 \text{ kV}; 2 \Omega, 18 \mu \text{F}$

2 kV; 42 Ω, 0.5 μF

1 kV; 42 Ω, 0.5 µF

0.5 mT; 50 Hz

per second;

1 kHz

frequency 200 Hz; duty cycle 50 %

burst length = 15 ms; repetition

rate 300 ms; both polarities;

 $R_i = 50 \Omega$; test duration 1 min

Common (longitudinal) mode:

Differential (transversal) mode:

Common (longitudinal) mode:

Differential (transversal) mode:

2.5 to 3 kV (peak); 1 to 1.5 MHz

Duration 2 s; $R_i = 150$ to 200 Ω

4 to 5 kV; 10/150 ns; 50 surges per

damped wave; 50 surges

second; both polarities;

duration 2 s; $R_i = 80 \Omega$

35 V/m; 25 to 1000 MHz

2.5 kV (peak value), polarity

alternating 100 kHz, 1 MHz,

10 and 50 MHz, $R_i = 200 \Omega$

10 V; 150 kHz to 80 MHz; 80 % AM;

30 to 1000 MHz Limit class B

Mechanical stress tests

Vibration, shock stress and seismic vibration

During operation Standards Vibration IEC 60255-21-1, class II IEC 60068-2-6

Shock IEC 60255-21-2, class I IEC 60068-2-27

IEC 60255-21 and IEC 60068 Sinusoidal 10 to 60 Hz: \pm 0.075 mm amplitude; 60 to 150 Hz: 1 g acceleration

Frequency sweep 1 octave/min 20 cycles in 3 orthogonal axes Half-sinusoidal Acceleration 5 g, duration 11 ms, 3 shocks each in both directions of

the 3 axes

Technical data

Seismic vibration IEC 60255-21-2, class I IEC 60068-3-3

During transport

Standards Vibration IEC 60255-21-1, class II IEC 60068-2-6

Shock IEC 60255-21-2, class I IEC 60068-2-27

Continuous shock IEC 60255-21-2, class I IEC 60068-2-29

Climatic stress test

Temperatures

Standards

Recommended operating limiting temperature

Temporarily permissible operating temperature

Limiting temperature during permanent storage (with supplied packing)

Limiting temperature during transport (with supplied packing)

Humidity

Standards

Permissible humidity stress

It is recommended to arrange the units in such a way that they are not exposed to direct sunlight or pronounced temperature changes that could cause condensation

F	un	C	tic	on

General

Frequency range

Sinusoidal 1 to 8 Hz: ± 3.5 mm amplitude (horizontal axis) 1 to 8 Hz: \pm 1.5 mm amplitude (vertical axis) 8 to 35 Hz: 1 g acceleration (horizontal axis) 8 to 35 Hz: 0.5 g acceleration (vertical axis) Frequency sweep 1 octave/min 1 cycle in 3 orthogonal axes

IEC 60255-21 and IEC 60068-2 Sinusoidal 5 to 8 Hz: ±7.5 mm amplitude; 8 to 150 Hz: 2 g acceleration Frequency sweep 1 octave/min 20 cycles in 3 orthogonal axes Half-sinusoidal Acceleration 15 g, duration 11 ms, 3 shocks each in both directions 3 axes Half-sinusoidal Acceleration 10 g, duration 16 ms, 1000 shocks in both directions of the 3 axes

IEC 60068-2-1, IEC 60068-2-2 -5 °C to +55 °C / +25 °F to +131 °F

-20 to +70 °C (Legibility of display may be impaired above +55 °C / +131 °F) -25 °C to +55 °C / -13 °F to +131 °F

-25 °C to +70 °C / -13 °F to +158 °F

IEC 60068-2-3

Annual average \leq 75 % relative humidity; on 56 days a year up to 93 % relative humidity; condensation is not permitted

25 to 75 Hz ($f_{\rm N} = 50$ Hz)

30 to 90 Hz ($f_{\rm N} = 60$ Hz)

8.35 to 25 Hz ($f_{\rm N} = 16.7$ Hz)

Paralleling function (ANSI 25)

Re

-	
Setting ranges	
Upper voltage limit V_{max}	20 to 140 V (steps 1 V)
Lower voltage limit V_{\min}	20 to 125 V (steps 1 V)
V < for de-eergized status	1 to 60 V (steps 1 V)
V > for energized status	20 to 140 V (steps 1 V)
Voltage difference ΔV	0 to 40 V (steps 1 V)
Frequency difference Δf	0 to 2 Hz (steps 0.01 Hz)
Angle difference $\Delta \alpha$	2 to 80° (steps 1°)
Changeover threshold	0.01 to 0.04 Hz (steps 0.01 Hz)
asynchronous – synchronous	
Angle correction of vector group	0 to 359° (steps 1°)
Matching voltage transformer V_1/V_2	0.5 to 2 (steps 0.01)
Circuit-breaker making time	10 to 1000 ms (steps 1 ms)
Operating time of circuit-breaker	0.01 to 10 s (steps 0.01 s)
Max. operating time after start	0.01 to 1200 s (steps 0.01 s)
Monitoring time of voltage	0 to 60 s (steps 0.1 s)
Release delay	0 to 60 s (steps 0.01 s)
Synchronous switching	0 to 60 s (steps 0.01 s)
Times	
Minimum measuring time	Approx, 80 ms (50/60 Hz)
in the second seco	Approx 240 ms (16.7 Hz)
	11pprox. 210 116 (10.7 112)
Drop-off	
Drop-off ratio voltage	Approx. 0.9 ($V >$) or 1 ($V <$)
Drop-off difference frequency	20 mHz
Drop-off difference phase angle	1 °
Tolerance	
Voltage measurement	1 % of pickup value or 0.5 V
Voltage difference ΔV	1 % of pickup value or max. 0.5 V
	(typical < 0.2 V)
Frequency difference Δf	< 10 mHz (synchronous network)
	< 15 mHz (asynchronous network)
Angle difference $\Delta \alpha$	0.5° with minor slip and approx.
	rated frequency 3° for $\Delta f < 1$ Hz,
	5° for $\Delta f > 1$ Hz
Delay times	1 % or 10 ms
Readjustment commands for synch	ronization
Frequency balancing	
	10 (1000 ((1)

Minimum control pulse 10 to 1000 ms (steps 1 ms) Maximum control pulse 1 to 32 s (steps 0.01 s) 0.05 to 5 Hz/s (steps 0.01 Hz/s) Frequency change of controller Setting time of controller 0 to 32 s (steps 0.01 s) -1 to 1 Hz (steps 0.01 Hz) Target value for frequency balancing Kick pulse Available Voltage balancing 10 to 1000 ms (steps 1 ms) Minimum control pulse Maximum control pulse 1 to 32 s (steps 0.01 s) Voltage change of controller 0.1 to 50 V/s (steps 0.1 V/s) Setting time of controller 0 to 32 s (steps 0.01 s) Permissible overexcitation 1 to 1.4 (steps 0.01) $(V/V_{\rm N})/(f/f_{\rm N})$ Tolerances Minimum control pulse 1 % Approx. 5 % or \pm 20 ms Control times Undervoltage protection (ANSI 27) Setting range Undervoltage pickup 10 to 125 V (steps 0.1 V) V <, V <<Time delays T 0 to 60 s (steps 0.01 s) or indefinite Times Pickup times V <, V << Approx. 50 ms (150 ms at 16.7 Hz) Approx. 50 ms (150 ms at 16.7 Hz) Drop-off times V <, V <<Drop-off ratio V <, V <1.01 to 1.10 (steps 0.01) Tolerances Voltage limit values 1 % of set value or 0.5 V Time delays T 1 % or 10 ms

Technical data

Overvoltage protection (ANSI 59)

Setting ranges Overvoltage pickup V >, V >>Time delays TTime

Pickup times V >, V >>Drop-off times V >, V >>Drop-off ratio V >, V >>

Tolerances Voltage limit values Time delays T

Frequency protection (ANSI 81)

Setting ranges Steps; selectable f>, f< Pickup values f>, f< Time delays T Undervoltage blocking V< Times Pickup times f>, f< Drop-off times f >, f <

Drop-off difference Δf Drop-off ratio V<

Tolerances Frequencies Undervoltage blocking Time delays T

Rate-of-frequency-change protection (ANSI 81R)

Setting ranges

Steps, selectable +df/dt >; -df/dt = 4Pickup value df/dt Time delays T Undervoltage blocking V<

Times Pickup times df/dt at 16.7 Hz: times x 3 Drop-off times df/dt at 16.7 Hz: times x 3

Drop-off ratio df/dt

Drop-off ratio V <Tolerances Rate-of-frequency change

Measuring duration < 5

Measuring duration > 5 Undervoltage blocking

Time delays T

Jump of voltage vector monitoring

Setting ranges Stage $\Delta \varphi$ Time delay T Undervoltage blocking V< Maximum voltage Times Pickup times $\Delta \varphi$ Drop-off times $\Delta \varphi$ Tolerances Vector jump Undervoltage blocking Time delay T

External trip coupling

Number of external trip couplings

30 to 170 V (steps 0.1 V) 0 to 60 s (steps 0.01 s) or indefinite
Approx. 50 ms (150 ms at 16.7 Hz) Approx. 50 ms (150 ms at 16.7 Hz)

0.90 to 0.99 (steps 0.01)

1 % of set value or 0.5 V 1 % or 10 ms

4

40 to 65 Hz (steps 0.01 Hz) 0 to 60 s (steps 0.01 s) or indefinite 10 to 125 V (steps 0.1 V)

Approx. 100 ms (300 ms at 16.7 Hz) Approx. 100 ms (300 ms at 16.7 Hz) Approx. 20 mHz Approx. 1.05

10 mHz at $f = f_N$ 1 % of set value or 0.5 V 1 % or 10 ms

0.1 to 10 Hz/s (steps 0.1 Hz/s); 0 to 60 s (steps 0.01 s) or indefinite 10 to 125 V (steps 0.1 V)

Approx. 200 to 700 ms (depending on measuring duration) Approx. 200 to 700 ms (depending on measuring duration) 0.02 at 0.99 Hz/s (settable) Approx. 1.05

Approx. 0.1 Hz/s at $V > 0.5 V_N$ Approx. 5 % or 0.15 Hz/s at $V > 0.5 V_N$ Approx. 3 % or 0.15 Hz/s at $V > 0.5 V_{\rm N}$ 1 % of set value or 0.5 V 1 % or 10 ms

2° to 30° (steps 0.1°) 0 to 60 s (steps 0.01 s) or indefinite 10 to 125 V (steps 0.1 V) $\,$ 10 to 170 V (steps 0.1 V)

Approx. 75 ms (225 ms at 16.7 Hz) Approx. 75 ms (225 ms at 16.7 Hz)

0.5° at $V > 0.5 V_{\rm N}$ 1 % of set value or 0.5 V 1 % or 10 ms

4

Threshold value supervision 6 (3 larger and 3 smaller) Number of steps Va, Vb, Vc, Vd, Ve, Vf Measured quantity 2 to + 200 % (steps 1 %) Setting ranges Times Pickup times Approx. 50 ms (150 ms at 16.7 Hz) Drop-off times Approx. 50 ms (150 ms at 16.7 Hz) Drop-off ratio 0.95 Voltage tolerance 1 % of set value or 0.5 V Typical operational measured values Description Secondary V_a ; V_b ; V_c ; V_d ; V_e ; V_f ; V_1 , V_2 , ΔV Voltages Tolerance 0.2 % of measured value or ± 0.2 V ± 1 digit Phase angle Λα Tolerance < 0.5° Frequency $f_1, f_2, \Delta f$ 10 mHz at $f = f_N$ Tolerance 15 mHz at $f = f_N \pm 10 \%$ Fault records Number of fault records Max. 8 fault records Instantaneous values Storage time Max. 10 s Depending on the actual frequency Sampling interval (e.g. 1 ms at 50 Hz; 0.83 ms at 60 Hz) Channels Va, Vb, Vc, Vd, Ve, Vf, Vd-Va, Ve-Vb, $V_{\rm f}$ - $V_{\rm c}, \Delta V, \Delta f, \Delta \alpha$ R.m.s. values Storage period Max. 100 s Sampling interval Fixed (10 ms at 50 Hz, 8.33 ms at 60 Hz) Channels $V_1, V_2, f_1, f_2, \Delta V, \Delta f, \Delta \alpha$ Additional functions Storage of events of the last 8 faults Fault event logging Puffer length max. 600 indications Time solution 1 ms Max. 200 indications Operational indications Time solution 1 ms Elapsed-hour meter Up to 6 decimal digits Switching statistics Number of break operations Number of make operations

CE conformity

This product is in conformity with the Directives of the European Communities on the harmonization of the laws of the Member States relating to electromagnetic compatibility (EMC Council Directive 89/336/EEC) and electrical equipment designed for use within certain voltage limits (Council Directive 73/23/EEC).

This unit conforms to the international standard IEC 60255, and the German standard DIN 57435/ Part 303 (corresponding to VDE 0435/Part 303).

The unit has been developed and manufactured for application in an industrial environment according to the EMC standards.

This conformity is the result of a test that was performed by Siemens AG in accordance with Article 10 of the Council Directive complying with the generic standards EN 50081-2 and EN 50082-2 for the EMC Directive and standard EN 60255-6 for the "low-voltage Directive".

Selection and ordering data	Description	Order No.	Order
	7VE61 multifunction paralleling unit Housing 1/3 19″, 6 Bl, 9 BO, 1 live status contact	7VE6110-0000-0000	
	Auxiliary voltage (power supply, indication voltage) 24 to 48 V DC , threshold binary input 19 V		
	60 to 125 V DC, threshold binary input 19 V	4	
	110 to 250 V DC, 115 to 230 V AC, threshold binary input 88 V DC	5	
	$\underline{220}$ to $\underline{250}$ V DC, 115 to 230 V AC, threshold binary input 176 V DC	6	
	Unit design		
	Surface-mounting housing, 2-tier screw-type terminals at top/botton	m B	
	Flush-mounting housing, screw-type terminals		
	(direct connection/ring-type cable lugs)	<u> </u>	
	Region-specific default setting/function and language settings		
	Region DE, 50 Hz, language German (language selectable)	A	
	Region World, 50/60 Hz, language English (GB) (language selectable	e) B	
	Region US, 60 Hz, language English (US) (language selectable)	C	
	Region World, 50/60 Hz, language Spanish (language selectable)	E	
	Port B (system interface)		
	No system interface	0	
	IEC 60870-5-103-protocol, electrical RS232		
	IEC 60870-5-103-protocol, electrical RS485	2	
	IFC 60870-5-103-protocol optical 820 pm ST connector	3	
	Analog outputs 2 x 0 to 20 mA or 4 to 20 mA	7	
	DECERTISE DE Clause electrical DC485		
	PROFIDUS-DP Slave, electrical R5485	9	
	PROFIBUS-DP Slave, optical 820 nm, double ring, 51 connector	9	
	MODBUS RTU, electrical RS485	9	
	MODBUS RTU, optical 820 nm, ST connector ²⁷	9	
	DNP 3.0, electrical RS485	9	LOG
	DNP 3.0, optical 820 nm, ST connector ¹⁷	9	LOH
	IEC 61850, 100 Mbit Ethernet, electrical, double, RJ45 connectors	9	LOR
	IEC 61850, 100 Mbit Ethernet, optical, double, LC connector ²⁷	9	LOS
	Port C (service interface)		
	DIGSI 4/modem, electrical RS232	1	
	DIGSI 4/modem, electrical RS485	2	
	Port C (service interface) and Port D (additional interface)		
	Port C (service interface)		
	DIGSI 4/modem, electrical RS232	9	M 1
	DIGSI 4/modem, electrical RS485	9	M 2
	Port D (additional interface)		1
	Analog outputs 2 x 0 to 20 mA or 4 to 20 mA		K
	Scope of functions of the unit		
	Synchro-check for up to 3 synchronizing points (with dead bus/line	monitoring) A	
	Paralleling function for 2 synchronizing points without balancing co	ommands, 1½-channel,	
	synchro-check in 2 nd channel	В	
	Paralleling function for 2 synchronizing points with balancing comm	nands, 1½-channel,	
	Paralleling function for 4 synchronizing points with balancing comp	nands 1½-channel	
	synchro-check in 2 nd channel	D	
	Additional functions		
	Without	Δ	
	Protection and network decoupling function		
1) With position $9 = B$ (surface-	(voltage, frequency and rate-of-frequency-change protection, vector	jump) B	
mounting housing) the unit must	Additional applications		
and a separate FO converter	Mithout	0	
	Application for treation systems (C = 1(7 TL)	U	
2) Not available with position $9 = "B"$	Application for traction systems ($f_n = 16.7 \text{ Hz}$)	1	J

Selection and ordering data	Description	Order No.	Order
	7VE63 multifunction paralleling unit Housing 1/2 19″. 14 BL 17 BO.1 live status contact	7VE6320-0000-000	
	Auxiliary voltage (power supply, indication voltage)		
	24 to 48 V DC , threshold binary input 19 V DC	2	
	60 to 125 V DC, threshold binary input 19 V DC	4	
	110 to 250 V DC, 115 to 230 V AC, threshold binary input 88 V DC	5	
	220 to 250 V DC, 115 to 230 V AC, threshold binary input 176 V DC	6	
	Unit design		
	Surface-mounting nousing, 2-tier screw-type terminals at top/bottom		
	Flush-mounting housing, screw-type terminals (direct connection/ring-type cable lugs)	E	
	Region-specific default setting/function and language settings		
	Region DE, 50 Hz, language German (language selectable)	A	
	Region World, 50/60 Hz, language English (GB) (language selectable)	B	
	Region US 60 Hz language English (US) (language selectable)		
	Region World, 50/60 Hz, language Spanish (language selectable)	E	
	Port B (system interface)		
	No system interface	0	
	IEC 60870-5-103-protocol, electrical RS232	1	
	IEC 60870-5-103-protocol, electrical RS485	2	
	IEC 60870-5-103-protocol optical 820 pm ST connector	3	
	Analog outputs 2 x 0 to 20 mA or 4 to 20 mA	7	
	PROFIBUS-DP Slave, electrical R5485	9	LUA
	PROFIBUS-DP Slave, optical 820 nm, double ring, ST connector ⁴⁷	9	LOB
	MODBUS RTU, electrical RS485	9	LOD
	MODBUS RTU, optical 820 nm, ST connector ¹	9	LOE
	DNP 3.0, electrical RS485	9	L 0 G
	DNP 3.0, optical 820 nm, ST connector ¹⁾	9	LOH
	IEC 61850, 100 Mbit Ethernet, electrical, double, RJ45 connectors	9	LOR
	IEC 61850, 100 Mbit Ethernet, optical, double, LC connector ²⁾	9	L 0 S
	Port C (service interface)		
	DIGSI 4/modem, electrical RS232	1	
	DIGSI 4/modem, electrical RS485	2	
	Port C (service interface) and Port D (additional interface)		
	Port C (service interface)		
	DIGSI 4/modem, electrical RS232	9	
	DIGSI 4/modem, electrical RS485	9	<u>M</u> 2 □
	Port D (additional interface)		
	7111aug outputs 2 x 0 to 20 111A 01 4 to 20 111A		Λ
	Scope of functions of the unit		
	Synchro-cneck for up to 5 synchronizing points (with dead bus/line m	ionitoring) A	
	Paralleling function for 2 synchronizing points without balancing con independent measuring procedures	nmands, 2-channel,	
	Paralleling function for 2 synchronizing points with balancing comma independent measuring procedures	ands, 2-channel ,	
	Paralleling function for 8 synchronizing points with balancing comma	ands, 2-channel,	
	independent measuring procedures	D	
	Additional functions		
	Without	A	
	Protection and network decoupling function		
 With position 9 = B (surface- mounting housing) the unit must 	(voltage, frequency and rate-of-frequency-change protection, vector j	ump) B	
be ordered with RS485 interface	Additional applications		
and a separate FO converter.	Without	0	
2) Not available with position $9 = "B"$	Application for traction systems ($f_n = 16.7 \text{ Hz}$)	1	

11

Accessories	Description	Order No.
	DIGSI 4	
	Software for configuration and operation of Siemens protection units running under MS Windows 2000/XP Professional Edition, device templates, Comtrade Viewer, electronic manual included as well as "Getting started" manual on paper, connecting cables (copper)	
	Basis	
	Full version with license for 10 computers, on CD-ROM	
	(authorization by serial number)	7XS5400-0AA00
	Professional	
	Basis and all optional packages on CD-ROM, DIGSI 4 and DIGSI 3	7XS5402-0AA00
	Copper connecting cable	
	Cable between PC/notebook (9-pin connector)	
	and protection unit (9-pin connector)	
	(contained in DIGSI 4, but can be ordered additionally)	7XV5100-4
	Manual	
	7VE61 and 7VE63 Multifunction Paralleling Device	C53000-G1176-C163-1

Description		Order No.	Size of package	Supplier
Crimp	CI2 0.5 to 1 mm ²	0-827039-1	4000	AMP ¹⁾
connector		0-827396-1	1	AMP ¹⁾
	CI2 1 to 2.5 mm ²	0-827040-1	4000	AMP ¹⁾
		0-827397-1	1	AMP ¹⁾
	Type III+ 0.75 to 1.5 mm^2	0-163083-7	4000	AMP ¹⁾
	-71	0-163084-2	1	AMP ¹⁾
Crimping	for type III+	0-539635-1	1	AMP ¹⁾
tool	and matching female	0-539668-2		AMP ¹⁾
	for CI2	0-734372-1	1	AMP ¹⁾
	and matching female	1-734387-1		AMP ¹⁾
19"-mounting rail		C73165-A63-D200-1	1	Siemens
Short-circuit links	For voltage terminals	C73334-A1-C34-1	1	Siemens
Safety cover for terminals large		C73334-A1-C31-1	1	Siemens
	small	C73334-A1-C32-1	1	Siemens

Fig. 11/97 Short-circuit links for voltage contacts

Fig. 11/98 Mounting rail for 19" rack

1) Your local Siemens representative can inform you on local suppliers.

S	urface-mount	ing housing					_
	F	lush-mounting	g housing		·		Ì
25		<u>.</u>	7VE63	DO1			100
50		Va		вот			
10		•000		PO2			
49		$\neg V_{\rm b}$)	602		- <u>R3</u>	- 99
24				DOO			7_74
23 -				803		B6	98
48				DO4			
22	07			804			97
47	Q8	"d	i				12
46	Q10	<u> </u>		BO5		- <u>R9</u>	- 96
21		Ve	3			_[R10]	
20	Q11]	<u> </u>		BO6		- <u>R11</u>	- 95
45	012	Vf		BO7		- <u>R12</u>	
					L	- <u>[R13]</u>	94
				BO8		R14	69
58	F5	— И в	311	BO9	-	R15	- 93
57	F6	—ГЛ+ в	312			R16	- 68
				BO12		- КЗ	91
56	<u>L F7 </u>	─L∠L+ B	313			- <u>K4</u>	66
55		— Г+ в	3 4	B013		_ К6	65
E4				BO14	-	K7	- 89
			10	BO15	-	- <u>K8</u>	- 64
83	F10					- K5	- 90
				BO16		_ к9	- 88
44		— Г в	816				- 63
19	R18			BO17			- 87
			17			K12]	62
39			517	BO18			86
						K14	61
38	J1 +	— И в	818	BO19	┌ ∕───	K15	85
13	J2					-K16	60
i	1			Live		- F3	51
37		в	19	status		F4]	- 52
				contact	t		
	J4+	─ ∠ ⊢• B	3110				
	J6	— Г + в	3111	Power		- F1	- 15
				supply	= (~) -	F2	- 16
i					Port		i
35	J7	— Д в	3112		D	\square	
10	J8			Analog i	nput		
34	J9	— Д в	8113				
9	J10			Service			41
33 -	J11	— И в	3114	Interface			i
8						40	1
l l	1			System	В		Hol
					;	<u> </u>	
i						\square	
		Front por	t	IRIG B/D	CF77	┥╞───	- 27
sd		L		L]		28 (see
				Earth connect	ion at	<u> </u>	4 manual)
0596				housing back	plate 😇		1
LSA4							

Fig. 11/100 Connection diagram

11 Generator Protection / 7VE6

Substation Automation

SIPROTEC 4 6MD61 IO-Box	12 /3
SIPROTEC 4 6MD63 Bay Control Unit	12 /11
SIPROTEC 4 6MD66 High-Voltage Bay Control Unit	12 /13

Page

SIPROTEC 4 6MD61 IO-Box

Description

The SIPROTEC 4 IO-Box 6MD61 enables in a simple, easy way to enhance the number of binary inputs and outputs in the switchgear. It can be used directly in the bay together with other SIPROTEC4 units and also together with SICAM PAS to serve as a central process connection.

The IO-Box is based on the SIPROTEC 6MD63 and 6MD66 series, so it can be easily integrated in systems with other SIPROTEC 4 units.

The IO-Box supports a wide range of demand for additional binary inputs (BI) and binary outputs (BO), starting from 20 BI+10 BO and going up to 80 BI+53 BO. All important standard communication protocols are supported. With IEC 61850-GOOSE communication, a direct information interchange with other SIPROTEC units is possible. For simplification and cost reduction, the IO-Box is available only without automation (CFC), without keypad and without display.

Function overview

Application

- Extension of number of inputs and outputs of bay controller
- Extension of number of inputs and outputs of protection unit
- Central process connection for SICAM PAS

Features

- Standard SIPROTEC hardware for easy configuration with DIGSI
- Full EMC compliance like all other SIPROTEC devices
- Housing can be used for surface mounting or flush mounting (units are always delivered with two mounting rails for surface mounting. These rails can be dismounted for flush mounting)
- Three types with different amount of inputs and outputs available

Monitoring functions

- Operational measured values (only 6MD612)
- Energy metering values (only 6MD612)
- Time metering of operating hours
- Self supervision of relay

Communication interfaces

- IEC 61850 Ethernet
- IEC 60870-5-103 protocol
- PROFIBUS-FMS
- PROFIBUS-DP
- Service interface for DIGSI 4 (modem)
- Front interface for DIGSI4
- Time synchronization via IRIG B / DCF77

Application

The following figures show the most important applications of the SIPROTEC IO-Box 6MD61.

The configuration shown in Fig. 12/2 allows direct GOOSE communication between the SIPROTEC 4 units (6MD66, 7SJ63) and the IO-Boxes, independent of the substation controller. Of course, this configuration is also possible without substation controller. The IO-Box is used as additional digital inputs and measurements (measurements only with 6MD612), and serves as an additional command output.

The communication between IO-Box and the substation controller is established by using the IEC 61850 standard protocol.

Fig. 12/3 shows a configuration in which the IO-Box is used as a central process connection in the cubicle of the substation controller. For example, cubicle signaling lamps or a signaling horn are controlled by the command relays of the IO-Box.

Fig. 12/4 shows the communication for substations with no Ethernet protocol used. In this case, all communication lines go directly to the substation controller. If information from the IO-Box is used for switchgear interlocking, the interlocking logic must be part of the substation controller.

Fig. 12/2 Configuration with IO-Box in IEC 61850 substation

Fig. 12/3 IO-Box as central input/output for SICAM PAS substation controller

Fig. 12/4 Direct connection of IO-Boxes and protection relays to substation controller via standard protocol

Selection and ordering data	Description	Order No.	Order
			code
	6MD61 IO-Box		
	20 binary inputs, 6 command relays, 4 (2) power relays, 1 live sta	.tus	
	contact (similar to 6MD634) in 1/2 19" housing 33 binary inputs, 14 command relays, 8 (4) power relays, 1 live st	atus	
	contact, 2×20 mA, $3 \times V$, $4 \times I$, (similar to 6MD636) in 1/1 19 [°] h	ousing 2	
	in 1/1 19" housing	3	
	Current transformer: rated current In		
	no analog measuring	0	
	$\frac{1 \text{ A}^{(j)}}{(j+1)}$		
	5 A ''	5	
	Rated auxiliary voltage (power supply, indication voltage)		
	24 to 48 V DC, threshold binary input 19 V	2	
	60 V DC, threshold binary input 19 V ²	3	
	110 V DC, threshold binary input 88 V ²	4	
	220 to 250 V DC, 115 to 230 V AC, threshold binary input 176	V for V^{2}	
	input No. 8-80 for 6MD613 (C-1/O 4), otherwise threshold 88		
	Unit design		
	Surface mounting case, without HMI, mounting in low voltage	e compartment,	
	screw-type terminals (direct wiring / ring lugs), also usable as flux	sh mounting case F	
	Region-specific default settings/function and language presetting	gs	
	Region DE, 50 Hz, language German (changeable)	A	
	Region World, 50/60Hz, language English (GB) (changeable)	В	
	Region USA (ANSI), 60 Hz, language English (US) (changeable)	С	
	Region FR, language French (changeable)	D	
	Region World, 50/60Hz, language Spanish (changeable)	<u>E</u>	
	System interface (on rear of unit, port B)		
	no system port	1	
	IEC 60870-5-103 protocol, electrical RS252	7	
	IEC 60870-5-103 protocol, electrical R5485	2	
	DEC 60870-3-105 protocol, optical 820 mil, 51 connector		
	PROFIBUS-EMS Slave, fiber, double ring, ST connector		
	PROFIBUS DP Slave electrical R \$485	9	IOA
	PROFIBUS-DP Slave, 820 nm fiber, double ring, ST connectors	9	IOB
	IFC 61850 100 BaseT (100 Mbit Ethernet electric double RI45 of	connector) 9	LOR
	IEC 61850, 100 Mater (100 Mater Electric, double, IC connector	ors 9	LOS
	Function interface (on rear of unit, port C)		
	no tunction port	1	
	DIGSI 4, K5232	1	
	DIGSI 4, R5485	2	
	DIG51 4, 820nm fiber, ST connector	٢	

12

1) Only for position 6 = 2

2) Thresholds can be changed (jumper) for each binary input between 19 V and 88 V, for 6MD613 BI No. 8-80 also to 176 V.

Housing for flush mounting (can be used for surface mounting with the included mounting rails)

Fig. 12/5 Connection diagram

12

Housing for flush mounting Q1 Q2 Q3 Q4 Q5 ·m $I_{\rm L1}$ BO1 F6 6MD612 BO2 - F8 I_{L2} F5 BO3 F9 I_{L3} - F7 Q6 Q7 Y -J1(-) 3*I*₀, *I*_E Q8 R14 *) J2(+) ·m V_1 BO4 - J3] <u>•</u>^ R15 V_2 R16 R17 BO5 - J4 V_3 BO6 -K18 F10 B**I**1 BO7 K17 BI2 F11-BIЗ F12 BO8 J7 B**I**4 BO9 F13 - J9] J8 BI5 F15 BO10 -J11 F16 B**I**6 J12 F14 F17 F18 B**I**7 BO11 - R1 BO12 R2 B**|**8 K1 -R3 BO13 BI9 K2 - R4 BI10 K3 -BO14 R5 B**I**11 K4 - R6 BO15 R7 K6 -BI12 - R8 BI13 K7 -<u>L1</u> (--) K8 BI14 *) L2 (+) K9 K5 B**I**15 BO16 - L3 K10 BI16 BO17 - L4 K11 B**I**17 BO18 -M18 B**I**18 K12 BO19 K13 B**I**19 -M17 K14 BO20 L7 K15 BI20 BO21 - L9 K16 L8 R9 Transducer 1 BO22 -L11 R10 L12 R11 Transducer 2 R12 Live M1 BI25 - F3 status contact BI26 - F4 M2 M3 -B**I**27 - F1 Power (~) M4 -BI28 supply F2 M6 BI29 M7 B**I**30 0 M8 B**I**31 System interface 0 M9 B**I**32 Ó M10-B**I**33 Service interface 0 M11 B**I**34 Time M12 B**I**35 synchronization M13 M14 B**I**36 ÷ Earthing at M15 M16 B**I**37 the rear wall LSA4481en.eps *) High-duty relays

12

C

C

В

С

А

Housing for flush mounting

	Housing to	r flush mount	<u>ing</u>			. –
						ļ
F10		₁ B I 1	6MD613	BO1 _		
F11	i T-	• BI2		BO2 🔶		- F8
F12		• BI3				
F13		• BI4		^{BO3}		-+- F9
F15		BI5		L		╡
E16						Ì
F14						ł
F17	$\vdash \square$	ד BI7				
<u>F18</u>		1				i
H15	$\vdash \Box$	BI8				ļ
H16	$+\Box$	• B I 9				
H17	$+ \square$	• BI10		0.04	_	
H18	$+ \square$	• BI11		BO5		
G1 -		• BI12				- <u> H3</u>
G2 -		• BI13		B08 _		
G3 -		• BI14		воэ 🔶		
G4 -		• BI15				<u>+ H6</u>
 		• BI16		BO6	·	- <u>H7</u>
		• BI17		B07 🔶		- <u>H8</u>
	i K	• BI18		BO10		<u>+ H9</u>
		BI19		BOIL		
		BI20		5010	_	
<u>G10</u>				BO12		+H12
GIZ	 	-				
K15	$\vdash \sqsubseteq$	BI23		BO14 -	<u> </u>	К1
K16		• BI24		B015		
K17		• BI25				- КЗ
K18	i-l_	• BI26		BO18		K5
J1 -		• BI27		BO19 🔶		
J2	$+ \mathbb{Z}$	• BI28				
J3 –	$+\Box$	• BI29		BO16		- <u>K7</u>
J4 -	-	• BI30		B017		
J5	$+\overline{7}$	• B I 31		BO21	<u> </u>	
J6 -	+7-	• BI32		D021		K11
J7 –		• BI33		B022	<u> </u>	K12
J8	+	• BI34		BO22	<u> </u>	K14
 		• BI35				K13
 J10		• BI36				
 J11		• BI37				sde
J12						33en.
514						A446
						LS.

Connection diagram, part 1; continued on the following page Fig. 12/7

12/8

Fig. 12/8 Connection diagram part 2

12

С

В

А

12 Substation Automation / 6MD61
SIPROTEC 4 6MD63 Bay Control Unit

Description

The 6MD63 bay control unit is a flexible, easy-to-use control unit. It is optimally tailored for medium-voltage applications but can also be used in high-voltage substations.

The 6MD63 bay control unit has the same design (look and feel) as the other protection and combined units of the SIPROTEC 4 relay series. Configuration is also performed in a standardized way with the easy-to-use DIGSI 4 configuration tool .

For operation, a large graphic display with a keyboard is available. The important operating actions are performed in a simple and intuitive way, e.g. alarm list display or switchgear control. The operator panel can be mounted separately from the relay, if required. Thus, flexibility with regard to the mounting position of the unit is ensured.

Integrated key-operated switches control the switching authority and authorization for switching without interlocking.

Function overview

Application

- Optimized for connection to three-position disconnectors
- Switchgear interlocking interface
- Suitable for redundant master station
- Automation can be configured easily by graphic means with CFC

Control functions

- Number of switching devices only limited by number of available inputs and outputs
- Position of switching elements is shown on the graphic display
- Local/remote switching via key switch
- Command derivation from an indication
- 4 freely assignable function keys to speed up frequently recurring operator actions
- Switchgear interlocking isolator/c.-b.
- Key-operated switching authority
- Feeder control diagram
- Measured-value acquisition
- Signal and command indications
- *P*, *Q*, cos φ (power factor) and meter-reading calculation
- Event logging
- Switching statistics

Monitoring functions

- Operational measured values
- Energy metering values
- Time metering of operating hours
- Slave pointer
- Self-supervision of relay

Communication interfaces

- System interface
 - IEC 61850 Ethernet
 - IEC 60870-5-103 protocol
 - PROFIBUS-FMS
 - DNP 3.0
 - PROFIBUS-DP
- MODBUS
- Service interface for DIGSI 4 (modem)/temperature detection (thermo-box)
- Front interface for DIGSI 4
- Time synchronization via IRIG-B/DCF 77

Selection and ordering data

Description	Order No.		(Orde	er c
6MD63 bay control unit with local control	6MD63□□	- 0000]□ – □AA0		
Henrie a history instate (PU) and a structure (PO) management					
Housing, binary inputs (BI) and outputs (BO), measuring th	ransaucer	TTTT	T T	T	Γ
Housing ½ 19 ² , 11 BI, 8 BO, 1 live status contact	/				
Housing 1/2 19", 24 BI, 11 BO, 4 power relays, 1 live status	s contact 2				
Housing 1/2 19", 20 BI, 11 BO, 2 measuring transducer in	puts,				
4 power relays, 1 live status contact	3				
Housing ¹ / ₂ 19", 20 BL 6 BO, 4 power relays, 1 live status	contact 4 ¹⁾				
Housing 1/, 10" 37 BL 14 BO 8 power relays 1 live status	s contact 5				
$\frac{1}{1000} \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$	s contact J				
Housing $\frac{1}{1}$ 19, 55 BI, 14 BO, 2 measuring transducer inp	uts,				
8 power relays, 1 live status contact	0	7)			
Housing ½ 19", 33 BI, 9 BO, 8 power relays, 1 live statu	s contact /	<i>''</i>			
Current transformer L					
No analog measured variables	0				
	1				
$5 \Lambda^2$	5				
Rated auxiliary voltage (power supply, indication voltage,)				
24 to 48 V DC, threshold binary input 19 V^{3}		2			
$60 \text{ to } 125 \text{ V DC}^{(4)}$ threshold binary input 19 V ³⁾		4			
$110 \pm 0.250 \text{ V DC}^{(4)}$ 115 $\pm 0.220 \text{ V AC} \pm 1.111^{\circ}$	aput 00 17 ³)	5			
110 to 250 v DC ⁻ , 115 to 250 v AC, threshold binary ii	1pul 00 V	<u> </u>			
Unit desian					
For panel surface mounting, plug-in terminal, detached o	operator panel	A			
For panel surface mounting, 2-tier terminal top/bottom	perator parter	B			
For more all surface mounting, 2-tier terminal, top/ bottom					
For panel surface mounting, screw-type terminal, detach	ed operator panel				
For panel flush mounting, plug-in terminal (2/3 pin AM)	P connector)	D			
For panel flush mounting, screw-type terminal					
(direct connection/ring-type cable lugs)		E			
For panel surface mounting, screw-type terminal					
(direct connection / ring-type cable lugs), without HMI		F			
For panel surface mounting, plug-in terminal without I	HMI	G			
Region-specific default settings/function versions and lan	guage settings				
Region DE, 50 Hz, IEC, language: German, changeable	5 5 5	A			
Region World, 50/60 Hz, JEC/ANSI, language: English (GB), changeable	В			
Region US 60 Hz ANSI language: English (US) change	able	C			
Degion ED JEC/ANSI language Eronch changeable	ubie				
Degion World IEC/ANSI language Spanish shangeable		E			
Region world, IEC/ANSI, language: Spanish, changeau	ne	E			
System interface (on rear of unit/Port B)					
No system port		0			
IEC 60870-5-103 protocol, electrical RS232		1			
IEC 60870-5-103 protocol, electrical RS485		2			
EC 60870-5-105 protocol, electrical R3405	atau	2			
IEC 60870-5-105 protocol, 820 nm fiber optic, 51 conne	ctor	3			
PROFIBUS-FMS Slave, electrical RS485	5)	4			
PROFIBUS-FMS Slave, fiber optic, single ring, ST conne	ctor ³	5			
PROFIBUS-FMS Slave, fiber optic, double ring, ST conn	ector ⁵⁾	6			
PROFIBUS-DP Slave, RS485		9		L 0	A
PROFIBUS-DP Slave, 820 nm fiber optic, double ring, ST	Γ connector ⁵⁾	9		L 0	В
MODBUS, RS485		9		10	Г
MODBUS 820 nm fiber ontic ST connector ⁵⁾		9		10	F
DNP 3.0. RS/85		0	+ +	10	6
DNP 2.0, 020 mm Chan and a CT = (5)		9			0
UNP 5.0, 820 nm nder optic, S1 connector'		9	 		
IEC 61850, 100 Mbit Ethernet, electrical, double, RJ45 o	connector	9		LO	K
IEC 61850, 100 Mbit Ethernet, optical, double, LC conr	nector"	9	+	L 0	S
DIGSI 4/modem interface (on rear of unit/Port C)					
no port on rear side					
DIGSI 4, electrical RS232			1		
DIGSI 4, electrical RS485			2		
DIGSI 4, optical 820 nm, ST connector			3		
A					
Measuring			0		
Dasic metering (current, voitage)	-141				
slave pointer, mean values, min/max values only for po	sition $/=1$ and 5		2		

- Only for position 7 = 0
 Rated current can be selected by
- means of jumpers.3) The binary input thresholds can be
- selected in two stages by means of jumpers.
- 4) Transition between the two auxiliary voltage ranges can be selected by means of jumpers.
- 5) Not with position 9 = "B"; if 9 = "B"; please order 6MD6 unit with RS485 port and separate fiber-optic converter.

SIPROTEC 4 6MD66 High-Voltage Bay Control Unit

Description

The 6MD66 high-voltage bay control unit is the control unit for high voltage bays from the SIPROTEC 4 relay series. Because of its integrated functions, it is an optimum, low-cost solution for high-voltage switchbays.

The 6MD66 high-voltage bay control unit also has the same design (look and feel) as the other protection and combined units of the SIPROTEC 4 relay series. Configuration is performed in a standardized way with the easy-to-use DIGSI 4 configuration tool.

For operation, a large graphic display with a keyboard is available. The important operating actions are performed in a simple and intuitive way, e.g. alarm list display or switchgear control. The operator panel can be mounted separately from the unit, if required. Thus, flexibility with regard to the mounting position of the unit is ensured. Integrated key-operated switches control the switching authority and authorization for switching without interlocking. High-accuracy measurement (\pm 0.5 %) for voltage, current and calculated values *P* and *Q* are another feature of the unit.

Function overview

Application

- Integrated synchro-check for synchronized closing of the circuit-breaker
- Breaker-related protection functions (Breaker Failure 50BF, Autoreclosure 79)
- Automation can be configured easily by graphic means with CFC
- Flexible, powerful measured-value processing
- Connection for 4 voltage transformers, 3 current transformers, two 20 mA transducers
- Volume of signals for high voltage
- Up to 14 1 ¹/₂-pole circuit-breakers can be operated
- Up to 11 2-pole switching devices can be operated
- Up to 65 indication inputs, up to 45 command relays
- Can be supplied with 3 volumes of signals as 6MD662 (35 indications, 25 commands), 6MD663 (50 indications, 35 commands) or 6MD664 (65 indications, 45 commands); number of measured values is the same
- Switchgear interlocking
- Inter-relay communication with other devices of the 6MD66 series, even without a master station interface with higher level control and protection
- Suitable for redundant master station
- Display of operational measured values *V*, *I*, *P*, *Q*, *S*, *f*, cos φ (power factor) (single and three-phase measurement)
- Limit values for measured values
- Can be supplied in a standard housing for cubicle mounting or with a separate display for free location of the operator elements
- 4 freely assignable function keys to speed up frequently recurring operator actions

Communication interfaces

- System interface
- IEC 61850 Ethernet
- IEC 60870-5-103 protocol
- PROFIBUS-FMS/-DP
- Service interface for DIGSI 4 (modem)
- Front interface for DIGSI 4
- Time synchronization via IRIG B/DCF 77

Communication

With regard to communication between components, particular emphasis is placed on the SIPROTEC 4 functions required for energy automation.

- Every data item is time-stamped at its source, i.e. where it originates.
- Information is marked according to where it originates from (e.g. if a command originates "local" or "remote")
- The feedback to switching processes is allocated to the commands.
- Communication processes the transfer of large data blocks, e.g. file transfers, independently.
- For the reliable execution of a command, the relevant signal is first acknowledged in the unit executing the command. A check-back indication is issued after the command has been enabled (i.e. interlocking check, target = actual check) and executed.

In addition to the communication interfaces on the rear of the unit, which are equipped to suit the customer's requirements, the front includes an RS232 interface for connection of DIGSI. This is used for quick diagnostics as well as for the loading of parameters. DIGSI 4 can read out and represent the entire status of the unit online, thus making diagnostics and documentation more convenient.

Control

The bay control units of the 6MD66 series have command outputs and indication inputs that are particularly suited to the requirements of high-voltage technology. As an example, the 2-pole control of a switching device is illustrated (see Fig. 12/11). In this example, two poles of the circuit-breaker are closed and 1 pole is open. All other switching devices (disconnectors, earthing switches) are closed and open in 1½-pole control. A maximum of 14 switching devices can be controlled in this manner.

A complete 2-pole control of all switching devices (see Fig. 12/12) is likewise possible. However more contacts are required for this. A maximum of 11 switching devices can be controlled in this manner.

Fig. 12/11 Connection diagram of the switching devices (circuit-breaker 2 poles closed, 1 pole open; disconnector/earthing switch 1½ pole)

Fig. 12/12 2-pole connection diagram of circuit-breakers and disconnectors

A possible method to connect the switching devices to the bay control unit 6MD66 is shown in Fig. 12/13. There it is shown how three switching devices Q0, Q1, and Q2 are connected using 1½ pole control.

Switchgear interlockings

Using the CFC (Continuous Function Chart) available in all SIPROTEC 4 units, the bay interlock conditions can, among other things, be conveniently configured graphically in the 6MD66 bay control unit. The inter-bay interlock conditions can be checked via the "inter-relay communication" (see next section) to other 6MD66 devices. With the introduction of IEC 61850 communication, the exchange of information for interlocking purposes is also possible via Ethernet. This is handled via the GOOSE message method. Possible partners are all other bay devices or protection devices which support IEC 61850-GOOSE message.

In the tests prior to command output, the positions of both key-operated switches are also taken into consideration. The upper key-operated switch corresponds to the S5 function (local/remote switch), which is already familiar from the 8TK switchgear interlock system. The lower key-operated switch effects the changeover to noninterlocked command output (S1 function). In the position "Interlocking Off" the key cannot be withdrawn, with the result that non-operation of the configured interlocks is immediately evident.

The precise action of the key-operated switch can be set using the parameter "switching authority".

With the integrated function "switchgear interlocking" there is no need for an external switchgear interlock device.

Furthermore, the following tests are implemented (parameterizable) before the output of a command:

- Target = Actual, i.e. is the switching device already in the desired position?
- Double command lockout, i.e. is another command already running?
- Individual commands, e.g. earthing control can additionally be secured using a code.

Fig. 12/13 Typical connection for 1½-pole control

Synchronization

The bay control unit can, upon closing of the circuit-breaker, check whether the synchronization conditions of both partial networks are met (synchro-check). Thus an additional, external synchronization device is not required. The synchronization conditions can be easily specified using the configuration system DIGSI 4. The unit differentiates between synchronous and asynchronous networks and reacts differently upon connection:

In synchronous networks there are minor differences with regard to phase angle and voltage moduli and so the circuit-breaker response time does not need to be taken into consideration. For asynchronous networks however, the differences are larger and the range of the connection window is traversed at a faster rate. Therefore it is wise here to take the circuit-breaker response time into consideration. The command is automatically dated in advance of this time so that the circuit-breaker contacts close at precisely the right time. Fig. 12/14 illustrates the connection of the voltages.

As is evident from Fig. 12/14, the synchronization conditions are tested for one phase. The important parameters for synchronization are:

 $|U_{\min}| < |U| < |U_{\max}|$ (Voltage modulus)

 $\begin{array}{l} \Delta \phi < \Delta \phi_{max} \\ (Angle \ difference) \end{array}$

 $\Delta f < \Delta f_{\text{max}}$ (Frequency difference)

Using the automation functions available in the bay control unit, it is possible to connect various reference voltages depending on the setting of a disconnector. Thus in the case of a double busbar system, the reference voltage of the active busbar can be automatically used for synchronization (see Fig. 12/15).

Alternatively the selection of the reference voltage can also take place via relay switching, if the measurement inputs are already being used for other purposes.

Fig. 12/14 Connection of the measured values for synchronization

Fig. 12/15

Voltage selection for synchronization with duplicate busbar system

Fig. 12/16

Simultaneous connection of measured values according to a two-wattmeter circuit and synchronization

Function

Synchronization

The bay control unit offers the option of storing various parameter sets (up to eight) for the synchronization function and of selecting one of these for operation. Thus the different properties of several circuitbreakers can be taken into consideration. These are then used at the appropriate time. This is relevant if several circuitbreakers with e.g. different response times are to be served by one bay control unit.

The measured values can be connected to the bay control unit in accordance with Fig. 12/14 (single-phase system) or Fig. 12/16 (two-wattmeter circuit).

The synchronization function can be parameterized via four tabs in DIGSI.

SYNC Function group

No.	Settings	Value
0000	Closing (operating) time of CB	0.06 sec
0000	Balancing Factor U1/U2	1.00
0000	Angle adjustment U1-U2 (Trafo)	0.
0000	Secondary Transformer Nominal Value 1	100 V
0000	Secondary Transformer Nominal Value 2	100 V
	Eso	ort Graph Info

Fig. 12/17

"Power System Data", sheet for parameters of the synchronization function

No.	Settings	Value
0000	Synchronizable switching device	<none></none>
0000	Minimum Voltage for Synchronization	90 V
0000	Maximum Voltage for Synchronization	110 V
0000	Voltage Threshold for Dead Line/Dead Bus	5 V
0000	Synchronize to dead line	NC
0000	Synchronize to dead bus	NC
0000	Synchronize to dead line and dead bus	NC
0000	Maximum duration of synchronism-check	30,00 sec
0000	Minimum frequency	95 %
0000	Maximum frequency	105 %

Fig. 12/18

General parameters of the synchronization function

ustomi	28	
No.	Settings	Value
0000	Maximum voltage difference, asynchronous	2.0 V
0000	Maximum frequency difference, syn.	0.10 Hz
	Export	Graph Info

Fig. 12/19

Parameter page for asynchronous networks

No.	Settings	Value
0000	Frequency diff. threshold Sync/Async.	10 mHz
0000	Maximum voltage difference, synchronous	5.0 V
0000	Maximum angle difference, syn.	10*
0000	Switch Delay for synchronous systems	0.00 sec
	Egport	Graph Info

Parameter page for asynchronous networks

Communication

Communication

The device is not only able to communicate to the substation control level via standard protocol like IEC 61850, IEC 60870-5-103 or others. It is also possible to communicate with other bay devices or protection devices. Two possibilities are available.

Inter-relay-communication

The function "inter-relay-communication" enables the exchange of information directly between 6MD66 bay controller devices. The communication is realized via Port "C" of the devices, so it is independent from the substation communication port "B". Port "C" is equipped with a RS485 interface. For communication over longer distances, an external converter to fiber-optic cable can be used.

An application example for inter-relaycommunication is shown in Fig. 12/22. Three 6MD66 devices are used for control of a 11/2 circuit-breaker bay. One device is assigned to each of the three circuitbreakers. By this means, the redundancy of the primary equipment is also available on the secondary side. Even if one circuitbreaker fails, both feeders can be supplied. Control over the entire bay is retained, even if one bay control unit fails. The three bay control units use the inter-relay-communication for interchange of switchgear interlocking conditions. So the interlocking is working completely independent from the substation control level.

IEC 61850-GOOSE

With the communication standard IEC 61850, a similar function like interrelay-communication is provided with the "GOOSE" communication to other IEC 61850-devices. Since the standard IEC 61850 is used by nearly all SIPROTEC devices and many devices from other suppliers, the number of possible communication partners is large.

The applications for IEC 61850-GOOSE are quite the same as for inter-relay-communication. The most used application is the interchange of switchgear interlocking information between bay devices. GOOSE uses the IEC 61850 substation Ethernet, so no separate communication port is needed. The configuration is shown in Fig. 12/23. The SIPROTEC devices are connected via optical Ethernet and grouped by voltage levels (110 kV and 20 kV). The devices in the same voltage level can interchange the substation-wide interlocking information. GOOSE uses the substation Ethernet.

Fig. 12/23 Connection for IEC 61850-GOOSE communication

Like inter-relay-communication, GOOSE also supplies a status information for supervision of the communication. In case of interruption, the respective information is marked as "invalid". Therefore, non-affected information still can be used for interlocking, and a maximum functional availability is guaranteed.

Measured-value processing

Measured-value processing is implemented by predefined function modules, which are likewise configured using DIGSI 4.

The transducer modules are assigned in the DIGSI 4 assignment matrix to current and voltage channels of the bay control unit. From these input variables, they form various computation variables (see Table 12/1).

The individual transducer modules can be activated in the functional scope of the unit and will then appear in the DIGSI 4 assignment matrix with the input channels and output variables from Table 1. The output variables can then be assigned to the system interface or represented in the measured value window in the display.

Sample presentation of the measured value

display.

Fig. 12/24

DIGSI 4 Parameter view - transducer packets

Max. availability of transducers on the unit (can be set via the functional scope)	Required input channels	Calculated variables (= output variables)
x 1	V	<i>V</i> , <i>f</i>
x 1	Ι	I, f
x 3	V, I	V, I, P, Q, S, φ , cos φ (PF), sin φ , f
x 1	V1, V2, V3, <i>I</i> 1, <i>I</i> 2, <i>I</i> 3	V0, V1, V2, V3, V12, V23, V31, I0, I1, I2, I3, P, Q, S, φ, cos φ (PF), sin φ, f
x 1	V1, V2, <i>I</i> 1, <i>I</i> 2	V12, V13, <i>I</i> 2, <i>I</i> 3, <i>P</i> , <i>Q</i> , <i>S</i> , φ, cos φ (PF), sin φ, f
	Max. availability of transducers on the unit (can be set via the functional scope) x 1 x 1 x 3 x 1 x 1 x 1	Max. availability of transducers on the unit (can be set via the functional scope)Required input channelsx 1Vx 1Ix 3V, Ix 1V1, V2, V3, I1, I2, I3x 1V1, V2, I1, I2

Table 12/1

Properties of measured-value processing

MEA: U1 U2 U3 IL1 IL2 IL3	SURI IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	EMEN 110, 110, 310 3310 = 0	01 01 01 01 01 01 01	kkk k		
	f	=	50, (30	Hz	

12

The connection of the input channels can be chosen without restriction. For the twowattmeter circuit, the interface connection should be selected in accordance with Fig. 12/26. The two-wattmeter circuit enables the complete calculation of a three-phase system with only two voltage and two current transformers.

Metered values

For internal metering, the unit can calculate an energy metered value from the measured current and voltage values. If an external meter with a metering pulse output is available, the bay control unit can obtain and process metering pulses via an indication input.

The metered values can be displayed and passed on to a master unit. A distinction is made between forward, reverse, active and reactive power (\pm kWh, \pm kvarh).

Automation

With integrated logic, the user can set, via a graphic interface (CFC, Continuous Function Chart), specific functions for the automation of switchgear or substation. Functions are activated via function keys, binary input or via communication interface. Processing of internal indications or measured values is also possible.

Switching authorization/ Key-operated switch

The switching authorization (control authorization) (interlocked/non-interlocked, corresponds to key-operated S1 in the 8TK interlock system) and the switching authority (local/remote, corresponds to key-operated S5 for 8TK) can be preset for the SIPROTEC 4 bay control unit using key-operated switches. The position of both keys is automatically evaluated by command processing. The key for operation without interlocks cannot be removed when in the position "non-interlocked", such that this mode of operation is immediately recognizable (see also page 12/15, Section "Switchgear interlockings").

Every change in the key-operated switch positions is logged.

Fig. 12/26 Two-wattmeter circuit (connection to bay control unit)

Chatter blocking

Chatter blocking feature evaluates whether, in a configured period of time, the number of status changes of indication input exceeds a specified figure. If exceeded, the indication input is blocked for a certain period, so that the communication line to the master unit will not be overloaded by disturbed inputs.

For every binary input, it is possible to set separately whether the chatter blocking should be active or not. The parameters (number of status changes, test time, etc.) can be set once per unit.

Indication / measured value blocking

To avoid the transmission of information to the master unit during works on the bay, a transmission blocking can be activated.

Indication filtering

Indications can be filtered and delayed.

Filtering serves to suppress brief changes in potential at the indication input. The indication is passed on only if the indication voltage is still present after a set period of time.

The filter time can be set from 0 to 24 hours in 1 ms steps. It is also possible to set the filter time so that it can, if desired, be retriggered.

Furthermore, the hardware filter time can be taken into consideration in the time stamp; i.e. the time stamp of a message that is detected as arriving will be predated by the known, constant hardware filter time. This can be set individually for every binary input in a 6MD66 bay control unit.

Auto-Reclosure (ANSI 79)

The 6MD66 is equipped with an auto-reclosure function (AR). The function includes several operating modes:

- Interaction with an external device for auto-reclosure via binary inputs and binary outputs; also possible with interaction via IEC 61850-GOOSE
- Control of the internal AR function by external protection
- 3-pole auto-reclosure for all types of faults; different dead times are available depending on the type of the fault
- 1-pole auto-reclosure for 1-phase faults, no reclosing for multi-phase faults
- 1-pole auto-reclosure for 1-phase faults and 2-phase faults, no reclosing for multi-phase faults.
- 1-pole auto-reclosure for 1-phase and 3-pole auto-reclosure for multi-phase faults
- 1-pole auto-reclosure for 1-phase faults and 2-phase faults and 3-phase autoreclosure for multi-phase faults
- Multiple-shot auto-reclosure
- Interaction with the internal synchrocheck
- Monitoring of the circuit-breaker auxiliary contacts

In addition to the above-mentioned operating modes, several other operating principles can be employed by means of the integrated programmable logic (CFC). Integration of auto-reclosure in the feeder protection allows the line-side voltages to be evaluated. A number of voltage-dependent supplementary functions are thus available:

• DLC

By means of dead-line-check (DLC), reclosure is effected only when the line is deenergized (prevention of asynchronous breaker closure)

• ADT

The adaptive dead time (ADT) is employed only if auto-reclosure at the remote station was successful (reduction of stress on equipment).

Fig. 12/27 Parameterization of time management

• RDT

Reduced dead time (RDT) is employed in conjunction with auto-reclosure where no teleprotection method is employed: When faults within the zone extension but external to the protected line of a distance protection are switched off for rapid auto-reclosure (RAR), the RDT function decides on the basis of measurement of the return voltage from the remote station which has not tripped whether or not to reduce the dead time.

Breaker failure protection (ANSI 50BF)

The 6MD66 incorporates a two-stage circuit-breaker failure protection to detect failures of tripping command execution, for example, due to a defective circuit breaker. The current detection logic is phase-selective and can therefore also be used in single-pole tripping schemes. If the fault current is not interrupted after a settable time delay has expired, a retrip command or a busbar trip command will be generated. The breaker failure protection can be initiated by external devices via binary input signals or IEC 61850 GOOSE messages.

Time management

The 6MD66 bay control units can, like the other units in the SIPROTEC 4 range, be provided with the current time by a number of different methods:

- Via the interface to the higher-level system control (PROFIBUS FMS or IEC 61850)
- Via the external time synchronization interface on the rear of the unit (various protocols such as IRIG B and DCF77 are possible)
- Via external minute impulse, assigned to a binary input
- From another bay control unit by means of inter-relay communication
- Via the internal unit clock.

Fig. 12/27 illustrates the settings that are possible on the DIGSI interface.

DIGSI 4 Configuration tool

The PC program DIGSI 4 is used for the convenient configuration of all SIPROTEC 4 units. Data exchange with the configuration tool SICAM PAS of the energy automation system is possible, such that the bay level information needs only be entered once. Thus errors that could arise as a result of duplicated entries are excluded.

DIGSI 4 offers the user a modern and intuitive Windows interface, with which the units can be set and also read out.

DIGSI 4 configuration matrix

The DIGSI 4 configuration matrix allows the user to see the overall view of the unit configuration at a glance (see Part 3, Fig. 3/2). For example, all allocations of the binary inputs, the output relays and the LEDs are shown at a glance. And with one click of the button, connections can be switched. Also the measuring and metering values are contained in this matrix.

Commissioning

Special attention has been paid to commissioning. All binary inputs and outputs can be read and set directly. This can simplify the wire checking process significantly for the user.

CFC: Reduced time and planning for programming logic

With the help of the CFC (Continuous Function Chart), you can configure interlocks and switching sequences simply by drawing the logic sequences; no special knowledge of software is required. Logical elements, such as AND, OR and time elements, measured limit values, etc. are available.

Display editor

A convenient display editor is available to design the display on SIPROTEC 4 units. The predefined symbol sets can be expanded to suit the user. Drawing a single-line diagram is extremely simple. Operational measured values (analog values) in the unit can be placed where required.

In order to also display the comprehensive plant of the high-voltage switchgear and controlgear, the feeder control display of the 6MD66 bay control unit can have a number of pages.

Fig. 12/28

CFC plan for interlocking logic (example)

Fig. 12/29

General configuration view of the bay control unit

In this process, several pages of a control display can be configured under one another, and the user can switch between them using the cursor. The number of pages, including the basic display and the feeder control display, should not exceed 10, as otherwise the memory in the unit will be completely occupied.

Fig. 12/29 illustrates the general view of the 6MD66 bay control unit on the DIGSI 4 configuration interface.

As is the case with the SIPROTEC 4 protection units, there is an icon called "Functional Scope". It enables the configuration of measured-value processing and the synchronization function and the protection functions (auto-reclosure and breaker failure protection).

T		
	a 1 a 1 l al a 1 l	
I E C I	ппсаг	uulu

Seneral unit data			
Analog inputs			
Rated frequency	50 or 60 Hz (adjustable, depending on the order number)		
Rated current $I_{ m N}$	1 or 5 A (can be changed via plug-in jumper)		
Rated voltage $V_{\rm N}$	100 V, 110 V, 125 V, 100 V/ $\sqrt{3}$, 110 V/ $\sqrt{3}$ can be adjusted using parameters		
Power consumption at $I_N = 1A$ at $I_N = 5A$ Voltage inputs	< 0.1 VA < 0.5 VA < 0.3 VA with 100 V		
Measurement range current I	Up to 1.2 times the rated current		
Thermal loading capacity	12 A continuous, 15 A for 10 s, 200 A for 1 s		
Measurement range voltage V	Up to 170 V (rms value)		
Max. permitted voltage	170 V (rms value) continuous		
Transducer inputs Measurement range Max. permitted continuous cur- rent	± 24 mA DC ± 250 mA DC		
Input resistance, recorded power loss at 24 mA	10 Ω ± 1 % 5.76 mW		
Power supply			
Rated auxiliary voltages	24 to 48 V DC, 60 to 125 V DC, 110 to 250 V DC		
Permitted tolerance	-20 % to +20 %		
Permitted ripple of the rated auxiliary voltage	15 %		
Power consumption Max. at 60 to 250 V DC Max. at 24 to 48 V DC Typical at 60 to 250 V DC Typical at 24 to 48 V DC (typical = 5 relays picked up + live contact active + LCD display illuminated + 2 interface cards plugged in)	20 W 21.5 W 17.5 W 18.5 W		
Bridging time at 24 and 60 V DC	≥ 20 ms		
at 48 and \geq 110 V DC	\geq 50 ms		
Binary inputs			
Number 6MD662 6MD663 6MD664	35 50 65		
Rated voltage range	24 to 250 V DC (selectable)		
Pick-up value (range can be set using jumpers for every binary input)	17, 73 or 154 V DC		
Function (allocation)	Can be assigned freely		
Minimum voltage threshold (presetting) for rated voltage 24, 48, 60 V for rated voltage 110 V for rated voltage 220, 250 V	17 V DC 73 V DC 154 V DC		
Maximum permitted voltage	300 V DC		

Binary inputs (cont'd)

Current consumption, excited for 3 ms	approx. 1.5 mA approx. 50 mA to increase pickup time
Permitted capacitive coupling of the indication inputs	220 nF
Minimum impulse duration for message	4.3 ms
Output relay	
Live contact	1 NC/NO (can be set via jumper: Factory setting is "Break contact", i.e. the contact is normally open but then closes in the event of an error)
Number of command relays, single pole	
6MD662	25, grouping in 2 groups of 4, 1 group of 3, 6 groups of 2 and two ungrouped relays
6MD663	35, grouping in 3 groups of 4, 1 group of 3, 9 groups of 2 and two ungrouped relays
6MD664	45, grouping 4 groups of 4, 1 group of 3, 12 groups of 2 plus two ungrouped relays
Switching capacity, command relay Make Break Break (at L/R \leq 50 ms) Max. switching voltage Max. contact continuous current Max. (short-duration) current for 4 s	max. 1000 W/ VA max. 30 VA 25 VA 250 V 5 A 15 A
Switching capacity, live contact ON and OFF Max. switching voltage Max. contact continuous current	20 W/VA 250 V 1 A
Max. make-time	8 ms
Max. chatter time	2.5 ms
Max. break time	2 ms
LED	
Number RUN (green) ERROR (red) Display (red), function can be allocated	1 1 14
Unit design	
Housing 7XP20	For dimensions drawings, see part 15
Type of protection acc. to EN60529 in the surface-mounting housing in the flush-mounting housing front rear	IP20 IP51 IP20
Weight	
Flush-mounting housing, integrated local control 6MD663 6MD664	approx. 10.5 kg approx. 11 kg
Surface-mounting housing, without local control, with assembly angle 6MD663 6MD664	approx. 12.5 kg approx. 13 kg
Detached local control	approx, 2.5 kg

Serial interfaces

System interfaces PROFIBUS FMS, Hardware version depending on Order No.: PROFIBUS fiber optic cable ST connector max 1.5 Mbaud Baud rate Optical wave length 820 nm Permissible path attenuation max. 8 dB for glassfiber 62.5/125 µm Distance, bridgeable max. 1.5 km PROFIBUS RS485 9-pin SUB-D connector max. 12 Mbaud Baud rate max. 1000 m at 93.75 kBaud Distance, bridgeable max. 100 m at 12 Mbaud 9-pin SUB-D connector PROFIBUS RS232 4800 to 115200 baud Baud rate Distance, bridgeable max. 15 m

Time synchronization DCF77/IRIG B signal

Connection		9-pin SUB-D connector
Input voltage level		either 5 V, 12 V or 24 V
Connection allocation	Pin 1 Pin 2 Pin 3 Pin 4 Pin 7 Pin 8 Pin 5, 9 Pin 6	24 V input for minute impulse 5 V input for minute impulse Return conductor for minute impulse Return conductor for time message 5 V input for minute impulse 24 V input for time message Screen Not allocated
Message type (IRIG B, DCF, etc.)		Can be adjusted using parameters
Control interface for RS232 DIGSI 4		
Connection		Front side, non-isolated, 9-pin SUB-D connector

DIGSI 4 interface (rear of unit)

Fiber optic	ST connector
Baud rate	max. 1.5 Mbaud
Optical wave length	820 nm
Permissible path attenuation	max. 8 dB for glass fiber of 62.5/
	125 µm
Distance, bridgeable	max. 1.5 km
RS485	9-pin SUB-D connector
Baud rate	max. 12 Mbaud
Distance, bridgeable	max. 1000 m at 93.75 kBaud
-	max. 100 m at 12 MBaud
RS232	9-pin SUB-D connector
Baud rate	4800 to 115200 Baud
Distance, bridgeable	max. 15m

Interface for inter-unit communication

RS485	9-pin SUB-D connector
Baud rate	max. 12 Mbaud
Distance, bridgeable	max. 1000 m at 93.75 kBaud
	max. 100 m at 12 Mbaud

Ethernet interface

IEC 61850 protocol

Isolated interface for data transfer:	Port B, 100 Base T acc. to IEEE 802.3
to a control center	
with DIGSI	
between SIPROTEC 4 relays	
Transmission rate	1000 MBit

Ethernet, electrical	
Connection for flush-mounting housing/ surface-mounting housing with detached operator panel	Two RJ45 connectors, mounting location "B"
Distance	Max. 20 m/65.6 ft
Test voltage	500 V AC against earth
Ethernet, optical	
Connection for flush-mounting housing/ surface-mounting housing with detached operator panel	Integrated LC connector for FO connection, mounting location "B"
Optical wavelength	1300 nmm
Distance	1.5 km/0.9 miles
Electrical tests	
Specifications	
Standards	IEC 60255 (product standards) ANSI/IEEE C37.90.0/.1/.2 DIN 57435 Part 303 For further standards see specific tes
Insulation tests	
Standards	IEC 60255-5 and IEC 60870-2-1
Voltage test (100 % test) All circuits except for auxiliary supply, binary inputs, communication and time synchro- nization interfaces	2.5 kV (rms), 50 Hz
Voltage test (100 % test) Auxiliary voltage and binary inputs	3.5 kV DC
Voltage test (100 % test) only isolated communication and time synchronization inter- faces	500 V (rms value), 50 Hz
Surge voltage test (type test) All circuits except for communica- tion and time synchronization in- terfaces, class III	5 kV (peak); 1.2/50 µs; 0.5 J; 3 positive and 3 negative surges at intervals of 5 s
EMC tests for noise immunity; type	test
Standards	IEC 60255-6, IEC 60255-22 (produc standards) EN 50082-2 (generic standard) DIN 57 435 Part 303
High frequency test IEC 60255-22-1, class III and DIN 57435 part 303, class III	2.5 kV (peak value), 1 MHz; $\tau = 15$ m 400 pulses per s; duration 2 s
Discharge of static electricity IEC 60255-22-2 class IV EN 61000-4-2, class IV	8 kV contact discharge; 15 kV air discharge; both polarities; 150 pF; $R_i = 330 \Omega$
Exposure to RF field, non-modu- lated IEC 60255-22-3 (report), class III	10 V/m; 27 to 500 MHz
Exposure to RF field, amplitude- modulated IEC 61000-4-3, class III	10 V/m; 80 to 1000 MHz; 80 % AM; 1 kHz
Exposure to RF field, pulse-modu- lated IEC 61000-4-3/ ENV 50204, class III	10 V/m; 900 MHz; repetition fre- quency 200 Hz; duty cycle 50 %
Fast transient interference bursts IEC 60255-22-4, IEC 61000-4-4, class IV	4 kV; 5/50 ns; 5 kHz; burst length = 15 ms; repetition frequency 300 ms; both polarities; $R_i = 50 \Omega$; test duration 1 min

Technical data

EMC tests for noise immunity; type test (cont'd)

High-energy surge voltages (SURGE), IEC 6100-4-5 installation class III	Impulse: 1.2/50 μs
Auxiliary supply	common mode: 2 kV; 12 Ω, 9 μF differential mode:1 kV; 2 Ω, 18 μF
Measurement inputs, binary inputs and relay outputs	common mode: 2 kV; 42 Ω , 0.5 μ F differential mode: 1 kV; 42 Ω , 0.5 μ F
Conducted RF, amplitude-modu- lated IEC 61000-4-6, class III	10 V; 150 kHz to 80 MHz; 80 % AM; 1 kHz
Magnetic field with power fre- quency IEC 61000-4-8, class IV; IEC 60255-6	30 A/m continuous; 300 A/m for 3 s; 50 Hz 0.5 mT; 50 Hz
Oscillatory surge withstand capability	2.5 to 3 kV (peak); 1 to 1.5 MHz
ANSI/IEEE C37.90.1	damped wave; 50 surges per second; duration 2 s; $R_i = 150$ to 200 Ω
Fast transient surge withstand capability ANSI/IEEE C37.90.1	4 to 5 kV; 10/150 ns; 50 impulses per second; both polarities; duration 2 s ; $R_i = 80 \ \Omega$
Radiated electromagnetic interfer- ence ANSI/IEEE C37.90.2	35 V/m; 25 to 1000 MHz
Damped oscillations IEC 60894, IEC 61000-4-12	2.5 kV (peak value), 100 kHz polarity alternating, 1 MHz, 10 and 50 MHz, $R_{\rm i}$ = 200 Ω
EMC tests for interference emission	; type tests
Ston dand	ENI 50001 1 (Design an asification)

Standard EN 50081-1 (Basic specification) Radio interference voltage on lines 150 kHz to 30 MHz only auxiliary supply class B **IEC-CISPR 22** Interference field strength 30 to 1000 MHz **IEC-CISPR 22** class B

Mechanical dynamic tests

Vibration, shock stress and seismic vibration

During operation Standards Vibration

IEC 60255-21-1, class 2 IEC 60068-2-6

Shock IEC 60255-21-2, class 1 IEC 60068-2-27

Vibration during earthquake IEC 60255-21-2, class 1 IEC 60068-3-3

IEC 60255-21 and IEC 60068-2 Sinusoidal 10 to 60 Hz: ±0.075 mm amplitude; 60 to 150 Hz: 1 g acceleration Frequency sweep 1 octave/min 20 cycles in 3 orthogonal axes Half-sinusoidal Acceleration 5 g, duration 11 ms, 3 shocks each in both directions of the 3 axes Sinusoidal 1 to 8 Hz: \pm 4 mm amplitude (horizontal axis) 1 to 8 Hz: ± 2 mm amplitude (vertical axis) 8 to 35 Hz: 1 g acceleration (horizontal axis) 8 to 35 Hz: 0,5 g acceleration (vertical axis) Frequency sweep 1 octave/min 1 cycle in 3 orthogonal axes

During transport	
Standards	IEC 60255-21 and IEC 60068-2
Vibration IEC 60255-21-1, class 2 IEC 60068-2-6	Sinusoidal 5 to 8 Hz: ±7.5 mm amplitude; 8 to 150 Hz: 2 g acceleration Frequency sweep 1 octave/min 20 cycles in 3 orthogonal axes
Shock IEC 60255-21-2, class 1 IEC 60068-2-27	Half-sinusoidal Acceleration 15 g, duration 11 ms, 3 shocks each in both directions 3 axes
Continuous shock IEC 60255-21-2, class 1 IEC 60068-2-29	Half-sinusoidal Acceleration 10 g, duration 16 ms, 1000 shocks in both directions of the 3 axes

Climatic stress tests

Temperatures		
Standards	IEC 60255-6	
Recommended temperature luring operation	−5 to +55 °C	25 to 131 °F
Cemporary permissible tempera- ure limit during operation The legibility of the display may be impaired above 55 °C/131 °F)	−20 to +70 °C	-4 to 158 °F
Limit temperature during storage	–25 to +55 °C	-13 to 131 °F
Limit temperature during ransport Storage and transport with standard factory packaging	–25 to +70 °C	-13 to 158 °F

Humidity

Permissible humidity stress We recommend arranging the units in such a way that they are not exposed to direct sunlight or pronounced temperature changes that could cause condensation

Annual average ≤ 75 % relative humidity; on 56 days a year up to 93 % relative humidity; condensation during operation is not permitted

CE conformity

The product meets the stipulations This conformity is the result of a test of the guideline of the council of the European Communities for ments of the member states on electro-magnetic compatibility (EMC directive 89/336/EEC) and product use within certain voltage directive. limits (low-voltage directive 73/23/EEC).

The product conforms with the international standard of the IEC 60255 series and the German national standard DIN VDE 57 435,Part 303. The unit has been developed and manufactured for use in industrial areas in accordance with the EMC standard.

Further applicable standards: ANSI/IEEE C37.90.0 and C37.90.1

that was performed by Siemens AG in accordance with Article 10 of the diharmonization of the legal require- rective in conformance with generic standards EN 50081-2 and EN 50082-2 for the EMC directive and EN 60255-6 for the low-voltage

Selection and o

rdering data	Description	Order No.				Orc	ler
	6MD66 high-voltage bay control unit	6MD662	- 0 0 0 0		- 0 🗆 🗆 🗆		
	Processor module with power supply, input/output modules with a total of:	A					
					see		
	35 single-point indications, 22 1-pole single commands,				next		
	4 x voltage via direct CT inputs, 2 measuring transducer inputs	rent			page		
	Current transformer I _N						
	1 A	1					
	1 A / 150 % I _N	2					
	1 A / 200 % I _N	3					
	5 A	5					
	5 A / 150 % I _N	6					
	5 A / 200 % Jy	7					
		-					
	Pated auvilian woltage (power supply indication voltage)						
	A to ABNDC three all his arritement 10 M ²		2				
	24 to 48 V DC, threshold binary input 19 V		2				
	$\frac{60 \text{ V DC}}{100000000000000000000000000000000000$		3				
	110 V DC, threshold binary input 88 V ²		4				
	220 to 250 V DC, threshold binary input 176 V^{2}		5				
	Unit design						
	For panel flush mounting, with integr. local operation, HMI,						
	plug-in terminal (2/3-pole AMP socket)		D				
	For panel flush mounting, with integr. local operation, graphic	display,					
	keyboard, screw-type terminals (direct connec./ring-type cable	lugs)	E				
	Region-specific default settings/function and language presetting	IS					
	Region DE, 50 Hz, language: German, changeable		A				
	Region World, 50/60 Hz, language: English (GB), changeable		В				
	Region US, ANSI, language: English (US), changeable		С				
	Region World, 50/60 Hz, language: French, changeable		D				
	Region World, 50/60 Hz, language: Spanish, changeable		E				
	System Interface (on rear of unit, port B)		-				
	No system interface		0				
	IEC 60870-5-103 protocol, electrical RS485		2				
	IEC 60870-5-103 protocol, optical 820 nm, ST connector		3				
	PROFIBUS-FMS Slave, electrical RS485		4				
	PROFIBUS-FMS Slave, optical, single ring, ST connector		5				
	PROFIBUS-FMS Slave, optical, double ring, ST connector		6				
	PROFIBUS-DP Slave, electrical RS485		9			L 0	Α
	PROFIBUS-DP Slave, 820 nm fiber, double ring, ST plugs		9			L 0	В
	PROFIBUS-DP Slave, double electrical RS485 (second module)	on port D)	ç			11	Α
	IFC 61850, 100 Mbit Ethernet, electrical, double, BI45 connecto	or poir D)				10	R
	IEC 61850, 100 Mbit Ethernet, optical, double, I.C connector	л 	9				S
	, , , , , , , , , , , , , , , , , ,					_	
	Function interface (on rear of unit, port C and D)						
	No function interface			0			
	DIGSI 4, electrical RS232, port C			1			
	DIGSI 4, electrical RS485, port C			2			
	DIGSI 4, optical 820 nm, ST connector, port D			3			
	With RS485 interface for inter-relay communication, port C and	DIGSI 4		4			
	With RS485 interface for inter-relay communication, port C an	d DIGSI 4,					
	with optical 820 nm, ST connector, port D			5			
		-					

2) The binary input thresholds can be selected in two stages by means of jumpers.

Selection and ordering data Description Order No. Order code 6MD66 high-voltage bay control unit 6MD662**0 -** 0000 000 Measured-value processing Full measured-value processing and display No measured-value processing and no display F Synchronization With synchronization Z Without synchronization F Protection function Without protection functions 0 With auto-reclosure (AR) 1 With circuit-breaker failure protection 2 With auto-reclosure and circuit-breaker failure protection 3 With fault recording 4

Selection and ordering data	Description	Order No.		Order
	6MD66 high-voltage bay control unit	6MD66 □□ - □□		
	Processor module with power supply, input/output modules with a total of:			
	Number of inputs and outputs			
	50 single-point indications, 32 1-pole single commands, 3 single commands to common potential, 1 live contact, 3 x current, 4 x voltage via direct CT inputs			
	2 measuring transducer inputs	3		
	65 single-point indications, 42 1-pole single commands,			
	3 single commands to common potential, 1 live contact,			
	3 x current, 4 x voltage via direct C1 inputs	4		
		_		
	Current transformer I _N			
	1 A	1		
	1 A / 150 % I _N	2		
	1 A / 200 % I _N	3		
	5 A	5		
	5 A / 150 % I _N	6		
	5 A / 200 % <i>I</i> _N (for 6MD664)	7		
	Rated auxiliary voltage (power supply, indication voltage) 24 to 48 V DC threshold binary input 19 V^{1}	2		
	60 V DC, threshold binary input 19 V ¹⁾	3		
	110 V DC, threshold binary input 88 V ¹⁾	4		
	220 to 250 V DC, threshold binary input 176 V^{1}	5		
	Unit design			
	For panel surface mounting, detached operator panel, f. m screw-type terminals (direct connec./ring-type cable lugs)	ount. in lv. case,		
	For panel flush mounting, with integr. local operation, gra screw-type terminals (direct connec./ring-type cable lugs)	phic display, keyboard, <i>E</i>		
	For panel surface mounting, w /o operator unit, f. mount	t. in lv. case,		
	screw-type terminals (direct connec./ring-type cable lugs	i) F		
	Region-specific default settings/function and language pre	settings		
	Region DE, 50 Hz, language: German, changeable		<u> </u>	
	Region World, 50/60 Hz, language: English (GB), changea	ble	<u> </u>	
	Region US, ANSI, language: English (US), changeable			
	Region World, 50/60 Hz, language: French, changeable		빌	
	Region World, 50/60 Hz, language: Spanish, changeable			
	System interface (on rear of unit, port B)			
	No system interface		0	
	IEC 60870-5-103 protocol, electrical RS485		2	
	IEC 60870-5-103 protocol, optical 820 nm, ST connector		3	
	PROFIBUS-FMS Slave, electrical RS485		4	
	PROFIBUS-FMS Slave, optical, single ring, ST connector		5	
	PROFIBUS-FMS Slave, optical, double ring, ST connector		6	
	PROFIBUS-DP Slave, electrical RS485		9	L 0 A
	PROFIBUS-DP Slave, optical 820 nm, double ring, ST con	nector	9	L 0 B
	PROFIBUS-DP Slave, double electrical RS485 (second mo	dule on port D)	9	L 1 A
	PROFIBUS-DP Slave, double optical double ring ST (sec	ond module on port D)	9	L 1 B
	IEC 61850, 100 Mbit Ethernet, electrical, double, RJ45 co	onnector	9	LOR
	IEC 61850, 100 Mbit Ethernet, optical, double, LC conne	ector	9	LOS

see next page

1) The binary input thresholds can be selected by means of jumpers.

Selection and ordering data

6MD66 high-voltage bay control unit 6MD66 □ - □ □ Function interface (on rear of unit, port C and D) No function interface DIGSI 4, electrical RS232, port C DIGSI 4, electrical RS485, port C DIGSI 4, optical 820 nm, ST connector, port D 1) With D5495 intervalues representation and C and DICSI 4.	0 1 2 3 4 5	
Function interface (on rear of unit, port C and D) No function interface DIGSI 4, electrical RS232, port C DIGSI 4, electrical RS485, port C DIGSI 4, optical 820 nm, ST connector, port D ¹) With PS 405 integration function meet C and DICSI 4.	0 1 2 3 4 5	
No function interface DIGSI 4, electrical RS232, port C DIGSI 4, electrical RS485, port C DIGSI 4, optical 820 nm, ST connector, port D ¹) With DS 45 interface for interface and purchased and purc	0 1 2 3 4 5	
DIGSI 4, electrical RS232, port C DIGSI 4, electrical RS485, port C DIGSI 4, optical 820 nm, ST connector, port D ¹) With DS 45 interfer for interpolymeration port C and DICSI 4	1 2 3 4 5	
DIGSI 4, electrical RS485, port C DIGSI 4, optical 820 nm, ST connector, port D ⁻¹)	2 3 4 5	
DIGSI 4, optical 820 nm, ST connector, port D ¹)	3 4 5	
With DC405 interference intermediation ment Cound DICCI 4	4	
with R5485 Interface for Inter-relay communication, port C and DIGSI 4	5	
With RS485 interface for inter-relay communication, port C and DIGSI 4, with optical 820 nm, ST connector, port D $^{1)}$		
Measured-value processing		
Full measured-value processing and display		
No measured-value processing and no display ²		F
Synchronization		
With synchronization		Α
Without synchronization		F
Protection function		
Without protection functions		(
With auto-reclosure (AR) incl. fault recording		1
With circuit-breaker failure protection (BF) incl. fault recording		2
With auto-reclosure (AR) and circuit-breaker failure protection (BF) incl. fault recording		3
Fault recording		4

1) Not for double PROFIBUS-DP (position 11 = 9-L1A or 9-L1B).

2) Only for position 16 = 0 (without protection functions).

Connection diagrams

Bay unit 6MD662

Fig. 12/30 Module 1, indications, commands

Fig. 12/32 Module 4, measuring values commands

Fig. 12/31 Module 2, indications, commands

12

or

Connection diagrams

Bay unit 6MD662

or

or

Fig. 12/33 CPU, C-CPU 2 For unit 6MD662*-****1-0AA0 and 6MD662*-****2-0AA0 (DIGSI interface, electrical, system interface optical or electrical)

Fig. 12/35

CPU, C-CPU 2 For unit 6MD662*_***4-0AA0 (Inter-relay communication interface electrical, system interface optical or electrical)

Fig. 12/34 CPU, C-CPU 2 For unit 6MD662*-****3-0AA0 (DIGSI interface, optical, system interface optical or electrical)

Fig. 12/36 CPU, C-CPU 2

For unit 6MD662*_****5-0AA0 (DIGSI interface, optical, Inter-relay communication interface electrical, system interface optical or electrical)

Connection diagrams

Bay unit 6MD664

Module 2, indications commands

Fig. 12/38

			_
M15	BI36	B021	- <u>M1</u>
M16	ВІЗ7	B022	- M2
M17	Н ВІЗВ		- <u>M3</u>
M18		BO25	- M5
L1		BO26	- M4
L2			M6
L3		BO29	- <u>M12</u>
L4		BO30	- <u>M14</u>
L5			- <u>M13</u>
L6		во23	- M7
		во24	- <u>M8</u>
		во27 —	- M9
19		BO28	-M10
			-M11
L11			n.eps
L12	ц⊥ ВІ50		44be
			SA41

Fig. 12/37 Module 1, indications commands

Module 4, indications, commands

Fig. 12/39

Module 3, indications, commands

or

Connection diagrams

Bay unit 6MD664

or

or

Fig. 12/42

CPU, C-CPU 2 For unit 6MD664*-***1-0AA0 and 6MD664*-***2-0AA0 (DIGSI interface electric, system interface optical optical or electric)

Fig. 12/44

CPU, C-CPU 2 For unit 6MD664*-****4-0AA0 (Inter-relay communication interface electric, system interface optical or electric)

Fig. 12/43 CPU, C-CPU 2 For unit 6MD664*-****3-0AA0 (DIGSI interface optical, system interface optical optical or electric)

Fig. 12/45 CPU, C-CPU 2 For unit 6MD664*-****5-0AA0 (DIGSI interface optical, (Inter-relay communication electric, system interface optical or electric) 12 Substation Automation / 6MD66

Relay Communication Equipment

Table of contents see next page

Contents		Page
7XV5101	RS232 – FO Connector Module	13 /3
7XV5103	RS485 Bus System up to 115 kbit/s	13 /5
7XV5104	Bus Cables for Time Synchronization	13 /13
7XV5105	Bus Cable for Time Synchronization (for 7SD5 Relays)	13 /15
7XV5450	Mini Star-Coupler	13 /17
7XV5461	Two-Channel Serial Optical Repeater (for duplex mono-mode FO cables)	13 /21
7XV5461	Two-Channel Serial Optical Repeater (for 1 mono-mode FO cables)	13 /25
7XV5461	Two-Channel Serial Optical Repeater (for duplex multi-mode FO cables)	13 /29
7XV5550	Active Mini Star – Coupler	13 /33
7XV5650	/5651 RS485 – FO Converter	13 /37
7XV5652	RS232 – FO Converter	13 /41
7XV5653	Two – Channel Binary Transducer	13 /45
7XV5655	Ethernet Modem for Substations	13 /49
7XV5655	Ethernet Serial Hub for Substations	13 /53
7XV5662	Communication Converter X.21/RS422 and G.703.1	13 /57
7XV5662	Communication Converter for Pilot Wires	13 /61
7XV5662	Two-Channel Serial Communication Converter G.703.6	13 /65
7XV5662	6AD10 RTD-box / Thermobox TR1200	13 /69
7XV5662	7AD10 Universal Relay/RTD-Box TR800	13 /73
7XV5662	8AD10 RTD-box / Thermbox TR1200 IP	13 /77
7XV5664	/7XV5654 GPS/DFC77 Time Synchronization System	13 /81
7XV5673	I/O-Unit with 6 Binary In-/Outputs	13 /85
7XV5700	RS232 – RS485 Converter	13 /93
7XV5710	USB – RS485 Converter Cable	13 /97
7XV5820	Industrial Modem and Modem-Router with Switch	13 /101
7XV5850	Ethernet Modems for Office Applications	13 /109
Accessor	ies for Communication	
CV/1/0100		43/443

 6XV8100 F.O. Link Cable
 13/113

 7KE6000-8Gx Ethernet Patch Cable
 13/114

7XV5101 RS232-FO Connector Module

Fig. 13/1 Connector modules/adapters 7XV5101-3C

Description

Connector modules 7XV5101

Optical connection of protection relays with an electrical (non-isolated) RS232 interface, e.g. to a star coupler, for centralized control is made possible with the fiber-optic RS232 connector modules.

Thus, further devices such as PCs or notebooks, modems or serial data switches can be effectively protected against electromagnetic interference. An appropriate connector module is available for each of the above-mentioned applications. These fiber-optic RS232 connector modules are housed in a SUB-D plug casing and can be directly plugged into the respective interfaces of the pertaining devices. No further settings are required. In its normal position, the optical interface is set to steady light OFF. Data transmission is fully duplex and transparent. The optical interface with FSMA connectors has an operational wavelength of 820 nm and can reach distances of up to 1500 m with 62.5/125 µm multi-mode FO cables.

13

Technical data

			7XV5101- 3C
Housing	Plastics, metal-plated		Х
	Dimensions 72 x 32 x 17 mm		Х
	Via external keyboard connecto	r located at the notebook	Х
Electrical interfaces	Bridge contact 7 - 8, 1 - 4 - 6	9-pin	Х
Optical interfaces	FSMA connector (screw-type)	T = transmit, R = receive	Х
	Optical power	27 μW (- 15.7 dBm) ¹⁾	Х
	Sensitivity	1 μW (- 30 dBm) ¹⁾	Х
	Optical budget	7 dB (+ 3 dB backup) ¹⁾	Х
	Wavelength 850 nm		Х
	Transmission range 1500 m 800 m	(with 62.5 μm multi-mode FO cable) (with 50 μm multi-mode FO cable)	Х

1) Valid for 62.5 µm FO cable.

Selection and ordering data

Description	Order No.
7XV5101 fiber-optic connector module 820 nm - RS232	7XV5101-3C
9-pin female connector for notebook	

7XV5103 RS485 Bus Systems up to 115 kbit/s (not suitable for PROFIBUS)

Description

The RS485 bus is a low-cost half-duplex communication bus, which, due to its relatively high interference immunity, is not only used for monitoring and control in industrial systems, but is now increasingly used for SCADA and protection applications by utilities in substations. Protocols, such as DIGSI, IEC 60870-5-103, DNP 3 and MODBUS up to 115 kbit/s, are used between a station master and up to 31 slave devices on shielded twisted-pair (STP) cable. In ideal conditions, the length of the bus may be up to 1000 m. This requires correct configuration of the bus, use of suitable cables, and connector connectors, as well as correct termination of the bus. Devices with different termination methods require special adaptors to achieve the highest possible interference immunity. The RS485 bus systems 7XV5103 are optimized in this respect for our control and protection product range.

With the ordering code 7XV5103, two different RS485 bus systems are available.

When combining the required components for a RS485 bus, the corresponding application examples contained in this document can be of assistance. The bus system with 9-pin SUB-D connectors has long been applied in systems with SIPROTEC protection devices, 7XV5 converters, and master units. Connection to the individual devices is achieved directly with a special Y-cable or with a corresponding adapter cable to devices with different termination methods. The bus terminates in a 9-pin SUB-D bus terminating connector with an integrated $220-\Omega$ resistor.

On some SIPROTEC devices, the serial signals are routed to RJ45 female connectors on the communication module, as is the case, for example, with the redundant IEC 60870-5-103 module. There the bus is based on double-shielded CAT 5 patch cables. Connection of the individual devices to the two redundant buses is achieved via two special Y-adapter cables each. The buses each terminate with a RJ45 bus terminating connector with a 120- Ω resistor.

A combination of the two bus systems and the different device interfaces or a combination of the two systems is also possible using the Y-adapter cable 7XV5103-2BA00.

Function overview

- For data transfer up to 115 kbit/s (e.g. DIGSI, IEC 60870-5-103, DNP 3)
- Variable bus structure with shielded cables of various lengths.
- Metal-plated, shielded connector housings with reduced mounting depth and strain relief.
- Bus termination with terminating connectors and integrated resistor.
- Connection of the SIPROTEC 4 protection devices with redundant IEC 60870-5-103 interface via the Y-adapter cable and RJ45 connector.
- Connection of the SIPROTEC 4 protection devices with RS485 interface and SUB-D connector directly, or via a Y-adapter cable.
- Adapter/cable for compact protection devices with RS485 interface on screw-type terminals, e.g. 7SJ600, 7SD600, 7RW600 etc.
- Connection to various RS485 converters, e.g. 7XV5650/51.
- Combination of both bus systems is possible.
- Max. length of the bus within a common grounding system may be up to 1000 m.

Please note that this system must not be used for PROFIBUS-FMS or PROFIBUS-DP. These have their own bus system with components suitable for use with PROFIBUS.

Application

Notes on configuring the RS485 bus system

The housings of all devices connected to the bus must be <u>solidly grounded</u> to a common ground to avoid dangerous ground currents flowing via the cable shields.

Larger distances, especially into other buildings with separate grounding system should preferably be covered via converters (e.g. 7XV5650/51) using FO links.

The RS485 bus must be <u>linear</u>, i.e. tee-offs from the bus (e.g. a terminal strip) to the connected bus devices must not be used. This would form a star configuration, which has negative influence on the functionality.

The bus must be terminated at the first device (usually the master) and at the last device with a <u>bus terminating resistor</u> to avoid interference due to reflection. No further terminating resistors must be connected between these terminals.

As all of the devices, maximum 32 (including the master) are listening in on the RS485 bus, all the devices on the bus must be set to <u>the same baud rate and the same</u> <u>data format</u>.

The slaves must all have different <u>device</u> <u>addresses</u>.

Within the system, <u>only one master may be</u> <u>active</u> at any one time and only one slave may respond.

The bus system with 9-pin SUB-D connectors

The bus system with 9-pin SUB-D bus terminating connectors has long been used with SIPROTEC protection devices, the converters 7XV5 and Siemens master units. Connection of individual devices to devices with various connection modes is achieved directly via specialized Y cables, or via suitable adapter cables. The bus terminates at a 9-pin SUB-D bus terminating connector with an integrated $220-\Omega$ resistor.

Fig. 13/3 Protection unit connected to the RS485 bus

Specifications

- Direct connection to SIPROTEC 4 protection devices with RS485 interface via a FO-RS485 converter 7XV5650/51
- Adapter/cable for compact protection devices with RS485 interface on screw-type terminals, e.g. 7SJ600, 7SD600, 7RW600 etc.
- 4 cable lengths from 1 to 10 meters
- Shielded twisted-pair (STP) cable with 9-pin SUB-D connector connectors
- Metal-plated, shielded connector housings with reduced mounting depth and strain relief
- Data transfer up to 115 kbit/s (e.g. DIGSI, IEC 60870-5/VDEW)
- Maximum length of the bus up to 1000 m within a common grounding system
- Bus termination with terminating connectors and integrated 220-Ω resistor

Application example 1:

The 9-pin male connector of the Y bus cable S1 always comes from the master side and provides the connection to the slaves via the 1, 3, 5 or 10-m cable and 9-pin male connector S2. At the connector S2 a 20-cm long cable with a 9-pin female connection B3 is provided to extend the bus. The compact protection devices, e.g. 7SJ600 are directly connected via the adapter cable 7XV5103-2AA00 with female connector B2 or an RS485 adapter 7XV5103-3AA00. After the final device, a bus terminating connector 7XV5103-5AA00 is connected to connector B3 to terminate the bus.

Fig. 13/4 SIPROTEC protection devices on the RS485 bus

Selection and ordering data

Description	Order No.
RS485 Y-bus cable shielded twisted pair with 9-pin SUB-D connectors 7XV5103 RS485 bus with SUB-D connectors	<i>7XV5103-0AA</i> □□
Length 1 m	0 1
Length 3 m	0 3
Length 5 m	0 5
Length 10 m	1 0

RS485 bus extension cable STP with 9-pin SUB-D connector

Length 10 m 10 Length 20 m 2 0 3 Length 30 m 0 40 Length 40 m 5 Length 50 m 0

RS485 adapter

2
3
5

RS485 cable to thermo-box (RTD)

For connection between the 7XV5662-□AD10 thermo-box and SIPROTEC 4 units (port C or port D with RS485 interface)	
Length 5 m	
Length 25 m	
Length 50 m	

7XV5103-7AADD

7XV5103-1AA

13

Application

Bus system with RJ45 patch cables

The bus system with RJ45 connectors was specially developed for SIPROTEC devices for communication modules with serial RJ45 connectors and is built with low cost double-shielded CAT 5 patch cables.

Connection of the individual devices to the two redundant buses is achieved via two special Y-adapter cables each. The buses each terminate with a RJ45 bus terminating connector with an integrated $120-\Omega$ resistor.

Specifications

- Low-cost bus structure with shielded patch cables (CAT 5) with RJ45 connectors
- Cable lengths from 0.5 to 20 meters (7KE6000-8G)
- Connection of SIPROTEC 4 protection devices with redundant IEC 60870-5-103 interfaces via Y-adapter with RJ45 connector
- Connection of SIPROTEC 4 protection devices with RS485 interface via Y-cable to SUB-D connector
- Adapter/cable for compact protection devices, e.g. 7SJ600, 7SD600, 7RW600 etc.
- Metal-plated connector housings with strain relief of the cable connections
- Compact connectors
- Data transfer up to 115 kbit/s (e.g. DIGSI, IEC 60870-5/VDEW)
- Maximum extension of the bus of up to 800 m within a common grounding system
- Bus termination with terminating connectors and integrated 120-Ω resistor
- Connection to the FO-RS485 converter 7XV5650 or the bus system with SUB-D connector via Y-adapter

Notes on configuring the RS485 bus system (application examples 2 and 3, see page 13/9)

The housings of all devices connected to the bus must be <u>solidly grounded</u> to a common ground to avoid dangerous ground currents flowing via the cable shields.

Larger distances, especially into other buildings with separate grounding system should preferably be covered via converters (e.g. 7XV5650/51) using FO cables.

The RS485 bus must be <u>linear</u>, i.e. tee-offs from the bus (e.g. a terminal strip) to the connected bus devices must not be used. This would form a star configuration, which has negative influence on the functionality.

Fig. 13/5 Bus system with RJ45 patch cable

Only CAT 5 double-shielded patch cables (e.g. 7KE6000) must be used as the bus cables. The maximum bus length must not exceed 800 m.

The bus must be terminated at the first device (usually the master) and at the last device with a <u>bus terminating resistor</u> to avoid interference due to reflection. No further terminating resistors must be connected between these terminals.

As all of the devices, maximum 32 (including the master) are listening in on the RS485 bus, all the devices on the bus must be set to <u>the same baud rate and the same</u> <u>data format</u>. The slaves must all have different <u>device addresses</u>.

Within the system on each bus, <u>only one</u> <u>master may be active</u> at any one time and only one slave may respond.

Application

Application example 2: Connection of SIPROTEC 4 to a (redundant) control system

The RS485 bus cable system with patch cables (CAT 5) was developed as a lowcost alternative to the previous systems 7XV5103 with SUB-D connectors. The advantages are the widespread use of patch cables throughout the world and the compact dimensions of the RJ45 connector. This allows a redundant IEC 60870-5-103 interface with a single interface module within a SIPROTEC 4 device.

Two different Y-adapters permit implementation of a RS485 bus with patch cables and connection of devices having RS485 interfaces and different designs of interface connector. Both Y-adapters have two RJ45 female connectors in parallel to facilitate the implementation of the buses. The approx. 20 cm long connection cable to the device either has a RJ45 or SUB-D connector.

Devices with SUB-D connector (e.g. Master RTU, 7XV5650/51, SIPROTEC 4 devices with SUB-D) are connected using the Y-adapter 7XV5103-2BA00.

Devices with RJ45 connector such as SIPROTEC 4 with redundant IEC 60870-5-103 interface are connected with the Y-adapter 7XV5103-2CA00. For the redundant bus system 2 Y-adapters are required per SIPROTEC 4 device.

After the final device the bus is terminated with a bus terminating connector 7XV5103-5BA00. For the redundant bus system, a bus terminating resistor is required for each bus.

Application example 3: Central operation of SIPROTEC 4 units with DIGSI 4

The RS485-bus cable system with patch cables (CAT 5) was developed as a lowcost alternative to the previous systems 7XV5103 with SUB-D connectors. The advantages are the widespread use of patch cables throughout the world and the compact dimensions of the RJ45 connector.

The Y-adapter 7XV5103-2BA00 allows for the implementation of a RS485 bus with patch cables and the connection of various SIPROTEC devices having RS485 interfaces. The Y-adapters have two RJ45 female connectors in parallel to facilitate the implementation of the buses. The approx. 20 cm long connection cable to the device has a RJ45 with suitable pin allocation.

Patch cable: 7KE6000-8GD0x-xAAx

Devices with an RS485 interface and SUB-D connector (7XV5650/51, SIPROTEC 4 devices) with SUB-D are connected using the Y-adapter 7XV5103-2BA00.

Devices with an RS485 interface on screwtype connectors require an additional adapter for 9-pin SUB-D to single core, e.g. 7XV5103-2AA00 or 7XV5103-3AA00.

After the last device, the bus is terminated with a bus terminating connector 7XV5103-5BA00.

Selection and ordering data

Description	Order No.			
RS485 adapter/accessories	<i>7XV5103-</i> E			0
Adapter cable STP with ferrule/9-pin SUB-D connection for devices with screw-type terminals or compact protection devices, e.g. 7SJ600	2	A	A	
Y-adapter cable for connection of SIPROTEC 4 or other devices with a 9-pin SUB-D connection to a RS485 bus with patch cables (RJ45)	2	В	A	
Y-adapter cable for connection of SIPROTEC 4 with a redundant T103 interface module to a RS485 bus with patch cables (RJ45)	2	С	A	
RS485 adapter with 9-pin SUB-D connection for mounting on screw-type terminals with compact protection devices, e.g. 7SJ600, 7SD600 etc.	3	A	A	
Bus terminating connector 220- Ω in a 9-pin SUB-D connector	5	A	Α	
Bus terminating connector 120- Ω in a RJ45 connector	5	В	Α	

Patch cable CAT 5 shielded with RJ45 connectors

7KE6000-8GD0□-□AA0/BB

See Accessories for Communication 7KE6000-8Gx

13

Application

Application example 4: Connecting the two bus systems 7XV5103

The Y-adapter 7XV5103-2BA00 enables configuration of the RS485 bus with RJ45 patch cables and connection of SIPROTEC devices with an RS485 interface with a SUB-D connector.

Use of an additional gender changer (female-female) enables connection of a RS485 bus with Y-bus cables 7XV5103-0AAxx instead of a SIPROTEC device.

13

Selection and ordering data

Description	Order No.	
RS485 Y-bus cable shielded twisted-pair with 9-pin SUB-D connector	<i>7XV5103-0AA</i> □□	
Length 1 m	0 1	
Length 3 m	0 3	
Length 5 m	0 5	
Length 10 m	1 0	

RS485 bus cable extension STP with 9-pin SUB-D connector

7XV5103-1AA

.

Length 10 m	1 0
Length 20 m	2 0
Length 30 m	3 0
Length 40 m	4 0
Length 50 m	5 0

7XV5103-🗆 🗆 🗆 00

Adapter cable STP with ferrule/9-pin SUB-D connector for devices with	
screw-type terminals or compact protection devices, e.g. 7SJ600	2 A A
Y-adapter cable for connection of SIPROTEC 4 or other devices with 9-pin SUB-D connection to a RS485 bus with patch cables (RJ45)	2 B A
Y-adapter cable for connection of SIPROTEC 4 with a redundant T103 interface module to a RS485 bus with patch cables (RJ45)	2 C A
RS485 adapter with 9-pin SUB-D connector for mounting to screw-type terminals for compact protection devices, e.g. 7SJ600, 7SD600 etc.	3 A A
Bus terminating connector 220- Ω in a 9-pin SUB-D connector	5 A A
Bus terminating connector 120- Ω in a RJ45 connector	5 B A

RS485 cable to thermo-box (RTD)

RS485 adapter/accessories

7XV5103-7AA

Connection cable for thermo-box 7XV5662-xAD to SIPROTEC 4 Open cable ends, each 5 / 20 cm with ferrules to 9-pin SUB-D connector with an integrated 220-Ω terminating resistor		
Length 5 m (2	5
Length 25 m	2	5
Length 50 m	5	0

Patch cable CAT 5 shielded with RJ45 connector

7KE6000-8GD0□-□AA0/BB

See Accessories for Communication 7KE6000-8G
7XV5104 Bus Cable for Time Synchronization

Description

The evaluation of fault records, operational alarms and fault signals calls for millisecond-accurate determination of the absolute time. The SIPROTEC 4 units have an internal clock on a quartz basis, which deviates from the normal time after a while. Radio clocks are therefore used for precise synchronization; they set the clocks in the devices via time signals or protocols such as DCF77 or IRIG-B. All the devices are connected in parallel with an electrical bus, so that all of them receive the time information at the same time at Port A. By means of the prefabricated bus cables and adapters 7XV5104 the SIPROTEC 4 units can be connected via their IRIG-B interface directly to the sync.-transceiver 7XV5654. The maximum length of the electrical bus when prefabricated cables are used is 20 m. Relevant applications are described in the manual for the sync.-transceiver 7XV5654.

Function overview

- Opto-electrical solution for SIPROTEC 4 devices with IRIG-B interface (Port A)
- Direct connection of SIPROTEC 4 devices with IRIG-B interface to sync.transceiver 7XV5654
- Adapter/cable for cascading and matching to other converters
- 4 orderable cable lengths from 1 m to 10 m
- 2-core, twisted and shielded cable with 9-pin SUB-D connectors
- Metal plug connector casings with fixing screws and strain relief for cable connections
- Compact dimensions of the plugs
- Max. extent of electrical bus 20 m within building

Notes on the IRIG-B bus

In this system solution only the 24 V DC time synchronization inputs of the SIPROTEC 4 units are used (see below). 7XV5105 cables are available for synchronizing the differential protection relays with an additional seconds pulse.

The housings of all bus users must be properly mutually earthed, as otherwise dangerous earth potential currents can flow via the bus cable shield.

Typical applications

The 9-pin male connector of the Y-bus cable S1 always comes from the direction of the radio clock or sync.-transceiver and provides via the 1, 3, 5 or 10 m cable and the 9-pin male connector the connection to the first and subsequent bus devices. At connector S2 a 9-pin female connector B3 is provided (on a 20 m long cable) to extend the bus. If more than six SIPROTEC 4 units are to be connected to the sync.-transceiver 7XV5654, the adapter 7XV5104-3AA00 splits the connection X1 of the sync.-transceiver into two buses for a maximum of 6 units each. (For typical applications see 7XV5654 manual).

Selection and ordering data

Fig. 13/11

Connection of max. twelve SIPROTEC 4 units to the IRIG-B bus via prefabricated Y-bus cable

Description	Order No.		
Y-connection cable IRIG-B / DCF77	7XV5104-0AA		
Y-connection cable for SIPROTEC 4 unit with IRIG-B / DCF77 connection and bus extension. Copper cable 2-wire, shielded, with 9-pin SUB-D connectors			
Length 1 m	0	1	
Length 3 m	0	3	
Length 5 m	0	5	
Length 10 m	1	0	
Extension cable (copper)			
Cable for the bus length extension. Copper cable 2-wire, shielded, with 9-pin SUB-D connector			
Length 10 m	7XV5104-1AA1	0	

13

Adapter / accessories

Adapter cable to synctransceiver 7KE6000-8Ax, length 0.3 m, shielded, 2 wires with end sleeves to 9-pin SUB-D connector (female)	2
T-adapter cable to synctransceiver 7XV5654-0BA00	
Splits connector X1 into 2 buses for max. six SIPROTEC 4 units per bus	
9-pin SUB-D connector (male) to 2 x 9-pin SUB-D connector (female)	
Copper cable 2-wire, shielded (length 0.3 m)	3

7XV5104-□AA00

7XV5105 Bus Cable for Time Synchronization (for 7SD5 Relays)

Description

The evaluation of fault records, operational alarms and fault signals calls for a millisecond-accurate absolute time stamp. The differential protection relays have an internal clock on a quartz basis, by means of which the protection is normally synchronized. In special applications, GPS radio clocks are used to synchronize the 7SD5 differential protection relays with the absolute time. These clocks send a time telegram together with a microsecond-accurate seconds pulse, so that the transmission time in both the sending and the receiving direction can be precisely measured. All the devices in each system are connected in parallel via an electrical bus, so that all devices receive the time information and the seconds pulse at the same time. By means of the prefabricated bus cables 7XV5105, the 7SD5 relays can be connected via their IRIG-B interface (Port A) directly to the sync.-transceiver 7XV5654. The maximum length of the electrical bus when the prefabricated cables are used is 20 m. Relevant applications are described in the manual for the sync.-transceiver 7XV5654.

Function overview

- Opto-electrical solution for SIPROTEC 4 7SD5 differential protection relays with IRIG-B interface (Port A)
- Direct connection of 7SD5 protection relays via IRIG-B interface to sync.transceiver 7XV5654
- Transmission of time telegram and seconds pulse at the same time
- 4 orderable cable lengths from 1 m to 10 m
- 4-wire, twisted and shielded cable with 9-pin SUB-D connectors
- Metal plug connector casing of compact dimensions, with fixing screw and strain relief for cable connections
- Max. extent of electrical bus 20 m within building

Notes on the IRIG-B bus

In this system solution only the 24 V DC time synchronization inputs (Port A) of the SIPROTEC 4 protection relays are used. 2-core 7XV5104 cables are available for time synchronization of the SIPROTEC 4 protection relays without additional seconds pulse.

The housings of all bus users must be properly mutually earthed, as otherwise dangerous earth potential currents can flow via the bus cable shield.

Typical applications

The 9-pin male connector of the Y-bus cable S1 always comes from the direction of the radio clock or sync.-transceiver and provides via the 1, 3, 5 or 10 m cable and the 9-pin male connector the connection to the first and subsequent bus devices. At connector S2 a 9-pin female connector B3 is provided (on a 20 m long cable) to extend the bus. If more than six SIPROTEC 4 units are to be connected to the radio clock, up to 4 sync.-transceivers 7XV5654 can be connected, each with 6 protection relays. (For typical applications see the 7XV5654 manual).

Selection and ordering da

Fig. 13/13

Fig. 13/14

Connection of max. six SIPROTEC 4 protection relays 7SD5 to the IRIG-B bus via prefabricated Y-bus cable

а	Description	Order No.
	– Y-connection cable IRIG-B / DCF77	<i>7XV5105-0AA</i> □□
	Y-connection cable for direct connection of a SIPROTEC 4 differential protection relay with IRIG-B / DCF77 connection to synctransceiver 7XV5654 and bus extension. Copper cable 4-wire, shielded, with 9-pin SUB-D connectors	
	Length 1 m	0 1
	Length 3 m	0 3
	Length 5 m	0 5
	Length 10 m	1 0

Cable for bus length extension. Copper cable with 4 wires, shielded with 9-pin SUB-D connectors Length 10 m

Adapter / accessories

Adapter cable to two sync.-transceivers 7KE6000-8Ax, length 0.3 m shielded, 2 wires with end sleeves to 9-pin SUB-D connector (female)

7XV5105-2AA00

7XV5105-1AA10

7XV5450 Mini Star-Coupler

Description

The mini star-coupler multiplies an optical signal received at an input for up to four outputs. A signal received at one of the outputs is transmitted via the input interface to a central unit or to an upstream mini star-coupler or converter. As the mini star-coupler does not transmit selectively to individual outputs, the protocols used for data transmission must operate with unique DTE addresses, so all units "hear" the central interrogation, but only the addressed unit answers to the request (e.g. IEC 60870-5-103 or DIGSI).

Data are transmitted in transparent fullduplex mode. An RS232 interface is provided for direct serial communication with DTEs at each mini star-coupler. As long as this interface is in use, the optical input interface to the central unit is blocked.

Cascading mini star-couplers replace the 7XV5300 star coupler.

Function overview

One optical input and up to 4 optical outputs

- Distance spanned: 1.5 km with 62.5/125 µm multi-mode fiber
- Multiple mini star-couplers cascadable
- RS232 interface for local access
- Baud rate via FO: up to 1.5 Mbaud; Baud rate with RS232: Up to 115 kbaud
- Protocol transparency
- Light idle state: Light ON/light OFF selectable
- Wide-range power supply with self-monitoring function and alarm contact
- Optical ST connectors

The mini star-coupler allows SIPROTEC relays to be centrally accessed or remotely interrogated with DIGSI via optical interfaces. The component is cascadable, so that star topologies or ring topologies can be configured. A ring structure ensures that all four outputs are used. The mini star-coupler has a local RS232 interface socket. By connecting a PC to this interface and using the 7XV5100-4 cable, the optical input is disconnected to avoid data collision due to local and remote access concurring at the same time.

Construction

The 7XV5450 mini star-coupler is provided with a snap-on mounting housing for a 35 mm EN 50022 rail. Auxiliary power supplies can be connected via screw-type terminals. The fiber-optic cables are connected by ST connectors. The unit is free of silicone and halogen as well as flame-retardant.

Fig. 13/16 Star topology with mini star-couplers

Fig. 13/17 Ring structure with mini star-couplers

Rated auxiliary voltage	
24 to 250 V DC and 60 to 230 V AC	\pm 20 % without switchover
Current consumption	
Approx. 0.25 to 0.4 A	
LEDs	
3 LEDs Green Yellow Yellow	Operating voltage o.k. Receiving data Sending data
Connectors	
Power supply	2-pole Phoenix screw-type terminal
FO cables	Multi-mode fiber with ST connectors
RS232	9-pin SUB-D socket
Alarm contact	2-pole Phoenix screw-type terminal
Light idle state	
Light ON/OFF selectable	By jumpers
Housing	
Plastic housing, EG90, charcoal grey; 90 x 75 x 105 m for snap-on mounting on 35 mm EN 50022 rail	m (W x H x D)

Selection and ordering data

Description	Order No.
7XV5450 mini star-coupler	7XV5450-0BA00
Optical mini star-coupler with plastic housing for snap-on mounting onto 35 mm rail.	
Rated auxiliary voltage 24 - 250 V DC and 110 - 220 V AC with alarm relay.	
Connection of up to 4 protection units to a star coupler via FO cable for 62.5 / 125 μ m and 850 nm wavelength, max. distance 1.5 km.	
Connection of PC or modem to a star coupler via FO cable for 62.5 / 125 μ m and 850 nm wavelength, max. distance 1.5 km.	
Connection also by 9-pin RS232 connector.	
Cascadable	
Fiber-optic connectors with ST connector	

7XV5461 Two-Channel Serial Optical Repeater (for duplex-mono-mode FO cables)

Fig. 13/18 Optical repeater with wide-range power supply

Description

The optical repeater transmits serial optical signals over long distances via duplexmono-mode FO cables. It converts serial optical 820 nm signals at Port 1 and Port 2 in the range of 300 bit/s to 4.096 Mbit/s. Both synchronous and asynchronous signals can be connected. Two independent, serial 820 nm inputs with ST connectors are available, which are multiplexed to Port 3. Two devices with an optical 820 nm interface, for example the 7SD5 / 7SD6 line differential protection relay or the RS232/ 820 nm 7XV5652 converter, can be connected to Ports 1 and 2 via duplex-multimode FO cables for distances of up to 1.5 km. Signal transmission at Port 3 is achieved via the LC-Duplex connector at wavelengths of 1300 nm/1550 nm for connection of a duplex-mono-mode FO cable. For Port 3 there are three options for max. 25 km (1300 nm) / 60 km (1300 nm) and 100 km / 170 km (1550 nm) optical fiber lengths. The device can be connected to all battery voltages and AC supply sources. Loops can be activated for Ports 1 / 2 for commissioning purposes, so that the input signals can be mirrored at the port in question.

Function overview

- Two independent multiplexed 820 nm ports with ST connectors for max.
 1.5 km via 50/125 μm and 62.5/125 μm duplex-multi-mode FO cable.
- Data rate of serial ports 1 / 2 from 300 bit/s - 4.096 Mbit/s. Automatic baud rate adjustment to synchronous and asynchronous serial signals; no settings necessary.
- Powerful 1300 nm / 1550 nm port with LC-Duplex connector for distances up to 24 km / 60 km / 100 km / 170 km via 9/125 μm duplex-mono-mode FO cable
- 24 to 250 V DC and 115/230 V AC wide-range power supply with alarm relay.
- Data exchange display by LED
- Integrated commissioning support

Typical applications

The protection relays (for example 7SD5 / 7SD6 differential protection or 7SA52 / 7SA6 distance protection) exchange information via Port 1. Interference-free data exchange is performed via duplex-monomode FO cable up to a distance of 170 km. Protection remote control with DIGSI is connected to Port 2 of the repeater via the 7XV5450 mini star-coupler. This port provides the serial connection to the other substation with a PC where DIGSI is installed. The protection relays on the remote substation can be scanned remotely via Port 2. The baud rate is optimally set to 57.6 kbit/s so that there is no difference from local operation. During commissioning and operation, data of the device on the other substation can be changed and read out. Alternatively, it is possible to connect power system control or additional protection data transmission to Port 2. This makes for optimum use of the long-distance optical fiber for two separate serial connections for transmitting data between 300 bit/s and 4.096 Mbit/s.

1) Multi-mode FO cable with ST connectors (6XV8100)

Fig. 13/19

Transfer of protection data and remote control of a substation via an optical long-distance connection

Technical data

Connections

Ports 1 / 2	ST connector for 820 nm for 50/125 μm and 62.5/125 μm multi-mode FO cable
Port 3	LC-Duplex connector for 1300 nm/1550 nm for 9/125 µm mono-mode FO cable
Screw-type terminals	2-pole screw-type terminals for auxiliary voltage supply 3-pole make/break contact for alarm relay
Housing	
188 x 56 x 100 mm alu Degree of protection a	uminum housing for mounting on 35 mm DIN rail to EN 50032. Weight 0.8 k acc. to EN 60529: IP41

Power supply

Wide range 24 to 250 V DC without connector jumpers, 115 / 230 V AC

Displays

4

LEDs	
Green	Power supply
Red	Alarm relays
2 yellow	Data exchange

Selection and ordering data	Description	Order No.
	7XV5461 two-channel serial optical repeater (for duplex-mono-mode FO cables)	7XV5461 - 0B□00
	Connection of two serial optical inputs with ST connector for 62.5/125 μm multi-mode FO cable up to 1.5 km, from 300 bit/s to 4.096 Mbit/s 24 to 250 V DC, 115/230 V AC wide-range power supply Fault relay and LED for operational and fault display	A
	Optical 1300 nm output with LC-Duplex connector for 9/125 µm mono-mode FO cable for distances up to 24 km (permissible path attenuation 13 dB)	G
	Optical 1300 nm output with LC-Duplex connector for 9/125 μm mono-mode FO cable for distances up to 60 km (permissible path attenuation 29 dB)	H 1)
	Optical 1550 nm output with LC-Duplex connector for 9/125 μm mono-mode FO cable for distances up to 100 km (permissible path attenuation 29 dB)	J 1)
	Optical 1550 nm output with LC-Duplex connector for $9/125 \mu\text{m}$ mono-mode FO cable for distances up to 170 km (permissible path attenuation 43 dB)	M ¹⁾

7XV5461 Two-Channel Serial Optical Repeater (for 1 mono-mode FO cable)

Description

The optical repeater exchanges serial optical signals over long distances via only one single mono-mode FO cable. It converts serial optical 820 nm signals at Port 1 and Port 2 in the range 300 bit/s - 4.096 Mbit/s to 1300/1550 nm for one mono-mode FO cable. Both synchronous and asynchronous signals can be connected at Port 1/2. Two independent, serial 820 nm inputs with ST connectors are available, which are multiplexed to Port 3. Two devices with an optical 820 nm interface, for example the 7SD5/7SD610 line differential protection relay or the RS232/820 nm 7XV5652 converter, can be connected to Ports 1 and 2 via multi-mode FO cables for distances of up to 1.5 km. Signal transmission at Port 3 is achieved via the single LC connector at wavelengths of 1300 nm/1550 nm for connection of mono-mode FO cable up to 40 km. The device can be connected to DC battery voltages and AC supply sources. Loops can be activated for Port 1/2 for commissioning purposes, so that the input signals can be mirrored at each port to support commissioning of the fiber optical links.

Function overview

- Two independent multiplexed 820 nm Ports 1/2 with ST connectors for max.
 1.5 km via 50/125 μm and 62.5/125 μm multi-mode FO cable.
- Data rate of serial Ports 1/2 from 300 bit/s – 4.096 Mbit/s. Automatic baud rate adjustments to synchronous and asynchronous serial signals; no settings necessary.
- Powerful 1300 nm/1550 nm port with LC-single connector for distances up to 40 km via one 9/125 μm mono-mode FO cable
- 24 to 250 V DC and 115/230 V AC wide-range power supply with alarm relay.
- Data exchange display by LED
- Integrated commissioning support

13

Until now, two FO cables are required for the bidirectional transmission of protection signals. With the repeater with integrated wavelength multiplexer one FO cable is sufficient: Two protection relays e.g. 7SD52/7SD610 differential protection or 7SA52/7SA6 distance protection, exchange information via Port 1 (po1). Interference-free data exchange is performed via one optical mono-mode FO cable up to a max. distance of 40 km. Protection remote control with DIGSI is connected to Port 2 of the repeater via a 7XV5450 mini star-coupler. This port provides the serial connection to the other substation with a PC on which DIGSI is installed. In this way, the remote protection devices can be remotely interrogated via Port 2. The baud rate is optimally set to 57.6 kbit/s so that there is no difference from local operation. The data of the devices on the other substation can be changed or read out during commissioning and operation. Alternatively, it is possible to connect substation control devices, RTU or additional protection data transmission to Port 2. This makes for optimum use of the long-distance optical cable for two separate serial connections for transmitting serial data between 300 bit/s and 4.096 Mbit/s.

1) Multi-mode FO cable with ST connectors (6XV8100)

Fig. 13/21

Transfer of protection data signals and remote control/integration via one mono-mode FO cable (Note: Devices 7XV5461-0BK00 and 7XV5461-0BL00 must be used in pairs)

Technical data

Connections

Ports 1 / 2	ST connector for 820 nm for 50/125 μm and 62.5/125 μm multi-mode FO cable
Port 3	LC-single connector for 1300 nm/1550 nm for 9/125 µm mono-mode FO cable
Screw-type terminals	2-pole screw-type terminals for auxiliary voltage supply 3-pole make/break contact for alarm relay
Housing	

Interference-free 188 x 56 x 120 mm metal housing for mounting on 35 mm DIN rail to EN 50032. Weight 0.8 kg. Degree of protection acc. to EN 60529: IP41

Power supply

Wide range 24 to 250 V DC or 115 / 230 V AC

•••			-0
n	icnl	ave	

rispiays	
LEDs	
Green	

Green	Power supply
Red	Alarm relays
2 yellow	Data exchange indication

Selection and ordering data	Description	Order No.
	Two-channel serial optical repeater with integrated wavelength multiplexer	7XV5461 - 0B□00
	Connection of two serial optical inputs with ST connector for 62.5/125 μ m multi-mode FO cable up to 1.5 km, from 300 bit/s – 4.096 Mbit/s 24 – 250 V DC, 115/230 V AC wide-range power supply Alarm relay and LED for operational and fault display	
	Optical 1550 nm output with LC-single connector for 9/125 µm mono-mode FO cable for distances up to 40 km (permissible path attenuation 25 dB)	К
	Optical 1300 nm output with LC-single connector for 9/125 μm mono-mode FO cable for distances up to 40 km (permissible path attenuation 25 dB)	L

7XV5461 Two-Channel Serial Optical Repeater (for duplex-multi-mode FO cables)

Fig. 13/22 Optical repeater with wide-range power supply

Description

The optical repeater transmits serial optical signals over long distances via duplexmulti-mode FO cables. It converts serial optical 820 nm signals at Port 1 and Port 2 in the range 300 bit/s - 1.5 Mbit/s to 1300 nm for duplex-multi-mode fiber cables. Both synchronous and asynchronous signals can be connected. Two independent, serial 820 nm inputs with ST connectors are available, which are multiplexed to Port 3. One transmit (Tx) and one receive (Rx) signal is supported (no RTS/CTS handshake signals). Two devices with an optical 820 nm interface, for example the 7SD52 / 7SD610 line differential protection relay or the RS232/820 nm 7XV5652 converter, can be connected to Ports 1 and 2 via duplex-multi-mode FO cables for distances of up to 1.5 km. Signal transmission at Port 3 is achieved via the LC-Duplex connector at wavelengths of 1300 nm for connection of a duplex-multi-mode FO cable. For Port 3 there are two options for a max. of 4 km (1300 nm) and 8 km (1300 nm) optical fiber lengths. The device can be connected to all battery voltages and AC supply sources. Loops can be activated for Ports 1 / 2 for commissioning purposes, so that the input signals can be mirrored at the port in question.

Function overview

- Two independent multiplexed 820 nm ports with ST connectors for a max. of 1.5 km via 50/125 µm and 62.5/125 µm duplex-multi-mode FO cable.
- Data rate of serial Ports 1 / 2 from 300 bit/s - 1.5 Mbit/s. Automatic baud rate adjustment to synchronous and asynchronous serial signals; no settings necessary.
- Powerful 1300 nm port with LC-Duplex connector for distances up to 4 km /8 km via 50/125 μm / 62.5/125 μm duplex-multi-mode FO cable
- 24 to 250 V DC and 115/230 V AC wide-range power supply with alarm relay.
- Data exchange display by LED
- Integrated commissioning support with test loop feature

Typical applications

Two protection relays (for example 7SD52/7SD610 differential protection or 7SA52/7SA6 distance protection) exchange information via Port 1. Interference-free data exchange is performed via optical duplex-multi-mode FO cable up to a distance of 4/8 km. Protection remote control with DIGSI is connected to Port 2 of the repeater via 7XV5450 mini star-coupler. This port provides the serial connection to the other substation with a PC where DIGSI is installed. The protection relays on the remote substation can be interrogated remotely via Port 2. The baud rate is optimally set to 57.6 kbit/s so that there is no difference from local operation. During commissioning and operation, the data of the device in the other substation can be changed and read out. Alternatively, it is possible to connect a substation control system or additional protection data transmission to Port 2. This makes for optimum use of the long-distance optical fiber for two separate serial connections for transmitting data between 300 bit/s and 4.096 Mbit/s.

Remote distance transmission via multi-mode FO cable 50/125/62.5/125 µm up lo 4/8 km

Fig. 13/23

Transfer of protection data and remote control of a substation via an optical long-distance connection

Technical data

Connections

Ports 1 / 2 Port 3 Screw-type terminals	 s 1 / 2 ST connector for 820 nm for 50/125 μm and 62.5/125 μm multi-mode FO cable LC-Duplex connector for 1300 nm for 50/125 μm / 62.5/125 μm multi-mode FO cable 2-pole screw-type terminals for auxiliary voltage supply 3-pole make/break contact for alarm relay 	
Housing		
188 x 56 x 100 mm aluminum housing for mounting on 35 mm DIN rail to EN 50032. Weight 0.8 kg. Degree of protection to EN 60529: IP41		
Power supply		
Wide range 24 to 250 V DC without switchover 115 / 230 V AC		
Displays		
4 LEDs		
Green	Power supply	
Red	Alarm relays	
2 yellow	Data exchange	

Selection and ordering data	Description	Order No.
	Two-channel serial optical repeater (for duplex multi-mode FO cables)	7XV5461-0B□00
	Connection of two serial optical inputs with ST connector for 62.5/125 µm multi-mode FO cable up to 1.5 km, from 300 bit/s to 1.5 Mbit/s 24 to 250 V DC, 115/230 V AC wide-range power supply Fault relay and LED for operational and fault display	
	Optical 1300 nm output with LC-Duplex connector for 50/125 μm / 62.5/125 μm multi-mod FO cable for distances up to 4 km (permissible path attenuation 13 dB)	le F
	Optical 1300 nm output with LC-Duplex connector for $50/125 \mu$ m / $62.5/125 \mu$ m multi-mod FO cable for distances up to 8 km (permissible path attenuation 29 dB)	le E

7XV5550 Active Mini Star-Coupler

Description

Five optical ports allow the active mini star-coupler to centrally or remotely communicate with devices with serial interfaces using different baud rates and data formats. Using a simple ASCII sequence, only one of the available output channels is switched to a transparent full duplex operation. The active mini star-coupler can be used with any terminal program or for SIPROTEC protection relays with the DIGSI operating program. Each of the input and output channels can be parameterized independently to the device attached by adjustable baud rates and data formats or as input or output ports. For communication with more than 5 devices, the active mini star-coupler can be cascaded together with an RS485 bus in half-duplex mode with further devices.

Please note:

The 7XV5450 passive mini Star-coupler is recommended for controlling several SIPROTEC 3 or SIPROTEC 4 devices with DIGSI or for communication by a remote control system.

Function overview

One optical input and 4 optical outputs or one RS485 input and 5 optical outputs

- RS232 interface for local access
- RS485 interface for bus structure
- Baud rate and data format can be set independently for each port
- Baud rate 1200 baud 115 kbaud
- Data format 8N1, 8N2, 8E1
- \bullet Max. distance: 1.5 km with 62.5/125 μm multi-mode FO cable
- Light idle state: Light ON/light OFF selectable
- Wide-range power supply with self-supervision function and alarm contact
- Optical ST connectors

13

Using the integrated optical interfaces of the active mini star-coupler, data transmission for the protection relays V1/2, SIPROTEC 3 or 4 can be performed centrally or remotely with DIGSI. When using the RS485 bus structure each active mini star-coupler provides five optical outputs. An RS232 interface is available for local operation with a notebook. The control PC (directly or via modem) always operates with the same data format, while the interfaces to the different protection relays using other formats are adapted accordingly. For V1/2 protection relays, a 7XV5101-0A plug-in connector module is required for each relay and each relay must be connected to a separate port.

Construction

The active mini star-coupler is provided with a snap-on mounting housing for a 35 mm EN 50022 rail. Auxiliary power supplies can be connected via screw-type terminals. The fiber-optic cables are connected by ST connectors. The unit is free of silicone and halogen as well as flameretardant.

Fig. 13/25

Technical data

Rated auxiliary voltage	
24 to 250 V DC and 60 to 230 V AC $$	\pm 20 % without switch over
LEDs	
3 LEDs Green Yellow Yellow	Operating voltage o.k. Receiving data Sending data
Connectors	
Power supply	2-pole Phoenix screw-type terminal
FO connections	820 nm ST connectors
RS232	9-pin SUB-D socket
RS485	2-pole Phoenix screw-type terminal
Alarm contact	2-pole Phoenix screw-type terminal
Light idle state	
Light ON/OFF selectable	By jumpers
Housing	

Plastic housing, EG90, charcoal grey; 90 x 75 x 105 mm (W x H x D) for snap-on mounting onto 35 mm EN 50022 rail

Selection and ordering data

Description	Order No.
7XV5550 active mini star-coupler	7XV5550-0BA00
Optical active mini star-coupler with plastic housing for snap-on mounting onto 35 mm rail.	
Rated auxiliary voltage 24 - 250 V DC and 110 - 230 V AC with alarm relay.	
Connection of up to 4 protection units to an active mini star-coupler via FO cable for 62.5 / 125 µm and 850 nm wavelength, max. distance 1.5 km.	
Connection of PC or modem to an active mini star-coupler via FO cable for 62.5 / 125 µm and 850 nm wavelength, max. distance 1.5 km.	
Connection also by 9-pin RS232 connector.	
Cascadable	
Fiber-optic connectors with ST connector	

Siemens SIP · Edition No. 6

7XV5650/5651 RS485 – FO Converter

Function overview

- Baud rates 9.6 115 kbaud
- Topologies: 7XV5650: Optical star 7XV5651: Optical line, RS485 bus
- Protocol transparency
- Light idle state: Light ON/light OFF selectable
- \bullet Distance: 1.5 km with 62.5/125 μm FO cable
- 120 Ω terminator for RS485 bus, activated/deactivated by DIP switch
- Wide-range power supply with self-supervision function and fault output relay

Description

The RS485 – FO converter allows up to 31 devices to be connected with a bus-capable electrical RS485 interface. It provides an optical link-up to a central unit or a star coupler. The converter has been designed for use in substations for interference-free transmission of serial data with rates between 9.6 and 115.2 kbaud by multi-mode FO cable.

The 7XV5651 converter is designed to act as a T-coupler, data can be distributed in a line structure system, forming a basis for building up cost-effective optical bus systems.

The version 7XV5650 is designed for star topology via fiber-optic connection.

The converters can be used in an optical line structure or in an optical star structure. Application in optical line structure allows relays to be connected interferencefree via fiber-optic cables; for indoor installation, a cost-effective RS485 bus can be used.

Fig. 13/28 Connection of optical interfaces to an RS485 bus

Several units equipped with FO interface and DIGSI or IEC 60870-5-103 protocol can be connected to an existing RS485 bus structure.

Within one system, the data format and the baud rate have to be set to the same values.

Fig. 13/29 Optical star structure with connected RS485 interfaces

Fig. 13/30 Connection of optical interfaces to an RS485 bus

13

Construction

The converter is provided with a snap-on mounting housing for a 35 mm EN 50022 rail. Auxiliary power supplies can be connected via screw-type terminals. The fiber-optic cables are connected by ST connectors. The unit is free of silicone and halogen as well as flame-retardant.

Technical data

Rated auxiliary voltage		
24 to 250 V DC and 60 to 230 V AC	± 20 % without switchover	
Current consumption		
Approx. 0.2 to 0.3 A		
LEDs		
2/3 LEDs Green Yellow Yellow	Operating voltage o.k. Receiving data on FO channel 1 Receiving data on FO channel 2 (7XV5651 only)	
Connectors		
Power supply	2-pole Phoenix screw-type terminal	
FO	820 nm ST connector	
RS485	9-pin SUB-D socket 2-pole Phoenix screw-type terminal	
Alarm contact	2-pole Phoenix screw-type terminal	
Light idle state		
Light ON/OFF selectable		
Housing		
Plastic housing, EG90, charcoal grey; 90 x 75 x 105 mm (W x H x D) for snap-on mounting onto 35 mm EN 50022 rail		

Ealact	ion and	ordori	na data
Select	топ апс	Ioraeni	πα αίατα

Description	Order No.
7XV565 RS485 – FO converter	7XV565 □ -0BA00
Converter with 1 RS485 interface and 2 FO cables for transmission rates from 9.6 kbaud to 115 kbaud	
With plastic housing for snap-on mounting on 35 mm rail.	
Rated auxiliary voltage 24 - 250 V DC and 110 - 230 V AC with alarm contact.	
Connection of units with RS485 interface by 9-pin SUB-D connector or screw-type terminals.	
Connection of PC or modem to a star coupler via FO cable for $62.5/125 \mu$ m or $50/125 \mu$ m and $850 $ nm wavelength.	
Fiber-optic connectors: FO 820 nm with ST connector	
1 channel	0
2 channels	1

7XV5652 RS232 – FO Converter

Description

The RS232 – FO converter is used to convert serial RS232 signals to FO transmission signals in full duplex mode. It has one FO channel for transmission and one for receiving, as well as a protected RS232 interface rated to withstand 2 kV discharges, thus allowing direct connection to the serial system interface of SIPROTEC relays. It is designed to be used in substations for isolated, interference-free transmission of serial signals to a central unit, a star coupler or a PC.

The converter supports the conversion of serial TxD (transmit) and RxD (receive) signals to an optical output. No handshake signals are supported.

Function overview

- Serial baud rates up to 115 kbaud
- No setting of baud rate necessary
- Protocol transparency
- Light idle state: Light ON / light OFF selectable
- \bullet Distance: 3 km with 62.5/125 μm FO cable
- Wide-range power supply with self-supervision function and alarm contact
- Supports the serial TxD and RxD lines of the RS232 interface. No handshake lines supported

With the serial RS232 – FO converter, an existing RS232 interface at a SIPROTEC relay can be upgraded to an optical 820 nm interface to connect the relay with further optical components for central and remote interrogation with DIGSI. Another application is the interfacing between a line differential relay and a communication network, which provides electrical RS232 inputs. The connection between the communication room, where the converter is located, and the relay is executed without interference via multi- mode FO cables (Fig. 13/32).

Construction

The converter is provided with a snap-on mounting housing for a 35 mm EN 50022 rail. Auxiliary power supplies can be connected via screw-type terminals. The fiber-optic cables are connected by ST connectors. The unit is free of silicone and halogen as well as flame-retardant.

Fig. 13/32 Remote interrogation with the RS232 interface

Technical data

Rated auxiliary voltage	
24 to 250 V DC and 60 to 230 V AC	\pm 20 % without switch over
Current consumption	
Approx. 0.1 to 0.2 A	
LEDs	
1 LED Green	Operating voltage o.k.
Connectors	
Power supply	2-pole Phoenix screw-type terminal
FO cables	820 nm ST connectors
RS232	9-pin SUB-D socket
Alarm contact	2-pole Phoenix screw-type terminal
Light idle state	
Light ON/OFF selectable	
Housing	
Plastic housing, EG90, charcoal grey; 90 x 75 x 105 mm (W x H x D) for snap-on mounting onto 35 mm EN 50022 rail	

Selection and ordering data

Description	Order No.
7XV5652 RS232 – FO converter	7XV5652-0BA00
For conversion of FO to RS232 (V.24) signals up to 115 kbaud	
With plastic housing for snap-on mounting on 35 mm rail	
Rated auxiliary voltage 24 - 250 V DC and 110 - 230 V AC with alarm contact.	
Connection of units with RS232 interface by 9-pin SUB-D connector	
Connection of PC, star coupler, modem via FO cable for $62.5/125\mu\text{m}$ and 850nm wavelength	
Fiber-optic connectors: FO 820 nm with ST connector	

7XV5653 Two-Channel Binary Transducer

Binary transducer

Description

The transducer registers binary information from contacts via two binary inputs and forwards it interference-free to the second transducer via fiber-optic cable. The indications/signals received by this second transducer are put out via its contacts. The two contacts can be used as trip contacts. The transducer is equipped with independent and bidirectional binary inputs (2) and contact outputs (2).

The transducer has been designed for application in substations. Highly reliable, telegram-backed serial data transmission is used between the transducers. Transmission errors and failure of the data link are indicated via an alarm contact, i.e. a permanent supervision of power supply and the datalink is integrated in the transducer.

Function overview

- 2 isolated binary inputs (24 to 250 V DC)
- 2 isolated trip contacts
- Fast remote trip via a serial point-to-point link of up to 115 kbaud/12 ms.
- Telegram-backed interference-free transmission via FO cable
- Permanent data link supervision and indication
- Distance of approx. 3 km via multi-mode FO cable 62.5/125 μm
- Transmission of up to 170 km via mono-mode FO cable with 7XV5461 repeater
- Transmission via communication networks and leased lines and pilot wires with 7XV5662-0AC01 communication converters
- Wide-range power supply with self-supervision function and alarm relay

The bidirectional transducer registers binary information at two binary inputs and forwards it via fiber-optic cable to a second transducer, which outputs the signals via contacts. Distances of about 3 km can be covered directly via multi-mode fiberoptic cables. The 7XV5461 repeater is available for distances up to 170 km via mono-mode fiber-optic cable. (Fig. 13/34) With two transducers connected to 7XV5461, up to four binary signals can be transferred. One application is phaseselective intertripping.

With a communication converter, the transducer can be interfaced to different kinds of communication links. Modern N x 64 kbit/s digital networks can be used. Existing pilot wires can also be used for data exchange between the relays. The data to be exchanged includes directional signals, intertrip signals and other information.

Construction

The converter is provided with a snap-on mounting housing for a 35 mm EN 50022 rail. Auxiliary power supplies can be effected via screw-type terminals. The fiber-optic cables are connected by ST connectors. The unit is free of silicone and halogen as well as flame-retardant.

- X = A: Options for the communication link:
 - G.703.1, X.21 interface to a communication network
- X = C: pilot-wire cable up to 10 km
- X = D: G.703.6 (E1/T1) interface to a communication network

Fig. 13/35

 \pm 20 % without switchover

Rated auxiliary voltage

24 to 250 V DC and 60 to 230 V AC

Current consumption

Current consumption		
Approx. 0.15 to 0.25 A		
LEDs		
6 LEDs 1 x green 2 x yellow 2 x yellow 1 x red	Operating voltage o.k. Contact unit ½ active Command relay ½ active Alarm	
Connectors		
Power supply	2-pole Phoenix screw-type terminal	
FO connection	820 nm FSMA screw-type connector	
FO connection	820 nm ST connector	
Binary inputs	4-pole Phoenix screw-type terminal	
Alarm contact	2-pole Phoenix screw-type terminal	
Light idle state		
Light ON/OFF selectable		
Housing		
Plastic housing, EG90, charcoal grey; 90 x 75 x 105 mm (W x H x D) for snap-on mounting onto 35 mm EN 50022 rail		

Selection and ordering data

Description	Order No.
7XV5653 two-channel binary transducer	7XV5653-0BA00
Binary signal transducer	
Plastic housing, for snap-on mounting onto 35 mm EN 50022 rail	
Rated auxiliary voltage 24 to 250 V DC and 110 to 230 V AC with alarm relay, 2 binary inputs, 2 trip contacts, 1 alarm relay with potential-free contact for pilot-wire supervision	
Connection to a second transducer via FO cable for 62.5 / 125 µm and 820 nm wavelength (ST connectors). Max. distance 3 km.	
Connection to a second transducer via a communication system with a RS232 interface, 9-pin SUB-D connector, baud rate settable by DIP-switches	
Fiber-optic connectors with ST connector	
7XV5655-0BB00 Ethernet Modem for Substations

Description

A control PC and protection relays can exchange serial data via an Ethernet network using two Ethernet modems 7XV5655. Connection to the Ethernet modem is in each case made via the asynchronous serial interface of the terminal devices. In the modem the serial data is packed into the secure IP protocol as information data, and is transferred between the modems using the Ethernet connection. Conformity with the standard and gap-free transmission of serial DIGSI or IEC 60870-5-103/101 telegrams (frames) via the network is ensured by the modem which receives the serial telegram commu-

which receives the serial telegram communication and packs the serial IEC telegrams into blocks for communication via the Ethernet. Data is transmitted in full duplex mode, the serial handshake is not supported. Connection is set up between the IP address of the dialing modem in the office and the IP address of the answering modem in the substation and is configured prior to dial up with DIGSI by means of AT commands via the RS232 interface. The substation modem may be configured to have password protection, and provides the additional security feature, permitting access only from defined IP addresses, e.g. only that of the office modem. The modem is accessed with DIGSI Remote like a normal telephone modem with the exception that instead of telephone numbers, IP addresses are assigned by the network administrator for each modem.

- RS232 interface for data transfer and configuration of the modems
- Serial data rate and data format (RS232/RS485) for the terminal devices is selectable from 2.4 kbit/s up to 57.6 kbit/s with data format 8N1, 8E1
- FO interface for serial data transfer
- 10 Mbit Ethernet interface (LAN) to the 10/100 Mbit Ethernet network
- Increased security with password protection and IP address selection is possible
- Exchange of serial data via Ethernet network between two Ethernet modems (e.g. DIGSI protocol, IEC 60870-5-103 protocol)
- Exchange of serial protocols via Ethenet without gaps in the telegram structure

Fig. 13/37

Operation of various SIPROTEC protection unit generations via Ethernet modems

Using the office computer and DIGSI 4, both substations 1 and 2 may be dialed up via the Ethernet modems. An IP pointto-point data connection is established between the office and corresponding substation modem when dialed up via the network. This is maintained until the office modem terminates the connection. The serial data exchange takes place via this data connection whereby the modem converts the data from serial to Ethernet with full duplex mode. Between the office modem and the office PC the highest data rate e.g. 57.6 kbit/s for SIPROTEC 4 devices is always used. The serial data rate of the substation modem is adapted to the data rate required by the protection relays e.g. substation modem 1 with 57.6 kbit/s for SIPROTEC 4 and substation modem 2 with 9.6 kbit/s for SIPROTEC 3 devices. These settings are only pre-set once in the modem.

The Ethernet modems are integrated similarly to telephone modems in DIGSI 4. Instead of the telephone number, the pre-set IP address assigned to the modem is selected. If later an Ethernet connection is available in the substation, the existing modem can be replaced by an Ethernet modem. The entire serial bus structure and cabling may remain unchanged.

Order No.

7XV5655 - 0BB00

Technical data

Connections

RS232 interface 9-pin SUB-D or

RS485 interface 9-pin SUB-D settable by switches FO interface 820 nm with ST connectors for the connection to 62.5/125 μm multi-mode FO cables. Ethernet 10BaseT, 10/100 Mbit, RJ45 connector Power supply / Fail safe relay with screw-type terminals

Housing

Rail mounting, plastic, charcoal grey, 90 x 90 x 107 (W x H x D) in mm

Wide-range power supply / fail safe relay

Auxiliary voltage 24 to 250 V DC and 115/230 V AC connected with screw-type terminals Fail safe relay for power supervision connected with screw-type terminals

Indication (8 x LED)

Power RS232 T x D	Operating voltage o.k. Transmitting data to RS232	System RS232 R x D	RS232 connection established Receiving data from RS232
LAN T x	Transmitting data to LAN	LAN R x	Receiving data from LAN
Error	Error on RS232	Link LAN	LAN connection established

Selection and ordering data

Description Ethernet modem

Ethernet modem for serial, asynchronous transmission of data up to 57.6 kbit/s via the 10/100 Mbit Ethernet and configuration software DIN-rail device mounting device suitable for substation. Connection to Ethernet via RJ45 connector. Serial connection SUB-D 9-pin socket RS232/RS485 interface settable by switches. FO interface 820 nm for 62.5/125 µm multi-mode - FO cables. Auxiliary supply 24 - 250 V DC and 115/230 V AC. Fail safe contact for device supervision. With gender-changer (pin-pin) for adaptation to DIGSI - cable 7XV5100-4 (cable not included in the scope of supply).

7XV5655-0BA00 Ethernet Serial Hub for Substations

Front view of Ethernet serial hub for substation

Description

By means of the serial hub and the associated configuration software it is possible to establish serial communication via an Ethernet network between a PC or notebook running DIGSI 4 and SIPROTEC protection relays. The configuration software installs virtual serial interfaces (Com ports) on the PC. Each COM port is allocated to a serial hub within the network by means of its IP address. This must be set in the serial hub. The PC is connected to the network via Ethernet interface. The protection relays are connected via an RS232/RS485 or FO interface to the serial hub. Connection with DIGSI is achieved via the virtual COM port on the PC and the IP address of the serial hub in the substation. The serial data is packed as user data into a secure IP protocol in the PC and transferred via the Ethernet connection to the serial hub. The requirements regarding standard compliant gap-free transmission of serial DIGSI or IEC 60870-5-103/101 telegrams (frames) via the network is complied with by the communication driver on the PC and the serial hub which monitor the serial telegram communication. The serial IEC telegrams are transferred in blocks across the Ethernet. Data communication is full duplex. Control signals of the serial interfaces are not used.

- Configuration software for Windows NT/2000/XP to configure virtual COM ports on the PC and for configuration of the serial hub.
- RS232/RS485 interfaces for data transfer and configuration of the serial hub
- FO interface for serial data transfer
- Serial data rate and data format (RS232) for the terminal devices is selectable from 2.4 kbit/s up to 57.6 kbit/s with data format 8N1, 8E1.
- 10 Mbit Ethernet interface (LAN) to the 10/100 Mbit Ethernet network.
- Better security with password protection for the access to the protection relays via the serial hup
- Exchange of serial data via Ethernet network (e.g. DIGSI protocol, IEC 60870-5-103 protocol)
- Exchange of serial protocols via Ethernet without gaps in the telegram structure

Fig. 13/39

Operation of various SIPROTEC protection unit generations via serial hub

From the office PC running DIGSI 4 it is possible to select one of the serial hubs 1 and 2 via one of the virtual COM ports. In DIGSI 4, when the COM port is selected, a IP point-to-point data connection via the network is established and maintained between the office and the relevant substation modem until the interface is released. The serial data exchange takes place via this data link, whereby the data conversion from serial to Ethernet is full duplex. The office PC towards the network is always operating with high data rate, as the data is fed to the network via the network driver on the PC. The serial data rate of the serial hub in the substation is adapted to the baud rate set in the protection relay, e.g. serial hub 1 with 57.6 kbit/s for SIPROTEC 4 and serial hub 2 with 9.6 kbit/s for SIPROTEC 3 devices. These parameters must be pre-set on the serial hub. With DIGSI 4 the serial hubs are integrated by means of further serial COM ports (max. 254). The connection to the IP address of the serial hub in the network is achieved by opening the corresponding COM port. If an Ethernet network to the substation or in the substation is available. serial data can then be transferred via this network.

The existing serial star or bus structure with cabling in the substation can still be used.

SIPROTEC 4 devices from version 4.6 and newer with integrated Ethernet interface may be connected directly to the router or switch by means of a patch cable.

Technical data

Connections

RS232 interface 9-pin SUB-D socket or

RS485 interface 9-pin SUB-D socket selectable via DIL switch. FO interface 820 nm with ST connectors for connection to multi-mode FO cables. Ethernet 10BaseT, 10/100 Mbit, RJ45 connector to Ethernet Auxiliary voltage/alarm relay (5 terminals)

Housing

Rail mounting, plastic, charcoal grey, 90 x 90 x 107 (W x H x D) in mm

Wide-range power supply

Auxiliary voltage 24 to 250 V DC and 115/230 V AC connected with screw-type terminals Alarm relay for monitoring of the device

Indication (8 x LED)

Power	Operating voltage o.k.	System	RS232 connection established
RS232 T x D	Transmitting data to RS232	RS232 R x D	Receiving data from RS232
LAN T x	Transmitting data to LAN	LAN R x	Receiving data from LAN
Error	Error on RS232	Link LAN	LAN connection established

00	ction	ando	rdoru	a di	
					,,,,,

DescriptionOrder No.Ethernet hub for substations7XV5655 - 0BA00

Serial hub for serial, asynchronous transfer of data up to 57.6 kbit/s via 10/100 Mbit Ethernet including configuration software. Connection to the Ethernet via RJ45 connector. Serial connection with RS232/RS485 interface via SUB-D 9-pin socket or optical with 820 nm ST connector and multi-mode FO cable. Wide-range auxiliary supply for 24 - 250 V DC and 115/230 V AC. With gender-changer (pin-pin) for adaptation to DIGSI cable 7XV5100-4 (cable not included in the scope of supply).

7XV5662-0AA00 / 7XV5662-0AA01 Communication Converter for X.21/RS422 and G.703.1

Fig. 13/40 Communication converter for X.21/RS422 and G.703.1

Description

The communication converter for coupling to a communication network is a peripheral device linked to the protection device via fiber-optic cables, which enables serial data exchange between two protection relays. A digital communication network is used. The electrical interfaces in the CC-XG for the access to the communication device are selectable as X.21 (64 kbit/s, 128 kbit/s, 256 kbit/s or 512 kbit/s) or G.703.1 (64 kbit/s). At the opposite side, the data are converted by second communication converter so that they can be read by the second device. The communication converters thus allow two protection devices to communicate synchronously and to exchange large data volumes over large distances. Typical applications are the serial protection interfaces of differential protection and distance protection of the devices 7SD5, 7SD6, 7SA52 and 7SA6, where 7XV5662-0AA00 must be used.

Should asynchronous serial data of differential protection 7SD51 or of the binary signal transducer 7XV5653 be transmitted, the device 7XV5662-0AA01 must be used (asynchronous from 300 bit/s to 115.2 kbit/s dependent on the baudrate set for X.21 or G.703.1 interface). Interference-free connection to the protection device is achieved by means of a multi-mode fiber-optic cable, with ST connectors at the CC-XG. The maximum optical transmission distance is 1.5 km (0.93 mile). The data transfer between the protection devices is realized as a point-to-point connection that is bit-transparent. Data must be exchanged via dedicated communication channels, not via switching points.

- Optical interface with ST connector for connection to the protection unit
- Distance: 1.5 km with 62.5/125 μm multi-mode FO cable between CC-XG and the protection unit / serial device
- Electrical interface to the communication device via SUB-D connector (X.21, 15 pins, settable to 64, 128, 256 or 512 kbit/s) or with 5-pin screw-type terminals (G.703.1, 64 kbit/s).
- Synchronous data exchange for 7SD52, 7SD6, 7SA6 and 7SA52 protection relays (communications converter version – 0AA00)
- Asynchronous data exchange for 7SD51 protection relay, 7XV5653 or other devices with asynchronous interface (communication converter version – 0AA01)
- Max. cable length between communication device and communication converter: 100 m for X.21 /RS422
- Max. cable length between communication device and communication converter: 300 m for G.703.1
- Monitoring of:
 - auxiliary supply voltage,
 - clock signal of communication network
 - and internal logic
- Loop test function selectable by jumpers in the CC-XG
- Wide-range power supply unit (PSU) for 24 to 250 V DC and 115 to 250 V AC

The CC-XG can be used for two applications.

One application is the synchronous serial data exchange (converter version – 0AA00) between SIPROTEC 4 differential relays (7SD52, 7SD6) and/or the serial teleprotection between distance relays (7SA6 and 7SA52). The relays have to be equipped with an optical 820 nm plug-in module "FO5".

Another application is the transmission of asynchronous serial data to the line differential protection relay 7SD51 or the binary signal transmitter 7XV5653.

Functions

The protection unit is optically linked to the CC-XG, which makes interference-free data transfer between the CC-XG and the protection unit possible. The communication converter is located close to the communication device. It adapts the FO active interface of the protection relay to the electrical specifications of the communication network interface. The interface types – optionally X.21/RS422 or G.703.1 – and the required transmission rate can be set by means of jumpers.

Data transfer between the protection units is effected on the basis of a point-to-point connection, furthermore it is a synchronous, bit-transparent transmission via the communication network.

Technical data	
Rated auxiliary voltage	
24 to 250 V DC	± 20 %
115/230 V AC	\pm 20 % without switchover
Power consumption	Approx. 3.5 W
LEDs	
4 LEDs	
LED 1	Red: Error
LED 2	Yellow: Receiving from X.21/RS422/G.703 interface
LED 3	Yellow: Transmitting to X.21/RS422/G.703 interface
LED 5	Green: Operating voltage o.k.
Connectors	
Power supply	2-pole screw-type terminal
Alarm/ready contact	3-pole make/break contact
Serial G.703.1 interface	5-pole receive and transmit line
SUB-D connector	15-pin SUB-D connector for electrical X.21/RS422 interface
FO cable	820 nm, 2 ST connectors for TxD and RxD for 62.5/125 µm multi-mode FO (max. distance to protection unit 1.5 km)
Housing	
Aluminium die-cast housing	Dimensions 188 x 56 x 120 mm (WxHxD)
Weight	Approx. 0.8 kg
Degree of protection	According to EN 60529: IP41
For snap-on mounting onto 35 mm	EN 50022 rail

13

Tac	hn	ical	6		+0
Tec		Cui	u	u	ιu

Operating mode

· · · · · · · · · · · · · · · · · · ·				
Synchronous operation with	7XV5662-0AA00 for 7SD52, 7SD6, 7SA52 and 7SA6			
	G.703.1: Interface selectable by jumper X30 in position 2 - 3			
	Setting in the protection unit	Setting in CC-XG by jumper		
	64 kbit/s per parameter	64 kbit/s by jumper X20 = 1		
	X.21/RS422: Interface selectable	by jumper X30 in position 1 - 2		
	Setting in the protection unit	Setting in CC-XG by jumper:		
	64 kbit/s per parameter	64 kbit/s by jumper $X20 = 1$		
	128 kbit/s per parameter	128 kbit/s by jumper $X22 = 1$		
	256 kbit/s per parameter	256 kbit/s by jumper X24 = 1		
	512 kbit/s per parameter	256 kbit/s by jumper X26 = 1		
Asynchronous operation with	7XV5662-0AA01 for 7SD51, 7X interface (no handshake suppor supported)	W5653 and units with asynchronous serial ted, only serial TxD and RxD signals are		
	G.703.1: Interface selectable by jumper X30 in position 2 - 3			
	Setting in protection unit	Setting in CC-XG by jumper		
	max. 19.2 kbit/s	64 kbit/s by jumper X20 = 1		
	X.21/RS422: Interface settable by jumper X30 in position 1 - 2			
	Setting in protection unit	Setting in CC-XG by jumper		
	max. 19.2 kbit/s async.	64 kbit/s by jumper $X20 = 1$		
	max. 38.4 kbit/s async.	128 kbit/s by jumper $X22 = 1$		
	max. 57.6 kbit/s async.	256 kbit/s by jumper $X24 = 1$		
	max. 115.2 kbit/s async.	512 kbit/s by jumper $X26 = 1$		

C I I		•	
Solocti	on ana	ordorin	a aata
JEIEUI	on ante	UNGENN	

Description	Order No.
Communication converter for X.21/RS422/G.703.1 interface	7XV5662 - 0AA0□
Converter to synchronous or asynchronous serial coupling of protection units with optical inputs/outputs with ST connector to communication devices with electrical X.21/RS422 or G.703.1 interface. Connection to protection unit via FO cable for 62.5/125 µm and 820 nm wavelength, max. distance 1.5 km, ST connectors Electrical with X.21/RS422 (15-pin SUB-D connector) or G.703.1 (screw-type terminal) Baud rate and interface type selectable by jumpers	
For synchronous operation with 7SD52, 7SD6, 7SA6, 7SA52	0
For asynchronous operation with 7SD51, 7XV5653 or serial devices	1

7XV5662-0AC00/7XV5662-0AC01 Communication Converter for Pilot Wires

Fig. 13/42 Communication converter for pilot wires

Description

The communication converter copper (CC-CO) is a peripheral device linked to the protection device which enables serial data exchange between two protection relays. It uses a single pair of copper wires (pilot wire) that may be part of a telecommunications cable or of any other suitable symmetrical communications cable (no Pupin cable). At the opposite side, the data are converted by a second communication converter so that they can be read by the second protection device. The communication converters (master/slave) thus allow two protection devices to communicate synchronously and to exchange large data volumes over considerable distances. Typical applications are the protection interfaces of differential protection and distance protection of the devices 7SD5, 7SD6, 7SA52 and 7SA6, where 7XV5662-0AC00 must be used (synchronous connection with 128 kbit/s). Should asynchronous serial data of differential protection 7SD5 or of the binary signal transducer 7XV5653 be transmitted, the device 7XV5662-0AC01 must be used (asynchronous from 300 bit/s to 38.2 kbit/s).

Interference-free connection to the protection device is achieved by means of a multi-mode fiber-optic cable, with ST connectors at the CC-CO. The maximum optical transmission distance is 1.5 km (0.93 mile). The data transfer between the protection devices is realized as a point-topoint connection that is bit-transparent. Data must be exchanged via dedicated pilot wires, not via switching points.

- Optical interface with ST connector for connection to the protection unit
- Distance: 1.5 km with 62.5/125 μm multi-mode FO cable between CC-CO and the protection unit
- Electrical interface to the pilot wire (line) with 2 screw-type terminals. 5 kV isolated
- Synchronous data exchange for 7SD52, 7SD6, 7SA6 and 7SA52 via pilot wire (typ. 15 km) (CC-CO version -0AA00)
- Asynchronous data exchange for 7SD51, 7XV5653 or other units with asynchronous interface (CC-CO version -0AA01) (typ. 15 km)
- Loop test function selectable by jumpers in CC-CO
- Master or slave mode of the CC-CO selectable by jumper (one master and one slave device required at the end of the pilot wire, factory presetting: master mode)
- Wide-range power supply with self-supervision function and alarm contact

The CC - CO can be used for two applications.

One application is the synchronous serial data exchange (converter version – 0AA00) between SIPROTEC 4 differential relays (7SD52, 7SD6) and/or the serial teleprotection between distance relays (7SA6 and 7SA52). The relays have to be equipped with an optical 820 nm plug-in module "FO5".

Another application is the transmission of asynchronous serial data via pilot wires to the line differential protection relay 7SD51 or the binary signal transmitter 7XV5653. Other serial devices may also be used.

If the maximum distance between the protection units is longer than spanned by two CC-CO, the converters can be cascaded (see Fig. 13/44). A power supply between the two master units is required. If the isolation level is higher than 5 kV (provided by the pilot wire inputs of the units), external isolation transformers (barrier transformers) can be used on both sides. These transformers offer 20 kV isolation voltage and thus help to avoid hazardous high voltages at the inputs of the CC-CO, which might be induced by a short-circuit from a parallel power line or cable.

Functions

The protection unit is optically linked to the CC-CO, which makes interference-free data transfer between the CC-CO and the protection unit possible. The communication converter is located close to the pilot wire. It converts serial data of the protection unit into a frequency-modulated signal. This signal is transmitted via one pair of copper wires of a pilot wire/communication line (bi-directional, full duplex operation).

By means of jumpers, one unit is defined as "master" and the other unit as "slave". In a "training" during commissioning, the electrical characteristics of the pilot wire are measured by pressing a pushbutton, and the CC-COs are tuned to these characteristics.

The measured characteristics are used as parameters that will be adhered to for optimal data transfer. Digital data transfer makes a low insulation level of the pilot wire possible, because no high voltages are produced on the pilot wire during short-circuit conditions. Data transfer between the protection units is effected on the basis of a point-to-point connection, furthermore it is a synchronous, bit-transparent transmission. Due to the telegram-backed data exchange, mal-operation is ruled out.

Technical data

Rated auxiliary voltage	
24 to 250 V DC	± 20 %
115/230 V AC	\pm 20 % without switchover
LEDs	
4 LEDs	
LED 1	Red: Line activation
LED 2	Yellow: Line transparent
LED 3	Yellow: Data transfer
LED 5	Green: Power ON
Connectors	
Power supply	2-pole screw-type terminal
Alarm/ready contact	3-pole make/break contact
Pilot wire	2-pole for pilot-wire connection 5-kV isolated inputs
FO cable	820 nm, 2 ST connectors for TxD and RxD for 62.5/125 μm multi-mode FO (max. distance to protection unit 1.5 km)
Pushbutton	
Measuring and training of parameters of the pilot wire	
Housing	
Aluminum die-cast housing	Dimensions 188 x 56 x 120 mm (WxHxD)
Weight	Approx. 0.8 kg
Degree of protection	According to EN 60529: IP41
For snap-on mounting onto 35 mm	EN 50022 rail
Operating mode	
Synchronous operation with	7XV5662-0AC00 for 7SD52, 7SD6, 75A52 and 7SA6 Setting in the protection unit: 128 kbit/s per parameter Setting in CC - CO: 128 kbit/s. No setting required
Asynchronous operation with	7XV5662-0AC01 for 7SD51, 7XV5653 and units with asynchronous serial interface (no handshake supported, only serial TxD and RxD signals are supported) Max. baud rate for protection unit: 38.4 kbit/s Max. baud rate for CC - CO 128 kbit/s. No setting required
Max. distance with pilot wire	AWG 22 / 0.33 mm ² / 51.7 Ω/km: max. 11 km AWG 26 / 0.13 mm ² / 137 Ω/km: max. 4.5 km
	Shielded twisted pair (STP) recommended. Max. loop resistance: 1400 Ω Attenuation < 40 dB at 80 kHz

Selection and ordering data	Description	Order No.
	Communication converter for pilot wires	7XV5662 - 0AC0
	Converter for synchronous or asynchronous serial coupling of protection units with optical inputs/outputs with ST connector to conventional pilot wires. 5-kV isolation of unit analog inputs towards the pilot wires. Connection to protection unit via FO cable for 62.5/125 µm and 820 nm wavelength, max. distance 1.5 km, ST connectors Synchronous serial data 128 kbit/s	
	For synchronous operation with 7SD52, 7SD6, 7SA6, 7SA52	0
	For asynchronous operation with 7SD51, 7XV5653 for other units	1

7XV5662-0AD00 Two-Channel Serial Communication Converter G.703.6

Description

The CC-2M communication converter is used for serial data transmission over long distances via a communication network. It converts synchronous or asynchronous serial 820 nm optical input signals at inputs FO1 and FO2 to a network interface and again returns these signals at the remote terminal via the latter's interfaces. FO1 and FO2 may be configured independently for either synchronous or asynchronous operation, but must be set to the same operating mode at both ends. In synchronous mode, the interface should only be used for exchanging the protection data of the 7SD5/7SD6 differential protection or 7SA52/7SA6 distance protection and is preconfigured for 512 kbit/s. In asynchronous mode, the interface can be used for connection of devices with baud rates between 1.2 to 115.2 kbit/s. A further asynchronous electrical RS232 interface is provided for max. 115.2 kbit/s. It provides for the connection of a serial PC interface with DIGSI and thereby the operations interface to SIPROTEC devices at the remote end. The G.703.6 network interface is provided in the form of 4-way screw terminals and can be configured as a 2-Mbit/s interface with European E1 format or as a 1.544-Mbit/s interface in the American T1 format. All settings of the device are made with jumpers, so that no special PC software is required.

- Interference-free protection data transfer of two independent serial data signals, selectable either in synchronous or asynchronous mode.
- PC interface for operation of devices at the remote line end.
- Network interface as E1 or T1 format for connection to multiplexer.
- Wide range power supply from 24 V to 250 V DC and 115/230 V AC with failsafe relay.
- Indication of the data exchange via LED
- Integrated commissioning aid (loop test)

Two protection devices e.g. 7SD52/ 7SD610 differential protection or 7SA52/7SA6 distance protection, exchange protection data via FO1. Interference-free data exchange is performed via the communication network, the devices being connected synchronously with 512 kbit/s (connection 1; see Fig. 13/46). Protection remote control with DIGSI is connected to FO2 of the converter via a 7XV5450 mini star-coupler. This port provides the serial connection to the other substation with a PC on which DIGSI is installed. In this way, the remote protection devices can be remotely interrogated via FO2 (connection 2). The baud rate is optimally set to 57.6 kbit/s for SIPROTEC 4 devices, so that there is no difference from local operation. The data of the devices on the other substation can be changed and read out during commissioning and operation. Alternatively, it is possible to connect a substation control system or additional protection data transmission to FO2. This makes for optimum use of the 1.544/2 Mbit/s transmission channel for two separate serial connections. In addition, an asynchronous serial connection is available via the RS232 interface, which can be used to temporarily operate devices of the other substation with DIGSI.

1) Protection data transmission with 512 kBit/s (synchronous) 2) Remote control with DIGSI (asynchronous)

Fig. 13/46

Connections

Protection data transmission and remote control of a substation via a communication network

Technical data

FO 1 / 2	ST plug/ 820 nm for 50/125 μm or 62.5/125 μm multi-mode FO cable (max. 1.5 km)

r o euore (muni no hun)
For asynchronous connection from 1.2 – 115.21 kbit/s
2-pole screw-type terminal
3-pole screw-type terminal with NC/NO contact
4-pole screw-type terminal

Housing

Aluminium housing 188 x 56 x 120 mm for mounting on 35 mm rail mounting according to EN 50032 weight 0.8 kg. Protection class according to EN 60529: IP41

Power supply

Wide range 24 to 250 V DC and 115/230 V AC, 50/60 Hz

Displays

4 LEDs	
Green	Power supply
Red	Fault alarm
2 yellow	Data transfer

Description	Order No.
Two-channel serial 1.544/2 Mbit/s communication converter	7XV5662 - 0A□00
	A
Conversion of 2 independent serial FO interfaces with synchronous or	
asynchronous data to a E1 network interface with 2 Mbit/s (G.703.6) or	
T1 network interface (1.544 Mbit/s). Two independent serial optical input	
channels with ST connectors and 820 nm for multi-mode FO cable for a max. of	
512 kbit/s/115.2 kbit/s for synchronous/asynchronous data.	
An electrical serial RS232 interface with a max. 115.2 kbit/s constructed as a	
9-pin SUB-D socket for connection with DIGSI 7XV5104 cable.	
Connection from multiplexer to the E1/T1 network interface via a 4-pole	
screw-type terminal. Wide-range power supply of 24 V to 250 V DC and	
115/230 V AC. A make/break fail safe contact for power supply faults	
or interruption of the data connection. All settings are made with jumpers in	
the device (presetting for E1 and synchronous serial data input).	D

7XV5662-6AD10 Resistance Temperature Detector (RTD-Box) TR1200

Description

The RTD-box TR1200 can capture up to 12 temperatures with 12 measuring inputs. 2- and 3-conductor Pt 100 sensors are supported. For the 2-conductor mode, the measured conductor resistance can be compensated for with a corresponding setting. The measurement of temperatures may be simulated for commissioning purposes.

The output of measured values to the protection device is compatible with TR600 and implemented with bus cable 7XV5103-7AAxx via a RS485 bus.

All settings are done via 3 push buttons on the front of the device. Entry can be blocked via a code.

The TR1200 has a wide-range power supply from 24 - 250 V DC and 115 / 230 V AC as well as an alarm relay. Sensor failure or sensor short-circuit are alarmed and transmitted via protocol to the SIPROTEC device.

- 3-digit temperature display
- 12 inputs for temperature sensors, 1 to 12 sensors can be connected
- Pt 100 thermostats with 2- or 3-conductor technology
- 1 error relay (potential-free changeover contact)
- RS485 interface (ZIEHL standard protocol and MODBUS RTU protocol)
- LED signal the measuring channel, error state, relay funtion and RS485 activity
- Code lock prevents parameter manipulation
- TR600 compatible (to replace one TR600 with 6 sensors connected)
- Universal power-supply 24 to 240 V AC/DC
- Snap-on mounting onto 35 mm standard rail EN 60715

Communication via RS485 bus

The RTD-box TR1200 is connected via a RS485 interface to <u>one</u> SIPROTEC 4 bay device with thermo function (e. g. 7SJ6, 7UT6, 7UM6) or to the compact protection 7SK80 via a serial RS485-interface (Port B).

The special cable 7XV5103-7AAxx is used for the connection. In the event of remote measuring locations, the connections may also be done using multi-mode fiber-optic conductors and the converter 7XV5650 (see Fig. 13/47b).

For detailed information please visit www.siemens.com/siprotec

Technical data

Fig. 13/47b

Connection of devices via a serial RS485 bus or FO cable

Rated auxiliary voltage	
Auxiliary voltage Vs	24 – 240 V AC/DC, 0/45 – 65 Hz < 5 VA
Tolerance	20.4 – 297 V DC, 20 – 264 V AC
Relay output	
Number	1 changeover contact (CO)
Switching voltage	Max. 415 V AC
Switching current	Max. 5 A
Switching power	Max. 2000 VA (ohmic load) Max. 120 W at 24 V DC
De-rating factor with $\cos \varphi = 0.7$	0.5
$U_{\rm L}$ electrical ratings:	250 V AC, 3 A general use D300 1 A 240 V AC
Rated operating current <i>I</i> _E AC 15 DC 13	$ \begin{array}{ll} I_{\rm E} = 2 \ {\rm A} & V_{\rm E} = 250 \ {\rm V} \\ I_{\rm E} = 2 \ {\rm A} & V_{\rm E} = 24 \ {\rm V} \\ I_{\rm E} = 0.2 \ {\rm A} & V_{\rm E} = 125 \ {\rm V} \\ I_{\rm E} = 0.1 \ {\rm A} & V_{\rm E} = 250 \ {\rm V} \end{array} $
Recommended fuse	T 3.5 A (gL)
Contact service life, mech.	$1 \ge 10^7$ switching operations
Contact service life, electr.	$1 \ge 10^5$ switching operations at 250 V AC / 5 A
Sensor connection	
Number	12 x Pt 100 according to EN 60751
Measuring cycle/measuring time	0.25 to 3 s (depending on the number of sensors)
Measuring cycle/circuit resistance	0.25 to 30 s (per measuring cycle of sensor)
Measuring range	-199 to 850 °C
Resolution	1 °C
Accuracy	\pm 0.5 % of measured value \pm 1 K
Sensor current	$\leq 0.8 \text{ mA}$
Temperature drift	< 0.04 °C / K
Short circuit	< 15 Ohm
Interruption	> 400
Sensor resistance + circuit resistance	Max. 500 Ohm
RS485 interface	
Device address	0 to 96
Baud rate	4800, 9600, 19200 bit/s
Parity	N, O, E (no, odd, even)
Max. cable length	1000 m at 19200 bit/s
Serial protocol	Serial RTD – Protocol Ziehl / SIPROTEC

Technical data

Test conditions

Acc. to	EN 61010
Rated impulse voltage insulation	4000 V
Overvoltage category	III
Pollution rate	2
Rated insulation level V _i	300 V
Duty cycle	100 %
Perm. ambient temperature	- 20 °C to + 65 °C EN 60068-2-2 dry heat
Electrical isolation	Power supply – measuring inputs 3820 V DC
No electrical isolation	RS 485 interface – measuring inputs
EMC-tests	EN 61326-1
EMC test for noise emission	EN 61000-4-3
Fast transient disturbances/Burst	EN 61000-4-4 ± 4 kV Pulse 5/50 ns, $f = 5$ kHz, $t = 15$ ms, T = 300 ms
High-energy surge voltages (SURGE)	IEC 61000-4-5 \pm 1 impulse: 1.2 / 50 µs (8/20 µs)
Electrostatic discharge	IEC 61000-4-2 \pm 4 contact discharge, \pm 8 kV air discharge
Housing	
Housing type	V8, distribution panel mounting
Size (W x H x D)	140 x 90 x 58 mm
Depth/Width	55 mm/8 TE
Circuit termination single strand	Per 1 x 1.5 mm ²
Braided conductor with crimp lug	Per 1 x 1.0 mm ²
Tightening torque of terminal screw	0.5 Nm (3.6 lb.in)
Protection class of housing/terminals	IP30 / IP20
Mounting vertical/horizontal	Optional
Affixing	Snap-on mounting onto standard rail mounting 35 mm acc. to EN 60715 or screw mounting (with 2 additional brackets)
Weight	Approx. 370 g

Selection and ordering data	Description	Order No.
	Resistance temperature detector (RTD-box) TR1200	7XV5662-6AD10
	Distributed input-box for 12 RTD-connections Pt100	
	Rail mounting plastic	
	Protection class IP21	
	1 serial interface RS485 for communication with SIPROTEC devices for measurements and fault reports.	
	Wide-range power supply 24 to 240 V AC/DC	
	Note: The device can be operated in a 7XV5662-2AD10 or 7XV5662-5AD10 compatible mode.	

7XV5662-7AD10 Universal Relay/RTD-/20 mA-Box TR800 Web

Description

The universal relay TR800 Web has 8 measuring/sensor inputs and is able to capture 8 temperatures via PT100- (Ni100 and Ni120) elements. The measuring values 1 - 6 may be transmitted to SIPROTEC 4 devices with thermo function via protocol. Two universal relays with a total of 12 measuring inputs can be connected.

Connection is established via a serial RS485 interface (see Fig. 13/48d). The TR800 is protocol compatible with the TR600 (7XV5662-3AD10, 7XV5662-5AD10) on the serial RS485 interface, and transmits the 6 temperatures in the same format. In this mode, the TR800 can replace the TR600.

In the case of 7SK80 motor protection, the connection may alternatively be made via the Ethernet interface, if the system interface is (pre-)assigned (see Fig. 13/48b + 13/48c). The universal relay is operated and configured via the Ethernet interface with a Web browser. Three conductor thermo elements are supported. For the dual conductor connection the measured line resistance can be compensated for by a software setting. Furthermore, temperatures can be simulated to test the thermo-function in the SIPROTEC devices.

Alternatively to thermo sensors, 8 analog values 0/4 - 20 mA DC and 0 - 10 V DC may be measured. The output can be scaled and the designation (°C, V, A, %) can be adapted in the TR800. The transmission to the SIPROTEC - device however takes place via the RTD – protocol in temperature format. 6 of the 8 analog sensor values are available there. With 2 TR800 12 values are available. For example 5.5 mA is transferred with a temperature value of 55 in this way and may either be displayed as temperature in the SIPROTEC device or compared with a set limit via a threshold value. This allows for the processing of analog dimensions in SIPROTEC devices with thermo function or their transmission to a substation control unit (e.g. SICAM PAS). In the bay control unit 6MD66 V4.8 (available since 05/2009) all 8 measuring inputs are available.

The TR800 has a wide-range power supply from 24 V - 250 V DC and 115/230 V AC as well as an alarm relay. Sensor failure or sensor short-circuit are alarmed and transmitted via protocol to the SIPROTEC device.

- 8 measuring inputs:
- Pt 100, Pt 1000 in 2- or 3-conductor technology
- KTY 83 or KTY 84
- Thermocouples type B, E, J, K, L, N, R, S, T
- 0 to 10 V DC, 0/4 to 20 mA DC
- Resistance 500 Ohm, resistance 30 kOhm
- 4 relay-outputs (each potential-free changeover contact)
- Ethernet interface (http, https, UDP, MODBUS, Bonjour, UpNP, SNMP)
- RS485 interface (Standard Ziehl- and MODBUS RTU protocol)
- Universal power-supply 24 to 240 V AC/DC
- Integrated Web server for configuration, read-out of measured data, user-management email-alarms, dataand alarm-logging
- Time-dependent control (day/night)
- Real-time clock with synchronization with time server.

Communication with one TR800 Web via Ethernet interface

If one universal relay TR800 is sufficient for the measured-value capturing, it may be connected directly to the protection device with a CAT5 patch cable (e.g. 7SK80x/ Port A). The setting of the TR800 Web is done prior to connection with the same cable via a PC using a Web browser. A TR800 can also be interrogated by two or more SIPROTEC devices. IP-address and the UDP-Port of the TR800 may be set in the SIPROTEC device. In this way, one SIPROTEC device may use temperatures 1-3 and another device can use the temperatures 3 - 6 for processing. Each device, however, reads in all 6 temperature values (Fig. 13/48b).

Communication with two TR800 Web via Ethernet interface

If two TR800 are applied on big motors for the purpose of measured-value capturing, a substation hardened switch (e.g. RUGGEDCOM RS900 or Hirschmann RSR20) must be used. The switch, the two TR800 Web relays, the protection device and the operating PC constitute an autonomous subnet when they are connected via patch cables (1:1). They may also be part of a larger Ethernet network.

DIGSI 4 and Web browser can run in parallel on the operating PC. Accordingly, one of the two TR800 Web and the protection device can be applied and read out during normal operation. (Fig. 13/48c).

Communication via RS485 bus

One or two TR800 may be connected via a RS485 interface to a SIPROTEC 4 device with thermo function (7SJ6, 7UT6, 7UM6), or the compact device 7SK80.

For connection purposes the special cables 7XV5103-7AAxx are used. In the case of remote measuring points a connection can also be established via a multi-mode FO cable and the converter 7XV5650.

For different applications, 3 modes of operation are available. All three modes are compatible with thermo box TR600 with 6 measuring inputs. The mode of operation is set via the RS485 address of the TR800 Web.

For detailed information please visit www.siemens.com/siprotec

Fig. 13/48b

Connection of one device via Ethernet

Fig. 13/48c

Connection of two devices via Ethernet

Connection via serial RS485 bus or FO cable

Technical data

Rated auxiliary voltage			
Auxiliary voltage V _S :	24 to 240 V AC/DC, 0/45 to 120 Hz $< 4~{\rm W} < 8~{\rm VA}$		
Tolerance	20.4 to 297 V DC, 20 to 264 V AC		
Insulation	2000 V AC		
Relay output			
Number	4 x 1 changeover contact (CO)		
Switching voltage	Max. 415 V AC		
Switching current	Max. 5 A		
Switching power	Max. 2000 VA (ohmic load) Max. 120 W at 24 V DC		
De-rating factor with $\cos \varphi = 0.7$	0.5		
U _L electrical ratings:	250 V AC, 3 A general use 240 V AC 1/4 hp. 2.9 FLA 120 V AC 1/10 hp. 3.0 FLA C 300 D 300 1 A 240 V AC		
Rated operating current <i>I</i> _E AC 15 DC 13	$ \begin{split} I_{\rm E} &= 3 \; {\rm A} & V_{\rm E} &= 250 \; {\rm V} \\ I_{\rm E} &= 2 \; {\rm A} & V_{\rm E} &= 24 \; {\rm V} \\ I_{\rm E} &= 0.2 \; {\rm A} & V_{\rm E} &= 125 \; {\rm V} \\ I_{\rm E} &= 0.1 \; {\rm A} & V_{\rm E} &= 250 \; {\rm V} \end{split} $		
Recommended fuse	T 3.15 A (gL)		
Contact service life, mech.	3×10^7 switching operations		
Contact service life, electr.	$1 \ge 10^5$ switching operations at 250 V AC / 6 A		
Real-time clock			
	Buffered for 7 days. Continuous synchronization via SNTP on the Ethernet inter- face is possible		
Test conditions			
Acc. to	EN 61010-1		
Rated impulse voltage insulation	4000 V		
Pollution rate	2		
Rated insulation level V _i	300 V		
Duty cycle	100 %		
Perm. ambient temperature	– 20 °C to + 65 °C EN 60068-2-1 dry heat		
Seismic safety EN 60068-2-6	2 to 25 Hz ± 1.6 mm 25 to 150 Hz 5 g		
Electrical isolation	Ethernet – measuring input min. 500 V DC		
No electrical isolation	RS 485 interface – measuring inputs		
EMC tests	EN 61326-1		
EMC test for noise emission	EN 61000-4-3		
Fast transient disturbances/Burst	EN 61000-4-4 \pm 4 kV Pulse 5/50 ns, $f = 5$ kHz, $t = 15$ ms, T = 300 ms		
High-energy surge voltages (SURGE)	IEC 61000-4-5 \pm 1 impulse: 1.2 / 50 μ s (8/20 μ s)		
Electrostatic discharge	IEC 61000-4-2 \pm 4 contact discharge, \pm 8 kV air discharge		
Ethernet connection	10/100 MBit Auto-MDIX (no cross-over cable required)		
Sensor connection			
Measuring cycle/measuring time (for 8 measured values)	< 3 s		

Pt100, Pt1000 according to EN 60751:

	Measured range °C		Short circuit Ohm	Interruption Ohm	Sensor resistance + circuit resistance Ohm
Sensor 1	min.	max.	<	>	max.
Pt 100 - 199 86	860	15	400	500	
Pt 1000	- 199	860	150	4000	4100

When connecting Ni100 or Ni120 sensors, the conversion is done in the SIPROTEC device. The TR800 is configured with Pt100 sensors.

Sensor connection (cont'd)

Accuracy

Sensor current

Description

 \pm 0.5 % of measured value \pm 0.5 K $\leq 0.6 \text{ mA}$ < 0.04 °C/K

Temperature drift Voltage/current input

		Input resistance	Maximum input signal	Accuracy of final value
0-10	V	12 kΩ	27 V	0,1 %
0/4 - 2	20 mA	18 Ω	100 mA	0.5 %

< 0.02 %/K Temperature drift

Resistance measurement	
Accuracy 0.0 500.0 Ω	0.2 % of measured value \pm 0.5 Ω
Accuracy 0 30.00 kΩ	0.5 % of measured value \pm 2 Ω
Sensor current	$\leq 0.6 \text{ mA}$
Housing	
Housing type	V8, distribution panel mounting
Size (W x H x D)	140 x 90 x 58 mm
Depth/Width	55 mm/8 TE
Circuit termination single strand	Per 1 x 1.5 mm ²
Braided conductor with crimp lug	Per 1 x 1.0 mm ²
Tightening torque of terminal screw	0.5 Nm (3.6 lb.in)
Degree of protection of housing/termi- nals	IP30 / IP20
Mounting vertical/horizontal	Optional
Affixing	Snap-on mounting onto standard rail mounting 35 mm acc. to EN 60715 or screw mounting (with 2 additional brackets)
Weight	Approx. 370 g

50	action	and	ord	orina	lata
				ernuu	1414

Order No. Universal relay/RTD-box TR800 7XV5662 - 7AD10

Distributed input-box for 6/8 RTD-connections (RTD-box) or 6/8 x 20 mA, or 0 – 10 V Rail mounting plastic Protection class IP21 1 serial interface RS485 for communication of measurements 1 RJ45 interface for parameter setting via Web browser and communication of measurements Wide-range power supply 24 to 240 V AC/DC Note: The device can be operated in a 7XV5662-2AD10 or 7XV5662-5AD10 compatible mode.

13

7XV5662-8AD10 Resistance Temperature Detector (RTD-Box) TR1200 IP (Ethernet)

Description

The RTD-box TR1200 IP has 12 sensor inputs which allow measurement of up to 12 temperatures by Pt100 sensors.

Three conductor sensors are supported. For two conductor operation compensation of the measured conductor resistance is possible via a corresponding setting.

All settings on the TR1200 IP can be done through 3 keys on the front of the device or in a Web browser (e.g. Internet Explorer).

If Ni100 or Ni120 sensors are applied, the measured values have to be adapted in the protection device. The 7SK80 supports this with its integrated RTD functionality.

The measured-value output to the protection device is done via Ethernet network with RJ45 connectors.

Note: The SIPROTEC 4 system interface with EN100 module does not support the temperature detection of the RTD-box TR1200 IP.

- 3-digit digital display for the temperature of up to max. 12 measuring points
- 12 sensor inputs; 1 to 12 sensors can be connected
- PT100 in 2- or 3-conductor technology, when connecting Ni100 or Ni120, conversion to the correct temperature in the evaluation unit is required, SIPROTEC devices (e.g. 7SK80) support this function. The EN100 module in the SIPROTEC 4 units does not support the TR1200 IP
- 1 alarm relay (1 changeover contact)
- Electric 10 MBit/s Ethernet interface (RTD IP protocol from ZIEHL, or MODBUS IP protocol)
- Read-out display, configuration, simulation and firmware update via Web browser
- Tested with Mozilla Firefox 3.5 and Microsoft Internet Explorer 8.0
- LEDs for measurement allocation, error, relay status and Ethernet interface
- Code protection against manipulation of the setpoint values
- Wide-range power supply 24 to 240 V AC/DC
- Distributor housing for panel mounting 8 TE, front-to-back size 55 mm
- Mounting on 35 mm DIN EN 60715 standard rail.

Measurement of up to 12 measured values with a TR1200 IP

To get up to 12 measured values one RTD-box TR1200 IP is connected via a double screened CAT5 patch cable (1:1 or crossed-over) directly to the protection device (e.g. 7SK80x/Port A).

The protection device is set using DIGSI 4 progam running on a Notebook via the USB-front interface.

The RTD-box TR1200 IP is set either through the front keys or by using a Web browser running on the Notebook via the Ethernet interface. For this purpose the patch cable must be unplugged from the protection device and then re-plugged into the Notebook.

Tip: If during commissioning a common switch is temporarily inserted using three patch cables, the protection device can be set from a PC using DIGSI 4 in parallel with the TR1200 IP.

For detailed information please visit: www.siemens.com/siprotec

Technical data

Fig. 13/49b Connection of a device via Ethernet

Rated voltage			
Control voltage V _S :		24 to 240 V AC/DC, 0	0/45 to 65 Hz < 5 VA
		20.4 to 297 V DC, 20.	.4 to 264 V AC
Relay output			
Number		1 changeover contact	(CO)
Switching voltage		Max. 415 V AC	
Switching current		Max. 5 A	
Breaking capacity		Max. 2000 VA (resist Max. 120 W at 24 V I	ive load) DC
Reduction factor at $\cos \varphi = 0.7$,	0.5	
U _L electrical ratings:		250 V AC, 3 A genera 240 V AC 1/4 hp. 2.9 120 V AC 1/10 hp. 3.0 C 300 D300 1 A 240 V AC	ll use FLA 0 FLA
Rated operating current IE			
	AC 15	$I_{\rm E} = 1$ A	$V_{\rm E} = 400 {\rm V}$
	DC 13	$I_{\rm E} = 2 \text{ A}$ $I_{\rm E} = 2 \text{ A}$	$v_{\rm E} = 250 \text{ V}$ $v_{\rm E} = 24 \text{ V}$
	2015	$I_{\rm E} = 0.2$ A	$V_{\rm E} = 125 \mathrm{V}$
		$I_{\rm E} = 0.1 \ {\rm A}$	$V_{\rm E} = 250 \ {\rm V}$
Recommended series fuse		T 3.15 A (gL)	
Contact service life, mech.		1 x 10 ⁷ operating cycl	es
Contact service life, electr.		1×10^5 operating cycl 2 x 10^5 operating cycl 6 x 10^5 operating cycl	es at 250 V AC / 5 A les at 250 V AC / 3 A les at 250 V AC / 1 A
Temperature measurement			
Measurement time sensor		0.25 to 3 s (dependen	t on the number of sensors)
Measurement time sensor		0.25 to 30 s (for meas	surement cycle of one sensor)
Measurement range		–199 °C to 850 °C	
Resolution		1 °C	

Technical data

Sensor connection

12 x PT100 acc. to EN 60751, connection of Ni100 and Ni120 sensors possible. Conversion of the measured values must be performed in the evaluation unit.

		Measured ra °C	nge	Short circuit Ohm	Interruption Ohm	Sensor resistance + line resistance Ohm			
	Sensor	min.	max.	<	>	max.			
	Pt100	- 199	860	15	400	500			
Т	olerance			\pm 0.5 % of measurement \pm 1 K					
S	ensor curre	nt		\leq 0.8 mA					
Т	emperature	e drift		< 0.04 °C/K	< 0.04 °C/K				
E	thernet inte	erface							
Т	ransmissio	n speed		10 MBit/s					
II	P adress			Standard: 192.18	2.1.100, adjustable	1			
S	ubnetwork	mask		Standard: 255.25	5.255.0, adjustable	1			
U	DP port			Standard: 5000 (5	5001), adjustable				
N	ſax. cable le	ength		20 m when using	CAT 5 patch cabl	e			
N	lax. respon	se time RTD/	MODBUS	< 700 µs					
Т	est conditio	ons							
А	cc. to			EN 61010					
R	ated impul	se withstand v	oltage	$4000 \mathrm{V}$					
S	urge catego	ry		III					
Р	ollution lev	rel		2					
Rated insulation voltage V _i		300 V							
Operating time		100 %							
P d	ermissible a uring opera	ambient temp ation	erature	– 20 °C to + 65 °C EN 60068-2-2 dry heat					
E	MC – noise	e immunity		EN 61000-6-2					
E	MC – noise	e emission		EN 61000-6-4					
G C	alvanic ins ontrol volt	ulation age – measure	ement input	3820 V DC					
E	thernet – co peasuremen	ontrol voltage	-	500 V DC					
н	ousina								
Н	lousing typ	e		V8, distribution	panel mounting				
D	imensions	(W x H x D)		140 x 90 x 58 mm					
F	ront-to-bac	k size/Width	55 mm/8 TE	10 x 20 x 30 mm					
W	Viring conn	ection single	strand	Each 1 x 1.5 mm^2					
Finely stranded with wire end ferrule		Each 1 x 1.0 mm^2							
St	tarting torq	ue of the term	ninal screw	0.5 Nm (3.6 lb.in)					
Р	rotection cl	ass housing/te	erminals	IP30 / IP20					
N	founting po	osition		Arbitrary					
Mounting		Snap-on mounting onto standard rail 35 mm acc. to EN 60715 or screw mounting (with 2 additional bars)							
Weight				Approx. 350 g					

Selection and ordering data

Description

Order No. Resistance temperature detector (RTD-box) TR1200 IP (Ethernet) 7XV5662-8AD10

Distributed input-box for 12 RTD-connections Pt100 Rail mounting plastic Protection class IP21 1 Ethernet interface for communication with SIPROTEC devices for measurement and fault reports. Wide-range power supply 24 to 240 V AC/DC

7XV5664 /7XV5654 GPS/DCF77 Time Synchronization System

GPS/DFC77 time synchronization system

Description

With the GPS-time signal receiver 7XV5664 and additional components wide-range power supply 7XV5810, mini star-coupler 7XV5450 and sync-transceiver 7XV5654, a comprehensive solution for time synchronization of any number of SIPROTEC protection devices is possible. A simple PC-Software (included in the scope of delivery) facilitates the setting of the receiver via a RS232 interface. The transmission of the time signals (telegrams or impulses) takes place, immune to disturbances, via a FO cable to the protection cubicles, where the time signals are electrically converted with the Sync-Transceiver. The standard version can, with the output of special protocols, also be used for the synchronisation of further devices, e.g. Reyrolle ARGUS 1 or SIMEAS Q80. For the SIPROTEC line differential protection 7SD52 or for SIMEAS R-PMU, the special version provides a highly accurate pulse per second. The GPS antenna with 25 m cable to the receiver is included in the scope of delivery. Lightning protection is optionally available.

Features/function overview

- GPS exterior antenna with wall mounting and 25 m cable RG59, lightning protection is optional
- GPS-antenna input (BNC-plug)
- PC-input, RS232 (9-pol. Sub-D plug) with operating program and 1m connection cable
- 2 optical signal outputs FL1/2 for FO cable 62,5/125 μm and ST-plug for disturbance free transmission of the signals
- Auxiliary voltage 18-60 V DC/optionally with wide-range power supply 7XV5810-0AA10, 24-250 V DC / 100-230 V AC.
- Aluminium housing for rail mounting.

Standard Version 7XV5664-0CA00:

- Signal outputs FL1/2: telegrams selectable IRIG-B, DCF77-, NMEA, IEC60870-5-103, second or minute impulses.
- 3D-mode with at least 4 satellites or Fix-mode with at least 1 satellite.

Special Version 7XV5664-0AA00:

- Signal outputs FL1/2: fixed telegrams FL 1 = highly accurate second impulse FL 2 = IRIG-B or DCF77
- Only 3D-mode with at least 4 satellites.

The "Normal Time" standard application

With the GPS-time signal receiver 7XV5664-0CA00 all connected protection devices are synchronized to "Normal Time". In this way, the internal clock of the protection devices is synchronized by a standardized telegram e.g. IRIG-B, DCF77, IEC60870-5-103, NMEA or a minute impulse.

For this purpose the protection devices provide suitable interfaces e.g. SIPROTEC 4 provides Port A.

The antenna is mounted to an outside wall with free sight to the sky and the optional lighting protection is looped into the antenna cable.

The GPS-time signal receiver is mounted close to the antenna, and is either supplied with auxiliary voltage via the optional wide-range power supply from the AC mains, or the substation battery.

The transmission of the time telegrams or synchronizing impulses takes place, immune to interference, with FO cable to the protection devices distributed in the plant. An extension of the optical star structure can be implemented with the mini starcoupler 7XV5450. For the conversion of the FO signals to 24 V signals as required by the SIPROTEC 4 time synchronization interfaces (Port A), sync-transceivers 7XV5654 are implemented.

Detailed application examples may be found in the manual of the sync-transceivers 7XV5654.

The SIPROTEC 4 protection devices are connected to the sync-transceiver 7XV5654 via "Port A" with the specially designed bus cable system 7XV5104 (see Fig.13/51). Note: No bus termination resistance is required here.

All SIPROTEC protection devices with internal clock

may be synchronized with the minute impulse from the GPS receiver via a binary input. For this purpose the internal clock of the protection device is set at each full minute to the exact beginning of the new minute. A pre-condition for this method is that the internal clock of the protection device is set correctly once, and the auxiliary voltage is buffered against failure. If the time tracking fails for a longer period, the difference between the internal clock of the protection device and the normal time

Fig. 13/51 SIPROTEC 4 protection unit with GPS-time synchronization

must be smaller than one minute. Daylight saving time must, if desired, be set manually.

Protection devices are fitted with a binary input, which captures the minute impulse using a corresponding voltage (24-60 or wide range 24-250 V DC) and provides this to the internal clock. The distribution of the impulse to the protection devices takes place via a 2-wire bus, which must consist of a screened twisted pair. All devices must be located in the same earthed system, the cable screens must be connected to the housing on both sides.

If both channels of the GPS-receiver are set to the minute impulse, up to 20 SIPROTEC 3 devices may be connected. Alternatively, a coupling of both output channels of the sync-transceivers with the DIL-switches S1/3 is possible.

Selection and ordering data	Description	Order No.
	GPS-time signal receiver	7XV5664-0□A00
	GPS-timing signal receiver "Special Version" for the time synchronization of SIPROTEC 4 differential prot. devices or SIMEAS R-PMU (Phasor Measurement Unit), with 25 m coaxial cable, PC software with cable (without wide range power supply unit 7XV5810-0BA00)	A
	GPS-timing signal receiver "Standard-Version" for the time synchronization of SIPROTEC 4 protection devices, with 25 m coaxial cable, PC software with cable (without wide range power supply unit 7XV5810-0BA00)	С
	Lightning protection with plugs for connection to the antenna cable	L
	Additional accessories for time synchronisation	
	Wide-range power supply (universal) Universal supply voltage (48250 V DC ± 20 %, 60230 V AC ± 20 %) Output voltage 24 V DC / 6 W, short-circuit proof, alarm contact	7XV5810-0BA00
	<i>Sync-transceiver</i> Sync-transceiver for conversion of 2 optical timing signals to 24 V DC for the time synchronizing interface of SIPROTEC 4 (Port A) 2 optical inputs with ST-plugs and 2 electrical outputs for max. 12 SIPROTEC 4 relays or 20 SIPROTEC 3 relays. Minute or second pulse for special applications is also supported.	7XV5654-0BA00
	Y-bus cable for time synchronizing SIPROTEC 4 (standard)	7XV5104-0AA
	Y-bus cable 2-core screened with 9 pole sub-D connector and metallic housing for clock synchronization SIPROTEC 4 Length 1 m	0 1
	Length 3 m	0 3
	Length 5 m	0 5
	Bus length extension cable (standard) Cable for the bus length extension. Copper cable with 2-wires, shielded with 9-pole sub-D plugs. Length 10 m	7XV5104-1AA10
	Adapter cable to synctransceiver 7KE6000-8 (standard) Adapter cable to synctransceiver 7KE6000-8Ax. Length 0,3 m. Shielded, 2-wires with crimp lugs to 9-pole sub-D plug (female)	7XV5104-2AA00
	Adapter cable for 2 busses (standard) Adapter cable 2 core screened for sync-transceiver 7XV5654-0BA00 for distribution of 2 busses for each 6 SIPROTEC 4 relays	7XV5104-3AA00
	Y-bus cable for time synchronizing SIPROTEC 4 Diffprotection and SIMEAS R-PMU (special)	7XV5105-0AA□□
	Y-bus cable 2-core screened with 9 pole sub-D connector and metallic housing for clock synchronization SIPROTEC 4, e.g. 7SD5 Length 1 m	0 1
	Length 3 m	0 3
	Length 5 m Length 10 m	1 0
	Bus length extension cable (special) Cable for the bus length extension. Copper cable with 4-wires, shielded with 9-pole sub-D plugs.	
	Length 10 m	7XV5105-1AA10
7XV5673 I/O-Unit with 6 Binary In-/Outputs

Description

I/O-Unit 7XV5673 is a binary input/output device and is designed for substations and increased industrial environment requirements. The I/O-Unit allows the transmission of binary inputs to binary outputs locally or via long distances. It can be used for protection applications, e.g. overcurrent protection, signal comparison, teleprotection or as I/O-expansion in substation automation systems.

Function

Via binary inputs, all kinds of binary signals of switchgear/ protection scheme (for example tripping commands, switch position signal, fault and status indications) are securely detected. This information can directly be distributed at this I/O-Unit via contacts, or be transmitted via communication links to further I/O-Units or to automation systems.

Secured telegrams are used for the communication via Ethernet or serial connections. The parameter setting of the I/O-Unit is simply carried out with a standard Web browser at the PC which is connected by the Ethernet interface.

Siemens SIP · Edition No. 6

The I/O-Unit can be set as:

- I/O mirror: Point-to-point transfer of binary signals between two I/O-Units via Ethernet or a serial connection. Signal inputs and outputs assignable by the user.
- I/O expansion: Expansion of substation controllers by binary inputs and outputs using standard protocols.
- Contact multiplier: Distribution of signals on one or several binary inputs via relay contacts of the same I/O-Unit, e.g. for isolation between different voltage levels.

Feature overview

- Binary inputs
 - 6 ruggedized EMC hardened binary inputs
 - Pickup voltage threshold settable to 19 V DC, 88 V DC or 176 V DC for different station battery voltages
- Binary outputs
 - 6 command relay outputs
 - Safe state of contacts after loss of connection settable by the user
- Signal/Alarm outputs - 4 LED
- Wide-range power supply

 24-250 V DC +/- 20 % and 100-230 V AC 45-65 Hz
- Electrical RJ45 Ethernet interface

 Cascading many devices without additional costs by the use of the integrated switch
- Serial fiber-optic interface (optional)

 ST-connector, 820 nm for multi-mode fiber 62.5/ 125 μm, typical range 2000 m using fiber 62.5 μm/125 μm, baud rate 1.2 kBit/s – 187.5 kBit/s settable per software
- Serial RS485-interface (optional) Sub-D plug, 9-pole female
- Protocols, communication

 MODBUS TCP or MODBUS RTU for connection to a substation controller
 - MODBUS UDP for point-to-point connections between two I/O-Units
 - SNTP for time synchronization
 - IEC 61850* (GOOSE and Reporting)
- Housing
- IP20 rail mountingStandards CE, UL, IEC 60255, IEEE 61000 ...
- Environmental conditions

 EMC hardened binary I/O for substation environment
 - Extended high temperature range up to 85 °C (16 h/day).

13/85

Operation features

- Easy parameterization with a standard Internet browser (no special software required)
- Password protection against unauthorized access
- Monitoring of data errors, loss of connection, transfer time and the state of BI, BO.
- Time synchronization with SNTP-Protocol with 1 ms resolution from an external time server over Ethernet. Redundant time servers are supported
- Buffer battery changeable from the front
- Fast I/O mirror: Fast transmission time from BI pickup to contact closing between two I/O-Units typically 11 ms for high bandwidth connection
- Connection to a substation controller over MODBUS TCP, MODBUS RTU or IEC 61850 protocol *
- Blocking of data transmission with a binary input for testing
- Battery buffered operational event log with 1 ms resolution time stamp
- Assignment of BI / BO signals which shall be logged into the operational buffer
- Integration into network management systems with SNMP protocol and provided MIB files.

Application

I/O mirror function

When using the I/O-Units as I/O mirror according to Fig. 13/53, the devices transmits the binary signals bi-directional. The transmission takes place between the two devices over serial links (option) or over Ethernet networks.

Via the relay output contacts voltages up to 250 V AC/DC and currents up to 5 A AC/DC can be switched. The pick threshold of the binary inputs can be set by the user on different levels.

Signal inputs and outputs can be assigned by the user.

Extension of the transmission distance

An extension of the transmission distance is possible. The following devices can be used:

- With serial optical repeater 7XV5461 scalable up to 170 km
- RS485-FO Converter 7XV5650 for cascading devices
- With different communication converters.

Uni-directional binary signal transmission

When using the I/O-Units for uni-directional binary signal transmission according to Fig. 13/54, the devices transfer binary signals unidirectional from one device to several devices. In this application, the transmission only takes place in one direction. Input signals (max. 6) from the left unit are sending to output contacts of one or more units on the right side.

Fig. 13/54 I/O mirror, uni-directional transmission from one to multiple I/O-Units

I/O expansion of a substation controller

The I/O-Unit is used as I/O expansion, according to Fig. 13/55. Binary signals are exchanged between a substation controller (e.g. SICAM PAS) and the I/O-Units by using the MODBUS TCP protocol over an Ethernet network. If the integrated switch in the I/O-Unit is used, the units can be operated in a line without using additional external switches as shown in Fig. 13/85. Also IEC 61850 client server communication will be provided in future.

Fig. 13/55 I/O expansion of a substation controller with binary inputs and outputs

Instead of using an Ethernet network there is also the option of serial connection with MODBUS RTU protocol. The link can be done by a RS485-bus line structure or an optical star network.

Fig. 13/56 I/O expansion for the connection to substation controller using a serial optical star topology

13

Contact multiplier

Input signals on one or more binary inputs can be assigned to binary outputs of the local device (Fig. 13/57)

- 1 binary signal on up to 6 relay outputs
- Several binary signals to several relay outputs assignable by the user
- Different voltage levels for inputs and outputs in a wide voltage range to isolate between different voltage levels.

<u>Applications for remote transmission of binary signals</u>

Binary signal transmission via communication networks using a G.703.1/X.21 interface

The picture shows the optical connection of an I/O-Unit to a communication converter (KU-XG) 7XV5662-0AA01, which establishes a connection to a multiplexer with G.703.1 or X.21 interface. This allows the use of this communication converter to transfer the signals via communication network. The average delay time in the network and the signal quality is monitored by the I/O-Unit. Also loss of connection is indicated. In this case, the state of the binary outputs can be set by the user to a safe condition depending on the application.

A maximum of 6 binary single signals can be transmitted bi-directional via the communication network.

Fig. 13/58 Binary signal exchange over a communication converter with G.703.1/X.21 interface via a communication network

Binary signal transmission via two-wire copper cable with blocking

The picture shows the optical connection of an I/O-Unit to a communication converter 7XV5662-0AC01, which establishes a connection via pilot wire. Only one pair is necessary for bi-directional signal exchange.

An additional isolation transformer allows 20 kV isolation from the pilot wire connection.

A maximum of 6 binary single signals can be transmitted bi-directionally over the pilot wire. The additional delay caused by the transfer over the communication converter and pilot wire is less than 1 ms.

A typical application is the signal comparison of a directional overcurrent protection device via pilot wires. In this case, the definite time-overcurrent protection device is connected to the I/O-Unit via contacts and binary inputs and directional signals are transferred.

Binary signal exchange of over long fiber optic links

The figure shows the optical connection of an I/O-Unit to a serial optical repeater 7XV5461-0BX00, which establishes a connection to multi-mode or single-mode fiber cables. A max. distance of 170 km can be reached with this application without additional amplifiers.

A maximum of 12 binary signals can be exchanged via long fiber optical connections because the repeater allows connecting two I/O-Units.

Fig. 13/60 Binary signal exchange of up to 12 signals over long fiber optic links

Binary signal transmission via a communication networks using a G.703.6 interface

The figure shows the optical connection of one up to three I/O-Units to a communication converter KU-2M 7XV5662-0AD00, which establishes a connection to a multiplexer with a G.703.6 interface (1.44 kbit/s/2 Mbit/s, E1/T1).

A maximum of 18 binary single signals can be transmitted bi-directionally over the communication network. The KU-2M is provided with two optical and one electrical RS232 interface. Two I/O-Units can be directly connected by an optical cable to the KU-2M. On the RS232 interface, an additional I/O-Unit can be connected via an optoelectronic converter. Using all input interfaces (2 FO, 1 RS232) of the KU-2M, a maximum of 18 signals can be exchanged bi-directionally.

For long distance connections via Ethernet media converters or Ethernet networks can be used. The I/O-Unit supports IP – address settings and settings for a standard gateway. The electrical Ethernet interface of the I/O-Unit is connected to a media converter or switch which transfer the signals of the units over long distance Ethernet connections. The average delay time in the network is measured by the I/O-Unit.

Device configuration

The I/O-Unit is equipped with an integrated Web Server which allows easy setting using standard Internet-Browsers. Fig. 13/62 shows the User interface. All settings are done with the Browser. Also operational log and commissioning aid are supported by the Browser like the indication of the actual state of the inputs and outputs.

- In http://192.168.0.1	55/ContenaryOutpu	inst.id			• ++ ×	er fref een eelt	211
in Anatolin Arabit Ears	eten Egtras [Q
🖉 🖂 🖬 💋 Margo J.(192.16	18.0.55/Con x		iem Online		5-D	+ (e) + () Soja + ()	Edges + ⁶⁰
					SIEMEN	15 1/0 Unit 7X	V5673
Information Co	onfigure	Value	View Maintenan	CH .		1/0 Uni	770/5673
Configure device	Configu	re » Oper	ational . Process connec	tions - Peters in	(porta		
♥ Prepare	V Bits	ary outputs					
Get device configuration	A CONTRACTOR						
Open configuration from file	Territor	1	South .		Para	ieler .	
Cperational parameters	842/1	Indication	Indication 1 from Remote		Source inverted	F to C yes	
Process connections	-				Operating mode	Persistent	
Browy subsults	1467	Indication	Indication 2 from Remote		Source inverted	G no C yes	
LEDS				10000	Operating mode	Persistent	
V Adventitative	15.5/7	Industries	Indication 3 from Ramota		force meted	C = 6 =	-
Indication properties	- Taron	Processor	manual a man name		Boost Contraction	1 10 1 90	-
Time synchronization					Operating mode	Televerateur	
Communication Ethernet	P2/3	Indication	Indication 4 from Remote	-	Toxis metal	of the C yes	_
Communication serial					Operating mode	Persistent	
Device and tenguage	P40	Indication	Indication 5 from Remote		fource mented	F no C yes	
 Presenconducescon 					Operating mode	Persistent	
Save confloatation to file	P5/6/7	Indicators	Indication 6 from Remote	-	Source inverted	Gran C yes	
Center	53.00			1.55	Downating made	Persistent	
		Send					

Fig. 13/62 Configuration screen of the I/O-Unit in the Browser

Selection and ordering data

Description	Order No.
I/O-Unit with 6 binary in- and outputs	7XV5673-0 J J□ 0-1 A A 1
I/O-Unit with Ethernet interface and RS485-interface	1
optical interface	2

7XV5700 RS232 – RS485 Converter

Fig. 13/63 RS232 – RS485 converter

Description

Up to 31 SIPROTEC 4 relays with an electrical, bus-capable RS485 interface to a PC for centralized control can be connected via the RS232↔RS485 converter.

The converter is housed in an expanded plug casing. The interfaces are connected to 25-pin female connectors. The auxiliary voltage is supplied via a plug-in power supply unit attached to the side. Auxiliary voltages of 110 or 230 V AC make operation with all common AC networks possible.

A twisted and shielded cable with two wires is required for the RS485 bus. The protection relays are connected to the bus in series. Data transmission at a speed of 19.2 kbaud with a bus length of up to approximately 1000 m is possible.

The converter, plug-in power supply unit and the connecting cable to the first relay are included in the scope of supply.

Function overview

- Minimum baud rate: 9600 baud
- Maximum baud rate: 115 kbaud
- No setting of baud rate necessary
- Compact plug casing
- Power supply via plug in PSU
- Maximum 31 relays at RS485 bus
- Complete set for connecting 1 relay to RS485 bus

The RS232↔RS485 converter allows up to 31 SIPROTEC 4 protection relays with electrical busable RS485 interfaces to be connected to a PC notebook.

The converter is housed in an expanded plug casing. The interfaces are connected to 25 pin female connectors. The RS485 interface has a terminating resistor. The auxiliary voltage is supplied via a plug-in power supply unit attached to the side. Auxiliary voltages of 110 V or 230 V AC make operation with all common AC networks possible.

Fig. 13/64 Protection units connected to the RS485 bus Note

The converter may not be used with a substation modem due to non-existing isolation. It is recommended to use the 7XV5650 and 7XV5651 converters in conjunction with the substation modem.

Functions

The converter works according to the master/slave principle. In idle state, the RS232 interface is inactive while the RS485 interface is switched to the receiving mode. During communication, the PC (master) sends data to the RS232 interface, which are transmitted (half duplex) to the protection unit (slave) by the converter at the RS485 interface. After data transmission, the RS485 interface is once again switched to the receiving mode. Vice versa, data supplied by the protection unit are sent back by the converter to the RS232 interface and to the PC.

No handshake signals are being processed during communication. This means that data sent by the PC are mirrored, which may cause problems in special applications.

Connections

The PC is connected to the converter by means of a DIGSI cable e.g. 7XV5100-2.

A twisted and shielded cable with two wires is required for the RS485 bus. The conductor cross section has to be adapted to the ring cable lugs and the SUB-D connectors. The individual wires protruding from the shield should be kept as short as possible. The shield is connected to the housing earth at both ends. The protection units are connected in series to the bus. The shield between the converter and the protection units, or between the protection units, is connected at both sides. Whenever substantial cable lengths or high baud rates are involved, a terminating resistor of 220 ohm should be applied between signal lines A and B at the last protection unit. Data transmission at a speed of 19.2 kbit/s, with a bus length of up to approx. 1000 m, is possible.

Technical data

. .

Design	
Plug chassis	Plastics
Dimensions	63 x 94 x 16 mm (W x H x D)
Degree of protection	IP20
Power supply	
Power supply	110 or 230 V AC
Via	Plug-in power supply unit
Electrical interfaces	
Туре	RS232 to RS485 (non-isolated)
Assignment	See Fig. 13/64
CE conformity, standards	
This product is in conformity with the directive of the Council of the European Communities on the approximation of the laws of the Member States relating to the electromagnetic compatibility (EMC Council Directive 89/336/EEC).	Conformity is proved by tests performed by Siemens AG in accordance with the generic standards EN 50081-1 and EN 50082-2.

Selection and ordering data

Description	Order No.
7XV5700 RS232 – RS485 converter	7XV5700-0000
Rated auxiliary voltage Via plug-in auxiliary power supply unit (PSU) 230 V / 50 Hz AC	0
Via plug-in auxiliary PSU 110 V / 60 Hz AC	1
Connecting cable With RS485 connecting cable for 7SJ60, 7RW60, 7SD6, 7SV60, length 1 m	A
With RS485 connecting cable for SIMEAS Q and SIPROTEC 4, length 1 m	В
With RS485 connecting cable for SIMEAS T, length 1 m	С
Without RS232 connecting cable	A
With RS232 connecting cable 7XV5100-2 for PC/notebook, 9 pin	В
With RS232 adaptor, 25-pin connector (male) to 9-pin connector (female) for PC / notebo	ook C

13 Relay Communication Equipment / 7XV5700

7XV5710 USB – RS485 Converter Cable

Description

The USB converter cable with its special pin assignment allows temporary connection of up to 31 Siemens protection devices having an electrical RS 485 interface to a PC with a USB interface for direct or central control with DIGSI 4.

The converter is connected directly to the PC via a standard USB connector (type A). The RS485 connector (9-pin SUB-D male) may be used for direct connection to SIPROTEC 4 devices with RS485 interface modules. To connect individual compact devices with an RS485 interface on terminals, e.g. 7SJ600, 7SD600, 7RW600, etc., the 7XV5103-2AA00 or -3AA00 adapter is required. Using the gender changer (female-female), which is included, the converter may also be connected to the 7XV5103 bus system, which enables communication with all the devices connected to the bus. Because the cable includes a switchable bus termination, it may be connected at either end or in the middle of the bus. The converter draws all the power it needs via the USB interface of the PC.

Function overview

- Compact connector housing
- USB 2.0 / 1.1 interface Type A
- RS485 interface 9-pin SUB-D
- Max. bus length 800 m
- Termination resistances switchable
- Baudrates 300 to 115000 baud
- Indicated data transfer (data LED)
- Protocol transparency (not only for PROFIBUS)
- Power supply via USB connector (no galvanic separation)
- Compatible with 7XV5103 bus system (with gender changer 9-pin female/ female)

Data transfer

Before the converter cable is first used, a USB driver must be installed from the CD supplied. The driver creates a new virtual COM port, which may then be selected by the application, e.g. DIGSI 4. The converter works in half-duplex mode on the master/slave principle.

In the quiescent state, the USB interface is inactive and the RS485 interface is ready to receive. For communication, the PC, acting as the master, transmits its data to the USB interface, which in turn forwards the data from the converter at the RS485 interface to the protection device (slave). Following this, the RS485 interface is switched back to receive. Data coming from the protection is now transmitted in the other direction to the USB interface and PC by the converter. A data LED indicates when data transfer is active.

Connection of the compact devices, e.g. 7SJ600 with terminals (without bus cables 7XV5103)

A shielded twisted pair (STP) cable must be used for the RS485 bus. The conductor cross-section must be suitable for termination with ring lugs or SUB-D connectors. The protection devices are connected to the bus in line (not in star or ring topology). The core ends protruding from the shield should be kept as short as possible. The shield must be connected to the housing ground at both ends. At the last protection device, a $220-\Omega$ terminating resistor is connected between data cores A and B.

Termination of the RS485 bus

The RS485 bus is a two-wire bus (half duplex) over which up to 32 devices (participants) can exchange their data on the master/slave principle. All devices are connected to the bus in line (not in star or ring topology). At the first and last devices, a 220- Ω bus terminating resistor is connected between pin 3 (A) and pin 8 (B), irrespective of whether this is a master or slave device.

The SIPROTEC protection devices are preferably connected to the bus as a slave behind a master, e.g. 7XV5710 or 7XV5650/51 RS484 converter. In these converters (1st device) the terminating resistor may be implemented by additional pull-up/pull-down resistors via DIL switches (S1, S2). The "low-resistance" pull-up/pull-down resistors are essential in various SIPROTEC bus applications, i.e. the use of other converters may result in problems. In the protection devices, the terminating resistor must only be activated at the last device on the bus using the jumpers provided for that purpose. If this is not possible in the device, an external terminating resistor, e.g. 7XV5103-5AA00 must be applied behind the last device (see Fig. 13/66).

In this example, the terminating resistors of the converter cable are active (default), the terminating resistors that are available at some of the protection devices remain inactive. The bus is terminated after the last device with the 7XV5103-5AA00 bus terminating connector or an external resistor (220 Ω). If the last protection device has a switchable terminating resistor, this may also be activated to ensure termination.

Fig. 13/66

RS485 bus with USB converter cable 7XV5710 and several SIPROTEC devices (connection diagram)

Application example

A number of SIPROTEC 3 and 4 protection devices can be centrally operated via their interface with DIGSI via the 7XV5710 USB converter cable. Suitable cables and adapters are available for the various connection types of the SIPROTEC devices. For more information, please refer to catalog sheet 7XV5103. SIPROTEC 4 devices with an RS485 interface may be directly connected and operated with DIGSI 4.

For the connection of individual compact protection devices with the RS485 interface on terminals e.g. 7SJ600, 7SD600, 7RW600, etc.., the adapter cable 7XV5103-2AA00 or the adapter 7XV5103-3AA00 is required (see Fig. 13/67).

The converter cable must only be used on a non-permanent basis because of the lack of galvanic separation. For permanent operation, the FO converters 7XV5652 and 7XV5650/51 should be used. The FO conductor ensures complete galvanic separation between PC and SIPROTEC devices. Corresponding applications may be found at: www.siprotec.com/accessories/7XV56...

Fig. 13/67 Central operation via the RS485 bus

USB converter cable 7XV5710-0AA00	Connection 2 protection	Receiver:
Included on CD or on the Internet at: www.siprotec.com/accessories/7XV5710		+/- 15 kV human body model +/- 6 kV IEC 1000-4-2,
Plug & Play		+/- 12 kV IEC 1000-4-2,
1.8 m		air-gap discharge
Virtual COM port		Permitted: up to 128 receivers on the bus True-fail-safe receiver
USB 2.0 (1.1) connector type A		-7 V +12 V Common-mode range
Pin 1 – Vcc Pin 2 – D- Pin 3 – D+		Thermal protection against output short circuit
Pin 4 - GND		+/- 9 kV human body model
SUB-D 9-pin connector (male) with securing screws		Slew-rate limited for errorless data transmission -7 V +12 V common-mode range
Pin 3 – Tx/Rx- (A) Pin 5 – GND Pin 8 – Tx/Rx+ (B) All other pins are not connected (nc)		Current limiting Thermal shutdown for driver-overload protection
Selectable (S1, S2 ON = terminating resistor selected) +5 V - Pin 3 = 390 Ω Pin 3 - Pin 8 = 220 Ω Pin 8 - Pin 5 = 390 Ω	Handshake	None
	TX/RX switchover	Automatic
	Serial data transmission channels	Half-duplex 2-wire
	Power supply	+5 V via USB (max. 80 mA) Module logs on with 96 mA at the USB
		Max. 38 mA ready (converter on, no data transmission)
		Max. 80 mA full-duplex 4-core operation, (max. data rate)
	Serial transmission rates	300, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 bits/s
	Status indication	Tx and Rx - 3 mm LED red
	Operating temperature	-5 up to +70°C
	Driver software	Windows 98, Windows 98 SE, Windows 2000, ME, XP, Vista 32/64, Windows 7 32/64. No administrator rights required.
	Certification	CE-compliant / RoHS-compliant
	Application	Non-permanent installation with SIPROTEC – devices
	USB converter cable 7XV5710-0AA00 Included on CD or on the Internet at: www.siprotec.com/accessories/7XV5710 Plug & Play 1.8 m Virtual COM port USB 2.0 (1.1) connector type A Pin 1 – Vcc Pin 2 – D- Pin 3 – D+ Pin 4 – GND SUB-D 9-pin connector (male) with securing screws Pin 3 – Tx/Rx- (A) Pin 5 – GND Pin 8 – Tx/Rx+ (B) All other pins are not connected (nc) Selectable (S1, S2 ON = terminating resistor selected) +5 V – Pin 3 = 390 Ω Pin 3 – Pin 8 = 220 Ω Pin 8 – Pin 5 = 390 Ω	USB converter cable 7XV5710-OAA00Connection 2 protectionIncluded on CD or on the Internet at:www.siprotec.com/accessories/7XV5710Plug & Play1.8 mVirtual COM portUSB 2.0 (1.1) connector type APin 1 – VccPin 2 – D-Pin 3 – D+Pin 4 – GNDSUB-D 9-pin connector (male) with securing screwsPin 3 – Tx/Rx- (A)Pin 5 – GNDPin 8 – Tx/Rx+ (B)All other pins are not connected (nc)Selectable (S1, S2 ON = terminating resistor selected)+5 V – Pin 3 = 390 Ω Pin 8 – Pin 5 = 390 Ω Pin 8 – Pin 5 = 390 Ω Serial transmission channelsPin 8 – Pin 5 = 390 Ω Serial transmission ratesStatus indicationOperating temperatureDriver softwareCertificationApplicationCertification

Fig. 13/68

USB converter cable with connector. Default switch position: S1+S2 ON = terminating resistor active Dimensions: $75 \times 32 \times 15$ ($1 \times w \times h$)

ction and ordering data	Description	Order No.
	USB – RS485 converter cable	7XV5710-0AA00
	USB 2.0 /1.1 with connector type A to RS485 with 9-pin SUB-D male connector, pin assignment for SIPROTEC 4 and SIMEAS Q,	
	bus termination switchable, power supply via USB interface,	
	incl. 9-pin female-female gender changer and driver CD	
	For the connection of individual compact protection devices with the RS485	
	interface on terminals, e.g., 7SJ600, 7SD600, 7RW600, etc.,	
	the 7 A V 5 I U 5-2 A AUU adabter cable of the 7 A V 5 I U 5-5 A AUU adabter is reduired	

7XV5820 Industrial Modem and Modem-Router with Switch

Description

Depending on the available infrastructure and transmission requirements, various modems and routers are available for the remote communication with SIPROTEC protection devices using DIGSI.

The existing infrastructure may consist of analog or digital (ISDN) transmission networks, which may be private (internal telephone system) or a leased line. This may determine the corresponding combinations of the modems or routers. A suitable combination usually consists of a desktop device with plug adapter in the office, and a rail-mounted device in the substation (see Application). The railmounted devices may be operated with an optional wide-range power supply adapter with all alternating current networks as well as station batteries.

The desktop analog modem "Pocket 56k" as the office device and the rail-mounted "Modem 56k" in the substation ensure a secure serial data communication with SIPROTEC 3 devices using 8E1 (with parity bit) up to 19.2 kbit/s, or with SIPROTEC devices using 8N1 up to 57.6 kbit/s.

With the same analog modem "Pocket 56k" in the office it possible to establish a connection to SIPROTEC 4 devices with EN100 interfaces in a local Ethernet network using the rail-mounted modem router "MoRoS Modem 56k" in the substation.

Using the digital modem "Pocket ISDN" as a desktop device in the office and the "ISDN TA" as a rail-mounted device in the substation ensures secure serial data communication with SIPROTEC 3 devices using 8E1 (with parity bit) up to 19.2 kbit/s, or with SIPROTEC 4 devices using 8N1 up to 57.6 kbit/s.

With the same digital modem "Pocket ISDN" in the office, it is also possible to communicate with SIPROTEC 4 devices with an EN100 interface module in a local Ethernet network using a rail-mounted ISDN router "MoRoS ISDN" in the substation.

Other combinations, especially with devices from other manufacturers are strictly not recommended.

All versions are suitable for application in control systems, and substations as well as in areas of energy supply and distribution. The modems can be deployed internationally (certificates of approval see "Technical Data"). As a rule, no certification is required for use in internal networks.

Fig. 13/70 Remote control of SIPROTEC 3 and 4 devices over INSYS Pocket to INSYS Modem, mini star-coupler or RS485 bus with DIGSI 4

Example 1: Remote operation of SIPROTEC 3 devices via modem

This application example illustrates remote operation of SIPROTEC 3 protection devices with an optical interface and compact protection devices with an RS485 interface using analog modems (7XV5820-1 and -5) or digital ISDN modems (7XV5820-2 and -6). Connection to protection or bay control RTUs via an optical interface is achieved with a star configuration using cascadable star couplers. The compact protection devices with RS485 interface are connected via a FO-RS485 converter and the RS485 bus system 7XV5103. SIPROTEC 4 devices may be connected optically or electrically, depending on the available service interface.

To ensure secure lightning protection, galvanic separation between the substation modem and the protection devices must be implemented by means of an optical barrier. The substation modem with the 7XV5652 RS232-FO converter is preferably located in a communication or control room while the 7XV5450 star coupler or 7XV5650/51 FO-RS485 converter is located in the first protection cubicle. If the protection devices are to be controlled centrally in the substation using a notebook, this is achieved by plugging a DIGSI cable into the first star coupler, which disables the optical interface and enables the RS232 connection.

Communication with the modems is transparent. Secure data transfer to the SIPROTEC 3 devices is achieved with the data format 8E1 (with parity bit). The data transmission rate depends on the slowest device (9.6 kbit/s or 19.2 kbit/s) and must be set to be equal for all devices. The SIPROTEC 4 devices can then only be operated with this data rate which is relatively slow for SIPROTEC 4.

Fig. 13/71 Remote control of SIPROTEC 4 devices over INSYS Pocket to INSYS Modem, mini star-coupler or RS485 bus with DIGSI 4

Example 2: Remote operation of SIPROTEC 4 devices via modem

This application example illustrates remote operation of SIPROTEC 4 devices with an optical or RS485 interface via analog modems (7XV5820-1 and -5) or the very much faster digital ISDN modems (7XV5820-2 and -6). Connection of the protection or RTU devices with optical interface is achieved via cascadable star couplers. The devices with RS485 interfaces are connected via the FO-RS485 converter and the RS485 bus system 7XV5103.

To ensure secure lightning protection of the RS485 bus, galvanic separation should always be implemented between the substation modem and the protection devices by means of an optical barrier. The substation modem with the RS232-FO converter 7XV5652 is preferably located in a communication or control room while the first FO-RS485 converter 7XV5651/50 is located in the first protection cubicle ("A1"). If the protection devices are to be centrally controlled in the substation, an additional star coupler must be used ("A2"). By plugging the DIGSI cable into the first star coupler, the optical interface is disabled and the RS232 connection is established. If no mini star coupler is used, central operation is only possible via the electrical interface of the RS232-FO converter. The modem plug must be disconnected for this purpose.

A secure communication via the modems is possible with the standard data format 8N1, with data compression and error correction. The data transmission rate is determined by the slowest device (38.4 kbit/s or 57.6 kbit/s) and must be set to be the same on all devices.

13

Fig. 13/72 Remote control of SIPROTEC 4 devices with EN100 Ethernet module with DIGSI 4 over INSYS Pocket Modem/ISDN to INSYS Modem/ISDN router with switch and external optical/electrical Switch

Example 3: Remote operation of SIPROTEC 4 devices with Ethernet interfaces via a modem-router

This application example shows remote operation of SIPROTEC 4 protection devices with an optical or electrical EN100 Ethernet interface via an analog or digital ISDN office modem, (7XV5820-1 or -2), to a modem or digital ISDN router (7XV5820-7 and -8). This router with an integrated 4-way switch together with the RUGGETCOM switches connected via a patch cable form a local subnet.

The protection or RTU devices with optical EN100 interface are connected to the RUGGETCOM switches in a ring structure. The protection / RTU devices with an electrical EN100 interface are directly connected to the modem-router and switch or to the electrical interfaces of the RUGGETCOM switches by means of double-shielded patch cables. To minimize any possible interference, the electrical connections with patch cables should be kept as short as possible. Remote connection from the office to the substation is established by means of a password-protected DUN connection under Windows. The connection is then "transparent" and the protection devices can be operated with DIGSI 4 in the local subnet with their own IP addresses.

If the protection devices are to be conveniently centrally controlled using a notebook in the substation, the notebook with an Ethernet interface can be logged into the local subnet with a patch cable. Secure communication via modems is performed at 57.6 kbit/s, with standard data format 8N1 with data compression and error correction.

13

7XV5810-1AA00 and 7XV5820-2AA00 INSYS Pocket Modem

Description

Data communication in the private, commercial and industrial applications is becoming ever more important.

INSYS Pocket Modem 56k and INSYS Pocket ISDN TA fascinate with their sophisticated engineering and their shapely compact metal housing.

The devices are ideal as remote stations for our DIN rail series.

Technical Data

Modem	7XV5820-1AA00	7XV5820-2AA00
Network interface, line requirement	Analog telephone network	ISDN net, S0/I.430 Euro ISDN DSS1
Data transmission rate	Up to 56 kbits/s	64 kbit/s
Software update	Flash	Flash
Approvals	R & TTE, CTR21	R & TTE, CTR3
Application	For international use	Europe
Standards	Developed according to CE directives, manufactured according to ISO 9002	Developed according to CE directives, manufactured according to ISO 9002
Features		
Configuration	Remote configuration, AT commands	Local, via PC terminal, remote via ISDN
Connection	Auto answer mode, hardware-handshake Speed adjustable, sleep mode, auto-bauding, display caller ID	Auto answer mode with optional phone number verification
Data format	10 and 11 bit: 7E1, 7O1, 7N2, 7E2, 7O2, 8N1, 8E1, 8O1, 8N2	B channel: V.110, X.75, V.120, X.25/X.31, HDLC (PPP), T70NL, T90NL D channel: 1TR6 DSS1, VNx
Protocols	V.92, V.90, V.34+, V.34, V.32bis, V.32, V.23, V.22bis, V.22, V.21, Bell Norm 103/212, Fax class 1/2	_
Compression	MNP5, V.42 bis, MNP 10, 10 EC, V.44	-
Error correction	MNP 2/3/4 and V.42	-
Security functions	Security call-back, alarm transmission, SMS to fixed network or as fax over AT command, selective call answer, line-in-use detection, selectable key-abort	Access protection via approved phone number (accessable), password protection of remote configuration
Electrical features		
Power supply	9 10 V DC (with plug power supply 230 V AC)	5 V DC (with plug power supply 100 to 230 V AC)
Consumption	Approx. 140 mA DC	Max. 100 mA at 5 V/500 mW
Interface to application	RS232, 9-pin SUB-D jack	RS232, 9-pin SUB-D jack
Interface to network	RJ-12 (Western)	RJ-45 connector
Physical features		
Size in mm (w x d x h)	71 x 128 x 22	71 x 128 x 22
Temperature range	0 to 55 °C	0 to 55 °C
Humidity	0 to 95 % (non-condensing)	0 to 95 % (non-condensing)

Fig. 13/74 7XV5820 modem

Technical data

7XV5820 INSYS Modem 56k Profi 7XV5820 INSYS ISDN TA Profi

Description

With the INSYS Modem 56k Profi any application can be connected to the analog telephone network, which is available worldwide. The INSYS ISDN 4.0 can easily be connected to the digital ISDN network.

Both modems enhance pure data communication with alarming and security functions: alarms with a user-defined text as an SMS, fax or e-mail are triggered by digital inputs. Data connections (INSYS Modem 56k) and remote control are protected by passwords. The INSYS 56k modem establishes a connection only to a predefined number in response to an incoming call if the security call-back is activated. Selective call answer allows only data calls from specified numbers.

The digital outputs can be controlled remotely. The INSYS 56k modem controls these outputs by data connection as well as by DTMF tones from a tone dial phone. The digital outputs can be configured to display the connections status.

Modem	7XV5820-5AA00	7XV5820-6AA00	
Network interface	2-wire leased or dial-up line	S0/1.430 Euro ISDN network, DSS1	
Data transmission rate	Max. 56 kbit/s	Max. 68 kbit/s (channel building 128 kbit/s)	
Digital in-/outputs	2 alarm inputs/2 control outputs		
Watchdog	Yes	-	
Software update	-	Flash update	
Approvals	-	R & TTE, CTR3	
Application	-	Europe	
Standards	-	Developed according to CE directives	
Features			
Configuration	AT commands via serial line, remote configuration	AT commands, configuration over serial line, remote configuration, CAPI	
Connection	Auto-answer mode, idle connection ctrl, auto-ba	uding, number storage, hard-/software handshake	
	International settings, caller ID presentation, SMS to fixed-line telephone network, fixed serial speed, sleep mode		
Alarm functions	Triggered by alarm input or AT command: send SMS, (send fax and collective fax message 7XV5820-5AA00), establish data connection, transmit message over data connection		
Output control	AT command (local & remote) DTMF	AT command, configurator, connection status	
Security functions	Password protection for connection, remote control and security callback		
	Selective call answer, watchdog	Number identification (CLIP)	
Data formats	10 and 11 bit: 7E1, 7O1, 7N2, 7E2, 7O2, 8N1, 8E1, 8O1, 8N2		
	Bit transparent		
Protocols, error correction, compression	V.32bis, V.32, V.23, V.22, V.22bis, V.21, V.34+, V.90, V.92, Bell Norm 103/212, Fax Class ½, MNP 2/3/4, V.42, MNP 10, MNP 10 EC, MNP 5 V.42bis	B channel: X.75, X.25/X.31, HDLC/PPP, V.110, V.120 asynchronous; D channel: X.31	
Electrical features			
Supply voltage	10 to 60 V DC	10 to 60 V DC	
Current consumption	Transmission: 200 mA (at 12 V) Standby: 160 mA (at 12 V)	40 mA	
Inuts/outputs	SPDT (single-pole double-throw) switches by galvanically isolated relays, max. voltage 30 V DC/42 V AC, max. current: 1 A DC/0.5 A AC		
Serial line speed	300 bit/s to 115.2 kbit/s	1.2 to 230.4 kbit/s	
Physical features			
Housing size	55 x 110 x 75 (w x d	x h) in mm	
Ambient temperature	0 to 55 °C	0 to 70 °C	
Humidity	0 to 95 % (non-condensing)	0 to 90 % (non-condensing)	

7XV5820-7/-8AA00 Modem-Router-Switch (MoRoS)

Description

Modem-Router-Switch by INSYS combines a modem, a router and a 4-port switch. The dial-in and dial-out functionality enables remote maintenance and operation of devices in an Ethernet network.

The MoRoS device is available with an integrated analog modem or with ISDN-TA. The integrated 4-port switch allows for direct connection of up to four network devices. The MoRoS device has an international 56k modem for global application. The configuration of the MoRoS device is easy and fast via a web interface.

MoRoS by INSYS is a device that combines modem, router and switch functions for the remote maintenance of Ethernetenabled products, e.g. PLC, HMI, etc.

Function overview

- Integrated communication module (analog modem or ISDN-TA)
- Dial-in
- Dial-out (dial-on-demand)
- 4-port switch with 10/100 Mbits/s
- DHCP server and client
- Integrated configuration interface with help function
- Authentication for up to 10 users (dial-in)
- Dialing filter for dial-out
- Authentication via PAP, CHAP, MS-CHAP, MS-CHAP 2
- Easy configuration
- Local or remote configuration
- Firmware update (local and remote)
- 2 digital inputs and outputs
- Buffered RTC (real time clock)
- Full NAT
- DNS relay
- Serial Ethernet Server 1)
- VPN 1)
- Firewall 1)

1) version MoRoS PRO only

Technical data

Modem	7XV5820-7/-8AA00 MoRoS
Certifications	R & TTE, CTR2 (dial-up line), CTR3 (ISDN), CE
Dial-up line	Transmission rate 56 kbits/s
ISDN	Transmission rate 64 kbits/s
Configuration	Web interface, AT command (via web interface) local and remote

Fig. 13/75 7XV5820 Modem-Router-Switch (MoRoS)

Router	
Function	Dial-in, dial-out
Authentication	10 users for dial-in, authentication via PAP, CHAP, MS-CHAP, MS-CHAP 2
Dialing filter (dial-out)	Filtering of IP addresses and/or ports
Configuration	Web interface, AT command (via web interface), local and remote
DHCP server and client	
Watchdog (ext. hardware watchdog)	
RTC (buffered real time clock)	
Full NAT	
VPN ¹⁾	
Firewall ¹⁾	
Serial Ethernet server ¹⁾	
Switch	
Ports	4
Operating mode	10/100 Mbits/s for full and half duplex operation
Auto detect	Automatically recognizes patch and cross-over cables; automatic speed adjustment
Configuration	
Web interface	Local/remote
Additional features	Digital inputs and outputs, firmware update local/remote
Supply	
Voltage	10 V to 60 V DC
Power input	Approx. 2.5 W (during connection)
Physical features	
Housing size	70 x 110 x 75 mm
Operating temperature	0 to 55 °C
Humidity	0 to 95 % (non-condensing)
Weight	10.58 oz

Selection and ordering data

Description	Order No.
7XV5820 modem/modem-router	7XV5820-□AA00
	A
Analog Pocket Modem 56k	
Desktop device, with plug-in power supply 230 V AC	1
Digital Pocket Modem ISDN 64k	
Desktop device, with plug-in power supply 100 to 230 V AC	2
Analog Modem 56k	
for DIN rail-mounting, power supply 10 to 60 V DC	5
Digital Modem ISDN 64k	
for DIN rail-mounting, power supply 10 to 60 V DC	6
Analog Modem-Router	
with 4-way switch for DIN rail-mounting, power supply 10 to 60 V DC	7
Digital ISDN Router	
with 4-way switch for rail-mounting 10 to 60 V DC	8

Modem/Modem-Router Accessories

7XV5820-0AA10

Data cable from modem to 7XV5300, 7XV5450, 7XV5550, 7XV5652 2 x SUB-D connector, 9-pin female, length 2 m

7XV5850 Ethernet Modems for Office Applications

Function overview

- DIGSI supports the administration and the setting-up of connections via the Ethernet network.
- RS232 interfaces for data transfer and configuration of the modem.
- Serial baud rate and data format (RS232) for the terminal devices is selectable from 2400 Bd up to 57.6 kBd with data format 8N1, 8E1.
- An Ethernet interface LAN to the 10/100 Mbit network.
- Better security with password protection and IP address selection is possible.

Description

A control PC and protection units can exchange serial data via an Ethernet network using two Ethernet modems 7XV5850 and 7XV5655. Connection to the Ethernet modem is in each case made via the asynchronous serial interface of the terminal units. In the modem, the serial data is packed into the secure IP protocol as information data, and is transferred between the modems using the Ethernet connection. Conformity with the standard and gapfree transmission of serial DIGSI or IEC 60870-5-103/101 telegrams via the network is ensured by the modem which receives the serial telegram communication and packs the serial IEC telegrams into blocks for communication via the Ethernet. The data is transmitted in full duplex mode; serial control wires are not supported. Connec- tion is established between the IP address of the dialing modem in the office and the IP address of the pick-up modem in the substation, and is configured prior to dialing up with DIGSI by means of AT commands via the RS232 interface.

The substation modem may be configured to have password protection, and provides the additional security feature, whereby access is only permitted from defined IP addresses, e.g. only that of the office modem. The modem is accessed with DIGSI Remote like a normal telephone modem with the exception that instead of telephone numbers, IP addresses are assigned by the network administrator for each modem.

Fig. 13/77 Operation of various SIPROTEC protection unit generations via Ethernet modems

Using the office computer and DIGSI 4, both substation 1 and 2 may be dialed up via Ethernet modems. A TCP/IP point-topoint data connection is established between the office modem and corresponding substation modem when dialed up via the network. This is maintained until the office modem terminates the connection. The serial data exchange takes place via this data connection, with the modem converting the data from serial to Ethernet with full duplex mode. Between the office modem and the office PC, the highest baud rate is always used, e.g. 57.6 kB for SIPROTEC 4 units. The serial baud rate of the substation modem is adapted to the baud rate required by the protection relays, e.g. substation modem 1 with 57.6 kB for SIPROTEC 4 and substation modem 2 with 9.6 kB for SIPROTEC 3 units. These settings are only defined once in the modem. The Ethernet modems are integrated in DIGSI 4 similar to telephone modems. Instead of the telephone number, the preset IP address assigned to the modem is selected.

If later an Ethernet connection is available in the substation, the existing modem can be replaced by an Ethernet modem. The entire serial bus structure and cabling may remain unchanged.

Technical data

Connections

RS232 interface 9-pin, SUB-D connector Ethernet 10BaseT, 10/100 Mbit, RJ45 Power supply (see below)

Desktop device for office use 7XV5850-0AA00

Housing	Desktop housing, plastic, charcoal grey, 46 x 109 x 74 (W x H x D) in mm
Supply	vvide-range plug-in power supply, auxiliary voltage 100 – 240 v AC
Scope of supply	With RS232 cable for Notebook/PC. With Ethernet cable (cross-over) 2 m
Indication (8 x LED)	
Power	Operating voltage o.k.
RS232 TxD	Transmitting data to RS232
LAN Tx	Transmitting data to LAN
Error	Error on RS232
System	RS232 connection established
RS232 RxD	Receiving data from RS232
LAN Rx	Receiving data from LAN
Link LAN	LAN connection established

Selection and ordering data

Description Ethernet Modem

Order No. 7XV5850 - 0AA00

Ethernet modem for serial, asynchronous transmission of data up to 57.6 kbit via the 10/100 Mbit Ethernet and configuration software

Desktop device (office version) Connection to Ethernet via RJ45 connector, serial connection SUB-D 9-pin socket including wide-range power supply 100/240 V AC With cross-over Ethernet patch cable 2 m for configuration With serial connection cable to PC 2 m 13 Relay Communication Equipment / 7XV5850

Accessories for Communication 6XV8100 F.O. Cable

and ordering data	Description	Order No.
	F.O. cable for indoor application with FSMA or ST connectors	6XV8100-0DA□1-0A□□ ¹⁾
	Plastic F.O. link cable W/2 Fibers for links inside a cubicle, fiber type PMMA S980/1000PE-insulation diam. = 2.2 mm black good resistance to oil, petrol, acid and leach, cable for simple systems of loads, base material L46916-U2-U19, V-2x 15980/1000PE	
	Connector	
	Not used	
	Not used	
	Both sides with FSMA connectors prefabricated	2
	Not used	
	Both sides with ST connectors pretabricated	4
	Not used	
	F.O. duplex cable for indoor and outdoor application with FSMA , LC or ST connectors	6XV8100-0BD□1-□□□□ ¹⁾
	Fiber-optic duplex data line for in- and outdoors, 2 break-out elements fiber type glas $62.5/125 \mu$ m, halogen-free and flame-retardant, non-metallic re external diam. = 8.3 mm, black; internal diam. = 1.8 mm, orange; base material L46900-G2-J1, AT-VHBH 2G62.5/125 3.2B200/0.9F500	odent prot.
	Connector	
	None	0
	One side with FSMA connectors	1
	Both sides with FSMA connectors	2
	One side ST, other side LC connectors	3
	Both sides with ST connectors	4
	One side FSMA, other side ST connectors	5
	Both sides with LC connectors	6
	F.O. duplex cables for indoor application with FSMA , LC or ST connectors	6XV8100-0BE
	Fiber-optic duplex data line for indoors, 2 break-out elements fiber type glas $62.5/125 \mu$ m, halogen-free and flame-retardant, internal diam. = 1.7 mm, orange; external diam. = 2.8 x 4.5 mm, orange; base material I-VHH 2 x 1 x G62.5/125	
	Connector	
	Without	0 1
	One side with FSMA connectors	1 1
	Both sides with LC connectors	1 4
	One side ST, other side LC connectors	1 7
	Both sides with FSMA connectors	2 1
	Both sides with ST connectors	4 1
	One side FSMA, other side ST connectors	5 1

Accessories for Communication 6XV8100 F.O. Cable

Selection and ordering data	Description	Order No.
	F.O. duplex cables for indoor and outdoor application with MTRJ and ST connectors	6XV8100-0BF□1-□□A□ ¹⁾
	Fiber-optic duplex data line for in- and outdoors, 2 break-out elements fiber type glas 62.5/125 μ m, halogen-free and flame-retardant, non-metallic r external diam. = 8.3 mm, black; internal diam. = 1.8 mm, orange; base material AT-VHBH 2G62.5/125	odent prot.
	Connector	
	One side with MTRJ connector,	
	other side prepared for ST connector	2
	Both sides with MTRJ connector	3
	F.O. duplex cables for indoor application with MTRJ and ST connectors	6XV8100-0BG□1-□□0 ¹⁾
	Fiber-optic duplex data line for indoors, 2 break-out elements fiber type glas 62.5/125UM, halogen-free and flame-retardant internal diam. = 1.7 mm, orange; external diam. = 2.8 x 4.4 mm, orange; base material I-VHH 2 x 1 x G62.5/125	
	Connector One side with MTRJ connector, other side prepared for ST connector	2
	Both sides with MTRJ connector	3

7KE600 Ethernet Patch Cable

Selection and ordering data	Description	Order No.	
	Ethernet patch cable with double shield (SFTP)	7KE6000-8GD0□-[
	LAN connector on both sides		
	SIMEAS R <> HUB	A	
	HUB <> PC		
	Length 0.5 m	0 0	5
	Length 1.0 m	0 1	0
	Length 2.0 m	0 2	? 0
	Length 3.0 m	0 3	8 0
	Length 5.0 m	0 5	5 O
	Length 10.0 m	1 0	0 0
	Length 15.0 m	1 5	5 O
	Length 20.0 m	2 0	0 0
	Ethernet patch cable, cross-over connection with double shield (SFTP) LAN connector on both sides	7KE6000-8GE0□-[
	HUB <> HUB	A	
	SIMEAS R <> PC		1
	Length 0.5 m	0 0	5
	Length 1.0 m	0 1	0
	Length 2.0 m	0 2	? 0
	Length 3.0 m	0 3	8 0
	Length 5.0 m	0 5	5 O
	Length 10.0 m	0 5 1 0	5 0 0 0
	Length 10.0 m Length 15.0 m Length 15.0 m	0 5 1 0 1 5	0 0 0 0 0 0

13

Test Equipment and Accessories

7XV75 Test Switch	14/3
7PA22/23 Auxiliary Relays for Various Applications	14/5
7PA26/27/30 Auxiliary Relays for Various Applications/ Trip Circuit Supervision	14/9
7TS16 Annunciation Relay	14/15
3RV16 Voltage Transformer Circuit-Breaker	14/17
4AM Auxiliary Current Transformers and 7XR Isolating Transformers	14/21

Page

7XV75 Test Switch

Description

The 7XV75 test switch serves for testing protection relays including CT circuits and command contacts. With the help of the switches located on the front side, the current and voltage inputs as well as the circuits of the protection relay to be tested are interrupted and applied to the front side. Via this plug-in connector, currents and voltages can be fed by an injection test set and the different commands and indications can be tested.

Function overview

The following versions are available in a flush-mounting housing:

- For feeder protection without an open star point
- For feeder protection without an open star point and with additional contacts
- For feeder protection without an open star point for two CT cores or separate earth-fault CT
- For feeder protection with an open star point
- For feeder protection with an open star point and independently switchable trip and CT circuits
- For a 3-winding transformer differential protection
- For feeder protection without an open star point with 4th CT and 4th VT input (three-stage test switch)

Technical data	Test switch		
rechnicaraata	Rated operating voltage $V_{\rm p}$	400 V AC	
	Rated operating current I_n	6 A	
	Test current capacity	for 1 s 150 A	
	1 /	for 10 s 60 A	
	Unit design		
	Metal housing	7XP20	
	Dimension	1/6 of 19" wide	
	Weight	Approx. 3.4 kg	
Selection and orderina data	Description		Order No.
	7XV75 test switch		<i>7XV750</i> □-□ <i>C</i> A00
	Without open star point for feede With open star point for feeder pr For 3-winding transformer differ Without open star point for two 0 Without open star point for feede Without open star point for feede With open star point and indeper	er protection rotection ential protection CT cores or separate earth-fault CT er protection with 4 th CT and 4 th VT input (three-s er protection and with additional contacts indently switchable trip and CT circuits for feeder p	$ \begin{array}{r} 0\\ 1\\ 2\\ 3\\ tage test switch) 6\\ 7\\ rotection 8\\ \end{array} $
	Front test plug connection		
	With 16-pin Harting connector	With 16-pin Harting connector	
	With 16 banana connectors (not a	available for 7XV7506)	1
	Connecting cable 7XV6201 for 7XV	/75 test switch with 2 meter cable	
	with 16-pin Harting connector an	nd 17 isolated	
	banana connectors 4 mm with ca	ble marks	7XV6201-5
	with 16-pin Harting connector ar	nd 17 cable	714/6224
	end sleeves with cable marks		7XV6201-6

7PA22/23 Auxiliary Relays for Various Applications

Fig. 14/2 7PA2 auxiliary relays

Description

Due to their quality, reliability and design, these relays are optimal for applications requiring high reliability and availability such as power stations, substations, railway and industrial plants. Typical examples include petrochemical industry, chemical industry, cement industry, rolling mills etc.

The relays comply with the IEC, EN, IEEE standards (type and routine test) and bear the CE mark.

The robust switch contacts are characterized by high make/break capacity, overload capability and continuous current intensity capacity; thus perfect insulation is obtained. Direct control of high-voltage and medium-voltage switchgear is possible.

Their high degree of protection and the transparent cover ensure reliable operation in tropical and/or salty sea air ambient conditions.

Technical data for 7PA22 and 7PA23

	Switching contacts	
(Continuous current	10 A
(Overload capability	80 A/200 ms
	1 /	150 A/10 ms
	Switching current/voltage	40 A/0 5 s/110 V DC

Breaking capacity for 10⁵ operating cycles

				• •
	Non-inductive		Inductive, 20 ms	
	1 contact	2 contacts in series	1 contact	2 contacts in series
V DC	А	А	А	А
24	6.6	12.7	3.2	6.0
60	2.6	4.9	1.4	2.7
125	1.2	2.2	0.6	1.1
220	0.6	1.1	0.3	0.6

For details see characteristics

 $V_{\rm max}$, open contact Mechanical service life Operating temperature 250 V DC/400 V AC 10⁷ operating cycles - 10 °C to + 55 °C 14 °F to 131 °F

Max. permissible humidity 93 % at 40 °C/104 °F Seismic stress class according to IEEE 501 Degree of ZPA 3 g acceleration at 33 Hz

Standard

Electrical tests performed according to IEC 60255				
- Dielectric test	2 kV/50 Hz/ 1 min			
- Surge withstand test	5 kV/1.2/50 μs			
- Insulation	> 2000 MΩ/ 500 Vpeak to peak			
Flammability tests accord	ding to IEC 60692-2-1			
Plastic materials	UL 94: VO, IEC 60695: 850 °C/30 s 1562 °F/30 s			
Degree of protection acc. to IEC 60529	Relay: IP 40 With socket cover: IP 50			
Climatic stress test accord	ding to			
dry heat	Non-dissipating unit +70 °C/96 h 158 °F/96 h Dissipating unit +55 °C/96 h 131 °F/96 h			
 IEC 60255-7 dry heat IEC 60068-2-30 cyclic humid heat 	Non-dissipating unit +70 °C/96 h 158 °F/96 h Dissipating unit +55 °C/96 h 131 °F/96 h +55 °C/12 h 131 °F/12 h			
- IEC 60255-7 dry heat - IEC 60068-2-30 cyclic humid heat - IEC 60068-2-1 cold	Non-dissipating unit +70 °C/96 h 158 °F/96 h Dissipating unit +55 °C/96 h 131 °F/96 h +55 °C/12 h 131 °F/12 h 100 cycles Non-dissipating unit -10 °C/2 h 14 °F/2 h			

14

7PA22 Fast-acting lockout relay

Description

The bistable 7PA22 is a fast-acting lockout relay with eight changeover contacts and is plugged into a mounting frame equipped with a plug-in socket (type 7XP9010) with screw-type terminals at the rear.

Functions

No continuous power consumption. Position indication on the front side. Mechanical reset pushbutton.

Position memory with two positions (e.g. for yes/no, open/close, auto/manual, local/remote etc.).

Technical data

While the auxiliary voltage is being supplied to the SET coil, the reset pushbutton must not remain pushed longer than 20 s.

Rated voltages and consumption

$V_{\rm N}$	Voltage range	Consumption while switching
V DC	V DC	
24	19-26	
30	24 - 33	_
60	48-66	$\leq 48 \text{ W}$
110	88-121	_
125	100 - 137	_
220	176 - 242	

Pick-up time: <10 ms

General description see page 14/5. Refer to part 15 for dimension drawings.

Fig. 14/3 Connection diagram

rdering data	Description	Order No.
	7PA22 fast-acting lockout relay	7PA22□1-□
	Auxiliary voltage	
	24 V DC	1
	60 V DC	2
	110 V DC	3
	220 V DC	4
	125 V DC	5
	30 V DC	6
	Socket	
	without socket	0
	with flush-mounting socket 7XP9010-1	1
	Description	Order No.
	Socket as spare part	
	Flush mounting	7XP9010-1
	Surface mounting	7XP9012-0

Accessories

Selection and o
7PA23 Fast-acting lockout relay

Description

The bistable 7PA23 is a fast-acting lockout relay with four changeover contacts and is plugged into a mounting frame equipped with a plug-in socket (type 7XP9011) with screw-type terminals at the rear.

Functions

No continuous power consumption. Position indication on the front side. Mechanical reset pushbutton.

Position memory with two positions (e.g. for yes/no, open/close, auto/manual, local/remote etc.).

Technical data

While the auxiliary voltage is being supplied to the SET coil, the reset pushbutton must not remain pushed longer than 20 s.

Rated voltages and consumption

$V_{\rm N}$	Voltage range	Consumption while switching
V DC	V DC	
24	19 - 26	
30	24 - 33	
60	48 - 66	$\leq 24 \text{ W}$
110	88 - 121	
125	100 - 137	
220	176 – 242	

Pick-up time: < 8 ms

General description see page 14/5. Refer to part 15 for dimension drawings.

Fig. 14/4 Connection diagram Contacts represented in position RESET

+|B1

and ordering data	Description	Order No.
	7PA23 fast-acting lockout relay	7PA23□1-□
	Auxiliary voltage	
	24 V DC	1
	60 V DC	2
	110 V DC	3
	220 V DC	4
	125 V DC	5
	30 V DC	6
	Socket	
	without socket	0
	with flush-mounting socket 7XP9011-1	1
25	Description	Order No.
	Socket as spare part	
	Flush mounting	7XP9011-1
	Surface mounting	7XP9013-0

14 Test Equipment and Accessories / 7PA

7PA26/27/30 Auxiliary Relays for Various Applications/Trip Circuit Supervision

Description

Due to their quality, reliability and design, these relays are optimal for applications requiring high reliability and availability such as power stations, substations, railway and industrial plants. Typical examples include petrochemical industry, chemical industry, cement industry, rolling mills etc.

The relays comply with the IEC, EN, IEEE standards (type and routine test) and bear the CE mark.

The robust switch contacts are characterized by high make/break capacity, overload capability and continuous current intensity capacity; thus perfect insulation is obtained. Direct control of high-voltage and medium-voltage switchgear is possible.

Technical data for 7PA26 and 7PA27

Switching contacts	
Continuous current	10 A
Overload capability	80 A/200 ms
	150 A/10 ms
Switching current/voltage	40 A/0.5 s/110 V DC

Breaking capacity for 10⁵ operating cycles

	0 1	1	1	0 /
	Non-inductive		Inductive, 20 ms	
	1 contact	2 contacts in series	1 contact	2 contacts in series
V DC	А	А	А	А
24	6.6	12.7	3.2	6.0
60	2.6	4.9	1.4	2.7
125	1.2	2.2	0.6	1.1
220	0.6	1.1	0.3	0.6

For details see characteristics

$V_{\rm max}$, open contact
Mechanical service life
Operating temperature

250 V DC/400 V AC 10⁷ operating cycles - 10 °C to + 55 °C 14 °F to 131 °F

Max. permissible humidity 93 % at 40 °C/104 °F

Technical data for 7PA30

Contacts

Permanent current	8 A
Instantaneous current	15 A
Making capacity	15 A/4 s/110 V DC
Breaking capacity	0.3 A/110 V DC
Umax opened contact	250 V DC/400 V AC
Mechanical life	10 ⁷ operations
Operating temperature	-10 °C +55 °C
Storage temperature	-30 °C +70 °C
Operating humidity	93 %/40 °C

Standards

Electrical test performed acc. to IEC 60255-5			
Dielectric test	2 kV / 50 Hz / 1 min		
Surge withstand test	5 kV / 1.2 / 50 μs		
Insulation	$>100 \text{ M}\Omega / 500 \text{ V DC}$		
Inflammability tests Plastic materials	UL94: VO		
Degree of protection acc. to IEC 60529	Relay: IP40		
Climatic stress test acc.	to IEC 60068-2		
Dry cold, operation	- 10 °C		
Dry heat, operation	+ 55 °C		
Storage and transport	- 25 °C + 70 °C		

Constructions standards (Cont'd)

Immunity test EMC

EN 60255-22-1	High frequency 1 MHz burst disturbance test: Test level: 1 MHz, 400 imp/s, 2 s Common mode: 2,5 kV Differential mode: 1 kV
EN 61000-4-4	Electrical Fast transient burst: Test level 4 kV, 2.5 kHz, 1 min · 2 kV, 5 kHz, 1 min
EN 61000-4-5	Surge 8/20 µs (current) 1.2/50 µs (voltage) Common mode: 2 kV- Differential mode: 1 kV
EN 61000-4-3 EN 61000-4-3	Radiated electromagnetic field: Test level: 80-1000 MHz, 10 V/m, 80 % AM (1 kHz) Digital telephones radiated electromagnetic field: Test level: 900 ± 5 MHz, 10 V/m, 50 % (200 Hz) 1.89 GHz \pm 10 MHz, 10 V/m, 50 % (200 Hz)
EN 61000-4-6	Conducted disturbances in- duced by radio frequency fields. Test level: 0.15-80 MHz, 10 V, 80 % AM (1kHz)
EN 61000-4-2	Electrostatic discharges: Test level: Contact \pm 15 kV; Air mode \pm 15 kV
EN 61000-4-8	Power frequency magnetic field: Test level: 100 A/m 1 min · 1000 A/m 1 s
EN 55011 Class A	$\begin{array}{l} \mbox{Emission test: Test level: Cover:} \\ 30-230 \mbox{ MHz, 40 } dB(\mu V/m) \\ (quasi peak)-10 \mbox{ m} \\ 230-1000 \mbox{ MHz, 47 } dB(\mu V/m) \\ (quasi peak)-10 \mbox{ m} \\ Power supply: \\ 0.15-0.5 \mbox{ MHz, 79 } dB(\mu V) \\ (quasi peak)/ 66 \mbox{ dB average val.} \\ 0.5-5 \mbox{ MHz, 73 } dB(\mu V) \\ (quasi peak)/ 60 \mbox{ dB average val.} \\ 5-30 \mbox{ MHz, 73 } dB(\mu V) \\ (quasi peak)/ 60 \mbox{ dB average val.} \\ \end{array}$

Selection and ordering data

7PA26 Monostable fast-acting relay

Description

The monostable 7PA26 has eight changeover contacts.

Fig. 14/6 Connection diagram

Surface mounting

Technical data

Rated voltages and consumption

	0	1		
V _N	Voltage range	Consumption		
V DC	V DC	mA		
7PA26020)			
24/30	20 - 33	278		
60	48 - 66	100		
110/125	88 - 138	55		
220	176 - 242	28		
7PA26□2	1	Consum _] Normal	ption Peak	
24/30	19-36	50	0.0.4/20	
60	42 - 72	20	0.8 A 20 ms	
110/125	77 – 150	14	0.2.4/20	
220	154 - 264	7	0.3 A 20 ms	

• Pick-up time:

7PA26□20 < 20 ms 7PA26□21 < 10 ms

• Drop-out time: < 40 ms

General description see page 14/5. Refer to part 15 for dimension drawings.

Description	Order No.
7PA26 monostable relay with 8 changeover contacts	7PA26□2-□AA00-□
Auxilian voltage	
24/30 V DC	1
60 V DC	2
110/125 V DC	3
220 V DC	4
Standard, 20 ms	0
Fast, 10 ms	1
Socket	
without socket	0
with flush-mounting socket 7XP9010-3	1
with surface-mounting socket 7XP9012-0	2
Description	Order No.
Socket as spare part	
Flush mounting	7XP9010-3

Accessorie

7XP9012-0

7PA27 Monostable fast-acting relay

Selection and ordering data

Description

The monostable 7PA27 is a fast-acting relay with four changeover contacts.

Technical data

Rated voltages and consumption

$V_{\rm N}$	Voltage range	Consum Normal	ption Peak
V DC	V DC	mA	
24/30	19-36	28	1 A/20 ms
60	42 - 72	12	1 A/20 ms
110/125	77 – 150	8	0,3 A/20 ms
220	154 - 264	6	0,3 A/20 ms
• Pick-up time:		< 8 m	15
• Drop-out time:		< 40 m	15

General description see page 14/5. Refer to part 15 for dimension drawings.

7XP9011-2

7XP9013-0

Description	Order No.
7PA27 monostable fast-acting relay	7PA27□2-0AA00-□
Auxiliary voltage 24 / 30 V DC	1
60 V DC	2
110 / 125 V DC	3
220 V DC	4
Socket	
without socket	0
with flush-mounting socket 7XP9011-2	1
with surface-mounting socket 7XP9013-0	2
Description	Order No.

Socket as spare part Flush mounting

Surface mounting

7PA30 Three-phase Trip circuit supervision

Description

The relay is for supervision of the trip circuit of a circuit breaker with three selective trip coils. The trip circuit wiring is supervised from the positive supply to the negative supply whilst the circuit breaker is open or closed.

Functions

The design, quality and rugged construction of the relay make it suitable for applications requiring high levels of reliability/ dependability. The high degree of protection guarantees reliable operation over a wide temperature range, even under extreme environmental conditions.

The relay has been tested in accordance with IEC, EN and IEEE standards. The relay is CE marked. The supervision current is always less than 1.4 mA thus avoiding unwanted operation of the trip coil. Correct operation is shown via a green LED.

Fig. 14/8 Connection diagram for 3-phase relay

Standard voltages and consumption

$V_{ m N}$	Voltage range	Consumption	Impedance per phase	Pickup Drop out V	/oltage
V DC	V DC	mA	kΩ/s	V DC	
24/30	18 - 33	35	20	between	12 and 18
60	42 - 66	20	44		36 and 42
110/125	77 - 138	20	94		66 and 77
220	154 - 275	15	200		132 and 154

Drop-out time: between 150 ms and 400 ms

Description	Order No.		
7PA30 trip circuit supervision (three-phase)	7PA30□2-3AA00-□		
Auxiliary voltage 24/30 V DC	7		
60 V DC	2		
110/125 V DC	3		
220 V DC	4		
Socket without socket	0		
with flush-mounting socket 7XP9010-4	1		
with surface-mounting socket 7XP9012-0	2		
Description	Order No.		
Socket as spare part			
Flush mounting	7XP9010-4		
Surface mounting	7XP9012-0		

Selection and ordering data

7PA30 Single-phase Trip circuit supervision

Description

The relay is for supervision of the trip circuit of a circuit breaker with one trip coil. The trip circuit wiring is supervised from the positive supply to the negative supply whilst the circuit breaker is open or closed.

Functions

The design, quality and rugged construction of the relay make it suitable for applications requiring high levels of reliability/ dependability. The high degree of protection guarantees reliable operation over a wide temperature range, even under extreme environmental conditions.

The relay has been tested in accordance with IEC, EN and IEEE standards. The relay is CE marked. The supervision current is always less than 1.4 mA thus avoiding unwanted operation of the trip coil. Correct operation is shown via a green LED.

Fig. 14/9 Connection diagram for 1-phase relay

Standard voltages and consumption

$V_{\rm N}$	Voltage range	Consumption	Impedance per phase	Pickup Drop out V	/oltage
V DC	V DC	mA	kΩ/s	V DC	
14/30	18 - 33	32	20	between	12 and 18
60	42 - 66	18	44		36 and 42
110/125	77 - 138	18	94		66 and 77
220	154 - 275	13	200		132 and 154

Drop-out time: between 150 ms and 400 ms

ection and ordering data	Description	Order No. <i>7PA30</i> 2-1 <i>AA00</i> -		
	7PA30 trip circuit supervision (single-phase)			
	Auxiliary voltage 24/30 V DC	1		
	60 V DC	2		
	110/125 V DC	3		
	220 V DC	4		
	Socket			
	without socket	0		
	with flush-mounting socket 7XP9011-0	1		
	with surface-mounting socket 7XP9013-0	2		
cessories	Description	Order No.		
	Socket as spare part			
	Flush mounting	7XP9011-0		
	Surface mounting	7XP9013-0		

14 Test Equipment and Accessories / 7PA

7TS16 Annunciation Relay

Description

The 7TS16 relay features auxiliary trip indication for local and remote signaling. It has four independent output contacts and LED indication. The relay complies with the IEC and EN standards and bears the CE mark.

The 7TS16 is a reliable and versatile highspeed relay with four signal inputs. It has four local LEDs and auto-resetting output contacts, used in SCADA controls. Additionally, it features two diode tripping circuits.

Reset is possible via remote input and via local reset push button.

The reset should not be permanently switched on.

Function overview

- Indications: Four LEDs, latching type, signaling until reset.
- Inputs: Four alarm/trip inputs
 - Input for remote resetPush button for local reset
- Outputs: For each alarm/trip input:
- One diode 2.5 A
- One potential free changeover contact
- One potential free NO contact
- One common tripping output through diode (2.5 A; V_{max} 220 V DC)
- Contacts:
 - Permanent current 8 A
 - Instantaneous current 15 A
 - Making capacity 15 A /4 s /110 V DC
 - Breaking capacity 0.3 A /110 V DC

<u>Technica</u>l data

• Rated voltages (<i>V</i> _N): 24/30, 110/125, 220 V DC	
 Voltage range V_N 	+10 % - 30 %
 Operating temperature 	-10 to +55 °C
 Operating humidity 	93 %/40 °C
Pickup time	< 5 ms
Consumption	
For one trip	
V _N	
24/30 V DC	1 A/3 ms
110/125 V DC	3 A/3 ms
220 V DC	4 A/3 ms
<u>For a permanent trip</u>	
$V_{ m N}$	mA
24/30 V DC	21
110/125 V DC	8
220 V DC	6.5
For a latched LED	
$V_{ m N}$	mA
24/30 V DC	1
110/125 V DC	3
220 V DC	5

Electrical tests performed acc. to IEC 60255-5 - Dielectric test 2 kV/50 Hz/ 1 min - Surge withstand				
test	5 kV/1.2/50 μs			
High-frequency test acc. - Common mode - Differential mode	to IEC 60255-22-1 2.5 kV / 1 MHz 1 kV / 1 MHz			
Inflammability tests Plastic materials	UL94: VO			
Degree of protection acc. to IEC 60529	Relay: IP40			
Climatic stress test acc. to Dry cold, operation Dry heat, operation Storage and transport	o IEC 60068-2 - 10 °C + 55 °C - 30 °C + 70 °C			

Connection diagram V DC(-) V DC(+) 1 11 2 10 _||____] 2 а g 1,2 21 ÷З 0 20 = = 31 b IL D2 2 30 h 4 41 0-400 ==== = = = = = = 51 1<u>D3</u> 2 509 2 e 5 61

		d D4
		26 7 8 Remote reset
2 Direc	t common trip	output

= Ξ \equiv =

Z	Direct	common	trip	outp

3, 4, 5, 6 Direct trip output

60

- 1(-), 7(+) Auxiliary supply D
- External relay contact
- Fig. 14/11 Connection diagram Contacts represented without auxiliary supply in the relay

eps

SA44

Selection and ordering data

Description	Order No.		
7TS16 annunciation relay with 4 LEDs	7TS16□2-0AA00-□		
Rated auxiliary voltage 24/30 V DC	1		
110/125 V DC	3		
220 V DC	4		
<i>Socket</i> Without socket		0	
With flush-mounting socket 7XP9010-2		1	
With surface-mounting socket 7XP9012-0		2	

Socket as spare part	
Flush mounting	7XP9010-2
Surface mounting	7XP9012-0

3RV16 Voltage Transformer Circuit-Breaker

Fig. 14/12 3RV16 voltage transformer circuit-breaker

Description

The voltage transformer circuit-breaker protects the secondary side of voltage transformers used to connect protection relays with voltage-dependent starting. The switch is used for distance protection with low-impedance starting. Special auxiliary contacts reliably prevent low-impedance starting from triggering distance protection if only one error has occurred in the converter line.

The voltage transformer circuit-breaker can also be used to safely disconnect the distance protection relay from the voltage transformer. In this case the special auxiliary contacts also prevent erratic triggering of the distance protection.

Additional fuses are not required. A "Fuse Failure Monitor" (FFM) is also not required.

The circuit-breakers are snap-mounted on a 35-mm mounting rail to EN 50022. Push-in lugs are available for screw-type connection of the circuit-breakers.

The circuit-breaker for voltage transformers also incorporates 2 auxiliary contacts (normally 1 NO + 1 NC). During the closing operation, contact making via the NO contact of the control switch takes place later than via the main contacts, whereas during the opening operation the auxiliary circuits are interrupted at the

same time as the main circuits, if not before. This adjustment has the effect of preventing the opening of the circuit-breaker from producing a tripping command via the underimpedance starting of the distance protection relay.

The auxiliary voltage for blocking voltage-dependent starting (underimpedance) must always be routed via the NO contact 11-14.

Function overview

Application

• Protection of voltage-transformer secondary circuits for the connection of protection relays with voltagedependent starting element

Functions

- Auxiliary contact of 3RV16 prevents the distance protection tripping via the underimpedance starting in case of a fault in the voltage transformer circuits
- Tripping time of instantaneous element in few milliseconds

Construction

• Snap-on mounting on 35-mm mounting rail, or screw mounting

The voltage transformer circuit-breaker largely corresponds with the circuitbreaker 3RV1, SIRIUS, size S00. Two special characteristics are taken into account for safe prevention of faulty triggering of the distance protection relay.

Auxiliary switch for blocking the distance protection

The main contacts of the circuit-breaker open if the voltage transformer circuitbreaker is tripped or switched off. The distance protection would falsely interpret low impedance as a fault, which results in immediate power cut-out within only a few milliseconds.

To prevent this fault response, special auxiliary contacts with a time-dependent assignment to the circuit-breaker's main contacts (see Technical data) must be provided. The distance protection is blocked with the help of these auxiliary contacts, and thus prevents faulty triggering.

An auxiliary switch for blocking the distance protection relay is available, equipped with 1 changeover contact fitted permanently in the voltage transformer circuit-breaker. This changeover contact can be used as 1 NO (11-14) or 1 NC (11-12) contact. Due to the high contact stability of these auxiliary contacts at the lowest possible rated operational currents $I_e/AC-15 \ge 0.5$ mA at 230 V, it is also suitable for modern solid-state distance protection relays.

The laterally mountable auxiliary switches of the SIRIUS range can be used for signaling functions. They cannot be used for blocking the distance protection relay.

Impedance across the main contacts

There is only minor current flow across the main contacts of the voltage transformer circuit-breaker. To ensure reliable functioning of the distance protection, main contact resistance must be minimal and nearly constant throughout the service life of the circuit-breaker.

This is realized with suitable contacts and contact materials for the 3RV16 voltage transformer circuit-breaker.

The specified tripping characteristics of the thermal overload pickup (a) correspond to the mean value of the leakage bandwidth in cold state; at operating temperature these times are reduced to approx. 25 % of the specified values. The characteristics below are schematic representations. Precise characteristics are available from "Technical Assistance" (E-mail: nst.technical-assistance@ siemens.com).

(2) 2.5 A/10.5 A (3) 3 A/20 A a) Thermal overload pickup b) Instantaneous electromagnetic surge trip

Fig. 14/15 Internal connections

Note

When using the NC contact to connect the voltage transformer circuitbreaker, the binary input of the distance protection device (Siemens 7SA xxx) should be set to "active without voltage". This type of connection is used for additional monitoring of correct wiring.

Fig. 14/16 Typical connections

Technical data

Conductor cross-sections, main circuit, 1 or 2 conductors

Туре	3RV1611- 1AG14	1CG14	1DG14
Terminal type	Screw connection		
Terminal screw	Prozidriv size 2		
Solid	2 x (0.5 to 1.5 2 x (0.75 to 2. (max. 4 mm ²)	mm ²); 5 mm ²);	
Finely stranded with end sleeve	2 x (0.5 to 1.5 2 x (0.75 to 2.	mm ²); 5 mm ²)	
Stranded	2 x (0.5 to 1.5 2 x (0.75 to 2. (max. 4 mm ²)	mm ²); 5 mm ²);	
Auxiliary switch for blocking the distance protection			

With defined time-dependent
assignment for blocking distance
protection1 changeover contact, solid-state
compatible (usable as 1 NO or 1 NC)Rated operational current I_{E} /
rated operational voltage V_E AC-14 0.5 A/V_E 250 V
AC-14 1 A/V_E 125 V
DC-13 0.27 A/V_E 250 V
DC-13 0.44 A/V_E 125 VShort-circuit protection for auxiliary
Fusible link, gL/gGmax. 10 A
max. 6 A

Miniature circuit-breaker,	
C characteristic	
C characterístic	

Selection and ordering data

Description	Order No.
3RV16 voltage transformer circuit-breaker	
with 1 auxiliary contact, 1 changeover	
1.4/ 6 A	3RV1611-1AG14
2.5/10.5 A	3RV1611-1CG14
3/20 A	3RV1611-1DG14
Laterally we constable consiliant and the set NO/NC	201/1001 14

Laterally mountable auxiliary switches 1 NO/NC 3RV1901-1A

General technical data			
Туре	3RV1611- 1AG14	1CG14	1DG14
Rated current	1.4	2.5	3
Permissible ambient temperature During storage/transport During operation	-50 to +80 ° -20 to +60 ° with current	C C (up to 70 ° t reduction)	C possible
Rated operational voltage $V_{\rm E}$	400 V		
Rated frequency	16.7 to 60 H	z	
Rated insulation voltage VI	690 V		
Short-circuit breaking capacity at 400 V AC, short-circuit proof up to	50 kA		
Current setting of the thermal overload release	1.4 A	2.5 A	3 A
Operating value of the instantaneous electromagnetic overcurrent release	6 ± 20 %	10.5 ± 20 %	20 ± 20 %
Tripping time of the instantaneous electromagnetic overcurrent release	Approx. 6 ms at 12 A	. 6 ms at 20 A	6 ms at 40 A
Disconnection life:			
short-circuit current Ip	Max. short-	circuit discon	nections
≤ 0.1 kA 0.1 to 2 kA 2 kA to 50 kA	$ \leq 10 \\ \leq 3 \\ 1 $		
Internal resistance in cold state in heated state	$> 0.25 \ \Omega \pm 0$ $> 0.30 \ \Omega \pm 0$	5.5 % 5.5 %	
Shock resistance acc. to IEC 60068, Part 2-27	15 g		
Degree of protection acc. to IEC 60529 Touch protection acc.to DIN VDE 0106 Part 100	IP 20 Safe against	finger touch	
Service life mechanical electrical	Operating c 10000 10000	ycles	
Permissible mounting position	anv		

14 Test Equipment and Accessories / 3RV16

4AM Auxiliary Current Transformers 7XR Isolating Transformers

Overview

Application	Comment		Climatic requirements according to former DIN 40040	Features
Matching current transformer	Multi-tap aux. cur 4AM51 70-7AA: 4AM52 72-2AA: 4AM52 72-3AA:	rent transformer to match different current transformer ratios. Standard version, primarily for transformer differential protection. Version with double thermal withstand capability, e.g. when connecting to wide-range current transformer (continuous rating 2 x I_N). Version with higher saturation factor (mainly for the busbar differential protection). Greater overcurrent factor because of higher voltages	HKG HKG HKG	Numerous ratios can be selected using terminal connections (next page) $f_N = 45$ to 60 Hz
Input and matching current transformer	Input and matchin protection (a.o. for 4AM51 20-1DA: 4AM51 20-2DA:	g current transformer for phase selective busbar differential 7SS60, 7UT6) For 1 A C.T.s For 5 A C.T.s ¹⁾	HKG HKG	$f_{\rm N} = 45$ to 60 Hz with varistor
3-phase summa- tion input C.T.	Input 3-phase sum for busbar differen 4AM51 20-3DA: 4AM51 20-4DA: for line differential 4AM49 30-6DA: 4AM49 30-7DA:	mation current transformer tial protection (a.o. for 7SS60). For 1 A C.T.s For 5 A C.T.s protection (a.o. for 7SD600) For 5 A For 1 A	HKG HKG HKG HKG	$f_{\rm N} = 45$ to 60 Hz with varistor $f_{\rm N} = 45$ to 60 Hz with varistor
Aux. C.T. for C.T. powered tripping circuits	Auxiliary current t no battery supply of 4AM50 65-2CB: 4AM50 70-8AB: Suitable for trippin	ransformer for C.T. powered trip coils in stations where can be made available. For 1 A C.T.s For 5 A C.T.s g coils with $I_N \le 0.5$ A or 1 A, $V_N \le 40$ V or 20 V, $P \le 20$ VA.	HKD HKD	Unlike transducers, no defined rated power or class accuracy required. $f_N = 45$ to 60 Hz
Isolating transformer	Isolating transform Provides galvanic i 7XR9 513: 7XR9 515: 7XR9 516:	er for pilot wire differential protection. solation between pilot wires and relays. For differential protection with 1 pair of pilot wires (a.o. for 7SD600) For differential protection with 1 pair of pilot wires (a.o. for 7SD600) For communication converter 7XV5662-0AC00 (a.o. for SIPROTEC 4 device 7SA522, 7SA6, 7SD52, 7SD61)	HKG HKG -	20 kV insulation 5 kV insulation 20 kV insulation

HKD = -25 °C to +125 °C relative humidity max. 90 %; annual average < 80 % on 30 days of the year up to 100 % (equally distributed over the year); condensation permissible

1) If increased thermal withstand is required type 4AM51 20-4DA is recommended.

Order No. and Technical data

Order No.			Windin	gs of au	xiliary cur	rent tran	sformers	s			Weight, approx.
4AM49 30-6DB00-0AN2	Number of windings		А В 1	C D	E F 3	G H	K 6 6	L M	Y G	∠	
	Max. current, continuously Max. voltage	A V	28 0.23	28 0.46	28 0.69	28 1.38	6.5 (5.6	5	17 0. 40	736 2 00	1.9 kg
	Number of windings		А В 5	C D	E F 15	G H 30	K 30 3(L M 0 60	Y	∠⊐−Z	
4AM49 30-7DB00-0AN2	Max. current, continuously Max. voltage	A V	4.5 1.15	4.5 2.3	4.5 3.5	4.5 7	1. (20	.2))	17 0. 40	2 2 0	2 kg
	Number of windings (in relation to each other)		A B	C D	E F	G H 16	I К 1	L M	N 0	P Q 16	
4AM51 70-7AA00-0AN2	Rated current $I_N^{(1)}$ Max. voltage	A V	5 2	5 4	5 14	1 32	5 2	5 4	5 14	$\frac{1}{32}$	3.6 kg
4AM52 72-2AA00-0AN2	Rated current <i>I</i> _N ¹⁾ Max. voltage	A V	10 2	10 4	10 14	2 32	10 2	$10 \\ 4$	10 14	2 32	5.4 kg
4AM52 72-3AA00-0AN2	Rated current $I_N^{(1)}$ Max. voltage	A V	5 4	5 8	5 28	1 64	5 4	5 8	5 28	1 64	5.4 kg
4MA50 65-2CB00-0AN2	Rated current I _N ¹⁾	A	1	1	1	1					2.9 kg
	Number of windings		K _a L _a 110	K _b L _b	K _c L _c	K _d L _d	Pı	rimary wi	ndings		
	Number of windings		k _a 8	8 I _a	k _b	38 I _b	Se	econdary v	windings	5	
4MA50 70-8AB00-0AN2	Rated current I_N ¹⁾ Rated current I_N ¹⁾	A A	5	.25 5	5	.25 5					2.9 kg
	Number of windings		K _a L _a	K _b L _b	K _c L _c	K _d L _d	Pı	rimary wi	ndings		
	Number of windings		k _a 8	8 I _a	k _b	38 I _b	Se	econdary v	windings	5	
	Rated current $I_N^{(1)}$	A	1. A B	.25	1 D F	.25 F	G	ні	Y	- 7	
	Number of windings			2	4	8	16	32		500	
4AM51 20-1DA00-0AN2	Max. current, continuously Max. voltage	A V	6.8 0.4	3 0.8	6. 1.6	8 3.2	6.4	5.8 12.5		0.85 200	3.6 kg
4AM51 20-2DA00-0AN2	Max. current, continuously Max. voltage	A V	26 0.4	0.8	26 1.6	3.2	r fit	not tted		0.85 200	3.6 kg
4AM51 20-3DA00-0AN2	Number of windings		A B	C D	E F 9	G H 18	24	L M 36	N O 90		3.6 kg
	Max. current, continuously Max. voltage	A V	4 1.2	4 2.4	4 3.6	4 7.2	4 9.6	4 14.4	2 36	0.85 200	
4AM51 20-4DA00-0AN2	Number of windings		A B	C D	E F 3	G H	6	L M	N 0 12		3.6 kg
	Max. current, continuously Max. voltage	A V	17.5 0.4	17.5 0.8	17.5 1.2	17.5 1.6	17.5 2.4	17.5 3.2	8 4.8	0.85 200	
7XR9 513	Isolating transformer for differential protection with 1 pair of pilot wires		K1 M1	K1 Iso 0.4 L2 tes	olating tra 4 A contir st voltage	nsformer ously, 3 20 kV, 50	1:1, ma A 10 s, 10 Hz, 1 m	x. 550 V) A 1 s iin			5 kg
7XR9 515	Isolating transformer for differential protection with		T _{1 TO PILO} 1150	T ₂ Iso	olating tra st voltage	insformei 5 kV, 50 I	: 1:1, ma Hz, 1 mii	x. 450 V n			2 kg
7XR9 516	1 pair of pilot wires Isolating transformer for communication converter		B 575 57 T3 E P a m a m S	⁷⁵ T ₄ Isc b ma b	olating tra ax. test vo	insformer ltage 20 k	: 1:1, X, 50 Hz	z, 1 min			1.4 kg

Fig. 14/18 Connection of windings

14 Test Equipment and Accessories / 4AM and 7XR

Append	ix 🔨	Page			
Relay Characteristics Dimension Drawings		15/2 15/7			
Assignment for Produ	cts	15 /25			
Order No. Index		15/26		<u>)</u>	
Training Books and Publication		15 /28			
books and Fabilication		13/23	29,5	172	-2930
t/s 100				1	
			9	4	
			56	24	
20	$\langle \langle \rangle$		· · · · · · · · · · · · · · · · · · ·		
10				3,2	
5					
4				1,6_	
				0.0	
				0,8_	
$\rightarrow \uparrow^{x}$				0,4_	
				0,2_	
				0.1	
				0,1	
				0,05	
	2 2	1 6 8	10 20)	
			1/1	-	

Inverse-time characteristics of TOC relays

	IEC 60255-3				ANSI/IEEE						
	Normal inverse	Very inverse	Extremely inverse	Long inverse	Inverse	Short inverse	Long inverse	Definite inverse	Moderately inverse	Very inverse	Extremely inverse
Fig.	15/1	15/2	15/3	15/4	15/5	15/6	15/7	15/8	15/9	15/11	15/13
Relay											
7SD5	•										
7SD610	•										
7SJ450*-***00-0	•										
7SJ450*-***00-1											
7SJ460*-***00-0	•										
7SJ460*-***00-1											
7SJ600											
7SJ602											
7SJ61											
7SJ62	•										
7SJ63	•			•							
7SJ64	•			•							
7UM61	•										
7UM62	•										
7UT612											
7UT613	•										
7UT63											

Inverse-time overcurrent protection characteristics according to IEC 60255 and BS142.

- *t* = tripping time
- $I_{\rm p}$ = pickup setting
- $T_{\rm p}$ = time multiplier setting

Inverse-time overcurrent protection characteristics according to ANSI (IEEE) C37.112

- t = tripping time in seconds
- *M* = current in multiples of pickup setting (*I*/*I*p) range 0.1 to 4

TD = time dial

Inverse-time overcurrent protection characteristics according to ANSI (IEEE) C37.112

- t = tripping time in seconds
- *M* = current in multiples of pickup setting (*I*/*I*p) range 0.1 to 4
- TD = time dial

Inverse-time overcurrent protection characteristics according to ANSI (IEEE) C37.112

- t = tripping time in seconds
- M =current in multiples of pickup setting (*I*/*I*p) range 0.1 to 4
- TD = time dial

Pinout of communication port

		Port A: Time synchro- nisation	Port B: System interface				Port C/ Rear ser protecti	D rvice interface or ion data interface
Pin no. 1 2 4 5 LSA2375-bgp.eps	PC interface at front		RS232 IEC 60870-5-103	RS485 IEC 60870-5-103	RS485 PROFIBUS-FMS Slave, PROFIBUS-DP Slave	RS485 Modbus, DNP 3.0	RS232	RS485
1	-	P24 input 24 V	Shield (with shield	d ends electrically con	nected)			
2	RxD	P5 input 5 V	R x D	-	-	-	R x D	-
3	T x D	common return	ТхD	A/A' (RxD/TxD-N)	B/B' (RxD/TxD-P)	А	T x D	А
4	-	-	_	-	CNTR-A (TTL)	RTS (TTL level)	-	-
5	GND	Shield	GND	C/C' (GND)	C/C' (GND)	GND1	GND	C (GND)
6	-	-	-	-	+ 5 V voltage supply (max. Load < 100 mA)	VCC1	-	-
7	RTS	P12 input 12 V	RTS	_*)	-*)	-	RTS	(RTS RS232 used)
8	CTS	-	CTS	B/B' (RxD/TxD-P)	A/A' (RxD/TxD-N)	В	CTS	В
9	_	Shield	_	_	_	-	_	_

Dimension drawings • Reference table

Relay	Flush/cubicle-mounting ver	rsion	Surface-moun	Detach	ned HMI	
	Page	Fig.	Page	Fig.	Page	Fig.
4AM4	-	-	15/24	15/57	-	-
4AM5	-	-	15/24	15/55, 15/56	-	-
6MD61	15/16	15/28	-	-	-	-
6MD63	15/12, 15/14	15/24, 15/26	15/14, 15/15	15/27	15/16	15/28
6MD66	15/14	15/26	15/15	15/27	15/16	15/28
7PA22	15/21	15/39, 15/41	15/21, 15/22	15/39, 15/47	-	-
7PA23	15/21, 15/22	15/40, 15/42	15/21, 15/22	15/40, 15/48	-	-
7PA26	15/23	15/49, 15/50	15/22	15/47	-	-
7PA27	15/22	15/43, 15/46	-	-	-	-
7PA30	15/21, 15/22	15/41, 15/42, 15/44, 15/45	15/22	15/44, 15/45, 15/47, 15/48	-	-
7RV16	15/21	15/37	15/21	15/37	-	-
7RW600	15/8	15/15	15/8, 15/9	15/16, 15/17	-	-
7SA522	15/12, 15/14	15/24, 15/26	15/15	15/27	-	-
7SA61	15/11, 15/12, 15/13, 15/14	15/22, 15/24, 15/25, 15/26	15/11, 15/15	15/23, 15/27	-	-
7SA63	15/11, 15/12, 15/14	15/22, 15/24, 15/26	15/11, 15/15	15/23, 15/27	-	-
7SA64	-	-		-	15/16	15/28
7SD5	15/12, 15/14	15/24, 15/26	15/15	15/27	-	-
7SD600	15/8	15/15	15/8, 15/9	15/16, 15/17	-	-
7SD610	15/11	15/22	15/11	15/23	-	-
7SJ45	15/9	15/18	15/9	15/19	-	-
7SJ46	15/9	15/18	15/9	15/19	-	-
7SJ600	15/8	15/15	15/8, 15/9	15/16, 15/17	-	-
7SJ602	15/10	15/20	15/10	15/21	-	-
7SJ61	15/11	15/22	15/11	15/23	-	-
7SJ62	15/11	15/22	15/11	15/23	-	-
7SJ63	15/12, 15/14	15/24, 15/26	15/15	15/27	15/16	15/28
7SJ64	15/11, 15/12, 15/14	15/22, 15/24, 15/26	15/11, 15/15	15/23, 15/27	15/16	15/28
7SN600	15/8	15/15	15/8, 15/9	15/16, 15/17	-	-
7SS522 central unit	15/18	15/32	15/18	15/32	-	-
7SS523 bay unit	15/17	15/29	15/17	15/30	-	-
7\$\$525	15/18	15/31		-	-	-
7SS60	15/8, 15/20	15/15, 15/36		-	-	-
7SV600	15/8	15/15	15/8, 15/9	15/16, 15/17	-	-
7TS16	15/22	15/45	15/23	15/45, 15/47	-	-
7UM61	15/11, 15/12	15/22, 15/24	15/11, 15/15	15/23, 15/27	-	-
7UM62	15/12, 15/14	15/24, 15/26	15/15	15/27	-	-
7UT6	15/11, 15/12, 15/14	15/22, 15/24, 15/26	15/11, 15/15	15/23, 15/27	-	-
7VE61	15/11	15/22	15/11	15/23	-	-
7VE63	15/12	15/24	15/15	15/27	-	-
7VK610/7VK611	15/11, 15/12	15/22, 15/24	15/11, 15/15	15/23, 15/27	-	-
7XR9	-	-	15/23	15/52, 15/53, 15/54	-	-
7XV5450	15/19	15/34	15/19	15/34	-	-
7XV5461	-	-	15/19	15/34	-	-
7XV5550	15/19	15/33	15/19	15/33	-	-
7XV5650/51/52/53/55	15/19, 15/21	15/33, 15/38	15/19, 15/21	15/33, 15/38	-	-
7XV5662	-	-	15/19, 15/21	15/34, 15/38	-	-
7XV5673	-	-	15/23	15/51		
7XV75	15/20	15/35	-	-	-	-

Dimension drawings in mm / inch

Dimension drawings for 1/6 x 19" housing (7XP20)

View from the rear

Side view

Fig. 15/15 Housing for panel flush mounting/ cubicle mounting, terminals at rear (1/6 x 19")

Front view

Fig. 15/16

Housing for surface mounting, terminals at top and bottom (1/6 x 19")

15

Panel cutout

Side view

-SA2964-agpen.eps

View "A"

Dimension drawings in mm / inch

Dimension drawings for 1/6 x 19" housing (7XP20)

Dimension drawings for SIPROTEC easy

Fig. 15/18 7SJ45, 7SJ46 housing for panel flush mounting

Fig. 15/19 7SJ45, 7SJ46 housing for rail mounting

Dimension drawings for SIPROTEC 7SJ602

Fig. 15/20

7SJ602 with7XP20 housing for panel flush mounting/cubicle mounting, terminals at rear

Dimension drawings in mm / inch

Dimension drawings for SIPROTEC 4 1/3 x 19" housing (7XP20)

Rear view

7SA610, 7SD61, 7SJ64

Sde

883-bgpen

150/5.91

Rear view 7SJ61, 7SJ62, 7UT612, 7UM611

Panel cutout

29.5 1.16 2. Cutout 25 x 105 (without paint) 266/10.47 000 LSA2886-agpen.eps 40/ į 0.98 0.98 36.5/ 1.44 Sloped interface 71/ case 2.80 260/10.24

Side view

Fig. 15/23

1/3 x 19" surface-mounting housing, terminals at top and bottom

Dimension drawings for SIPROTEC 4 1/2 x 19" flush-mounting housings (7XP20)

172/6.77

Side view 1

Side view 2

29.5/

LSA2881-agper

Panel cutout

Rear view 1 7SA61/63, 7UM621, 7UM623, 7SJ64

225/8.86 220/8.66 R Ô ٥ С eps Q 0 8 В

Rear view 2 7SJ63, 7UM612, 6MD63

Rear view 3 7SA522, 7SD52/53

Rear view 4 7UT613

Fig. 15/24 1/2 x 19" flush-mounting housing

Dimension drawings in mm / inch

Dimension drawings for SIPROTEC 4 2/3 x 19" flush-mounting housings (7XP20)

Rear view

Fig. 15/25 2/3 x 19" flush-mounting housing for 7SA613

Dimension drawings in mm / inch

Dimension drawings for SIPROTEC 4 1/1 x 19" flush-mounting housings (7XP20)

Side view 1

* Terminals M and L additionally for 7UT635 and 7SJ647 only ** Terminals H and G not for 7SJ645 and 7SJ647

Rear view 1

7SA6, 7UM622, 7SJ64, 7UT633, 7UT635

Rear view 3 7SA522, 7SD52/53

Panel cutout

Rear view 2 7SJ63, 6MD63

Fig. 15/26 in 1/1 x 19" flush-mounting housing

266/10.47

Dimension drawings in mm / inch

Dimension drawings for SIPROTEC 4 1/2 and 1/1 x 19" surface-mounting housings (7XP20)

LSA2889-agpen.

0

ø9/0.35

æ

Front view 1/1 x 19" surface-mounting housing 7XP20 (without sloped FO case)

Fig. 15/27

1/2 and 1/1 x 19" surface-mounting housing

Dimension drawings for SIPROTEC 4 1/2 and 1/1 x 19" housings with detached operator panel

Fig. 15/28 Housing with detached or no operator panel

34/

1.34

Mounting plate

Dimension drawings in mm / inch

Side view

Front view

Fig. 15/29 7SS523 bay unit in 7XP2040-2 housing for panel flush mounting/cubicle mounting

30/ 27/ 1.06 1.18 SA2916-Cutout 20 x 60 (without paint) 344/13.54 -\$ 40/ \$ 4 Ì 1.5/ 36.5 0.06 1 4 4 70/ 2.76 Side view

260/10.24

View from below

Fig. 15/30

7SS523 bay unit in 7XP2040-1 housing for panel surface mounting

Fig. 15/31

7SS525 busbar and breaker failure protection unit for panel flush mounting/cubicle mounting with housing for wall mounting

Front view

Top view

Fig. 15/33 Converter devices for rail mounting

Fig. 15/34 7XV5662 communication converter

11/ 0.43

120/4.72

LSA2970-agpen.eps

15

Housing 7XP204 of the peripheral modules (7SS60) for panel or cubicle flush mounting

Side view

Fig. 15/36

225/8.86

Rear view

7RV16 circuit-breaker Fig. 15/37

116/4.57

98/3.86

Fig. 15/38

105/4.13

Option

Ð

140/5.51

45/

Resistance temperature detector (RTD-box)

58/2.28 48/

1.89

61.8/2.43

45/ 1.77 16.5/

0.65

90/3.54 LSA3032-adder

č

0 12

11.5/

0.45

SA3002-agper

1) Auxiliary switch, 2-pole, located on the side. 2) Auxiliary switch, 4-pole, located on the side.

- 3) Auxiliary release.
- Auxiliary switch transverse position. 4)
- 5) Link for screw fixing.
- Only with undervoltage release combined with 6) leading auxiliary switch.
- 7) Drilling diagram.
- 8) Monitoring rail 35 mm, acc. to EN 50022.
- 11 Lockable in OFF position with padlock, bracket diameter 3.5 to 4.5 mm

Fig. 15/39 7PA22 auxiliary relay

Fig. 15/41

Flush mounting sockets 7XP9010-1, 7XP9010-2, 7XP9010-4 for 7PA22 auxiliary relay 7TS16 indication relay 7PA30 three-phase trip circuit supervision

1.77

108/4.26

96.5/3.80

Fig. 15/40 7PA23 auxiliary relay + flush mounting socket 7XP9011-1

15

Fig. 15/42

Flush mounting sockets 7XP9011-0, 7XP9011-1 for 7PA23 auxiliary relay 7PA30 trip single-phase circuit supervision

Fig. 15/45 7TS16, 7PA30 three-phase

Fig. 15/47 Surface mounting socket 7XP9012 7PA22, 7PA26 auxiliary relays 7TS16 indication relay 7PA30 three-phase trip circuit supervision

<u>8/</u> 0.32

12.5/ 0.49

42.5/

1.67

Fig. 15/43

42.5/

1.67

Fig. 15/44

7PA27

50.4/

50.4/ 86

7PA30 single-phase

86.

72/2.83

96.6/3.80

10.5/

0.41

Fig. 15/46 Flush mounting socket 7XP9011-2

for 7PA27 auxiliary relay

Fig. 15/48 Surface mounting socket 7XP9013 for 7PA23/27 auxiliary relay 7PA30 single-phase trip circuit supervision

Fig. 15/49 7PA26 auxiliary relay

N

0

C

۱c

Top view

330/12.99

Top view Fig. 15/53 7XR9515 isolating transformer

SIPV6.030en.eps

Fig. 15/52 7XR9513 isolating transformer

Туре	а	b*)	c*)	d	e*)	f*)	
4AM5065	84/	99/	106/	86.5/	104.5/	105/	-
4AM5070	3.31	3.90	4.17	3.4	4.11	4.13	
4AM5170	84/ 3.31	99/ 3.90	120/ 4.72	86.5/ 3.41	104.5/ 4.11	105/ 4.13	en.eps
4AM5272	90/	123/	116/	85/	103/	123/	I
	3.54	4.84	4.57	3.35	4.06	4.84	SIPV6.0866

*) max. dimension

Front view

Fig. 15/55

4AM50, 4AM5170, 4AM52 auxiliary current transformer without varistor

Side view

Fig. 15/56

4AM5120 auxiliary current transformer with varistor

Front view

Side view

Top view

Fig. 15/57

4AM auxiliary current transformer

Assignment for products

Products applied until now	Function	Recommended new products	
7PA10	Auxiliary relay	7PA26/27	
7PA20	Lockout relay	7PA22/23	
7PA21	Trip circuit monitoring	7PA30	
7RP72	Frequency relay	7RW600	
7SD24	Line differential relay	7SD600	
7SD510/511	Line differential relay via FO	7SD610	
78D512	Line differential relay via FO	7SD5	
7SA500	Distance protection	7SA6, 7SA522	
7SA501	Distance protection	7SA6, 7SA522	
7SA502	Distance protection	7SA6, 7SA522	
7SA510	Distance protection	7SA6. 7SA522	
7SA511	Distance protection	7SA6, 7SA522	
7SA513	Distance protection	7SA6, 7SA522	
7SJ41	Overcurrent relay	7SJ45	
7SJ50	Overcurrent relay	7SJ600/602/80	
7SJ510	Overcurrent relay	7SJ61	
7SJ511	Overcurrent relay	7SJ61	
7SJ512	Overcurrent relay	7SJ62	
7SJ531	Overcurrent relay	7SJ63	
75K52	Motor protection	7SK80 See SIP 3.01 SIPROTEC Compact Catalog E50001-K4403-A011-A1-7600	
7SN71	Transient earth fault relay	7SN600	
7UT512	Transformer differential relay	7UT612	
7UT513	Transformer differential relay	7UT613/7UT63	
7UM51	Machine protection	7UM61/62	
7TS15	Annuciation relay	7TS16	
7SS51	Busbar protection	7\$\$52	
78813	Busbar protection	78860	
7VH80/83, 7VH60	High-impedance diff. protection	7SR23 Reyrolle See www.siemens.com/siprotec	
7SV50	BF relay	7SV600	
7SV512	Breaker failure relay	7VK61	
7VK512	Auto-reclosure und synchronism check relay	7VK61	
7XV72	Test switch	7XV75	
7XS50	DIGSI operating program	7XS54	

Order No. Ind	ex		
Order No.	Page	Order No.	Page
E50001	3/6	7TR7100	9/15
W73078	9/15	7TS16	14/16
3AX11	5/9	7TS7200	9/15
3PP1326	11/64	7UM61	11/26
3PP1336	11/27, 11/64	7UM62	11/62
3RV1611	14/19	7UT612	8/35
3RV1901	14/19	7UT613	8/37
4AM4930	7/14, 14/22	7UT63	8/39
4AM50	5/9, 14/22	7UW5000	11/69
4AM5120	9/16, 14/22	7VE6110	11/97
4AM5170	14/22	7VE6320	11/98
4AM5272	9/16, 14/22	7VK61	10/17
4NC5225	11/64	7XP2041	9/15
6MD61	12/5	7XP90	14/6, 14/7, 14/10, 14/11, 14/12, 14/13, 14/16
6MD63	12/12	7XR6004	11/64
6MD66	12/26	7XR6100	11/27, 11/63
6XV8100	13/113	7XR9513	7/14, 14/22
7KE6000	13/10, 13/12, 13/114	7XR9515	7/14, 14/22
7PA22	14/6	7XR9516	7/40, 7/76, 14/22
7PA23	14/7	7XS5400	3/7
7PA26	14/10	7XS5401	3/6
7PA27	14/11	7XS5402	3/6
7PA30	14/12, 14/13	7XS5403	3/6
7RW600	11/79	7XS5407	3/6
7SA522	6/70	7XS5408	3/6
7SA61	6/29	7XS5410	3/12
7SA63	6/30	7XS5411	3/12
7SA64	6/31	7XS5416	3/12
7SD5	7/72	7XS5460	3/7
7SD600	7/13	7XS5490	3/7
7SD610	7/38	7XS5900	3/7
7SJ450	5/9	7XT3300	11/64
7SJ460	5/17	7XT3400	11/64
7SJ600	5/29	7XT7100	11/64
7SJ602	5/49	7XV5100	5/51
7SJ61	5/75	7XV5101	13/4
7SJ62	5/110	7XV5103	13/7, 13/10, 13/12
7SJ63	5/149	7XV5104	13/14
7SJ64	5/192	7XV5105	13/16
7SN600	10/36	7XV5450	13/19
78852	9/30	7XV5461	13/23, 13/19, 13/31
78860	9/15	7XV5550	13/35
7SV600	10/29	7XV5650	13/40
7TM7000	9/15	7XV5651	13/40

15 Appendix

Order No. Ind	ex
Order No.	Page
7XV5652	13/43
7XV5653	13/47
7XV5654	13/83
7XV5655	13/51, 13/55
7XV5662	13/59, 13/63, 13/67 13/71, 13/76, 13/80
7XV5664	13/83
7XV5673	13/92
7XV5700	13/95
7XV5710	13/100
7XV5820	13/108
7XV585	13/111
7XV6010	9/15
7XV6201	14/4
7XV750	14/4

Training

Equipment reliability and availability are essential for all owners and users. At the same time, maintenance costs need to be kept to a minimum. The liberalization of energy markets presents new challenges to all; maintaining and enhancing competitive strength are among today's most important business goals. Investment in technical plants and human resources enables these goals to be realized. Innovations in the technical field confront the users with the need of establishing, maintaining and extending their qualification and know-how. Our training programs are tailored to meet your specific needs. With our know-how, we can help you to keep ahead.

Our training centers offer training programs comprising an extensive range of courses covering all the important aspects of numerical protective relaying. Choosing our courses will simplify your planning and ensure you of high-quality professional instruction at a reasonable cost. It is also possible to arrange training on your own premises thereby reducing costs for group participation. We will jointly plan a complete training program that matches your business goals and your particular working context.

Each course and the corresponding training documents are available in many languages. On the Internet at <u>www.siemens.com/power-academy</u> you will find our complete training program with details of contents, dates, costs and contacts.

Enter the network of expertise

A foundation for your success: The Siemens Power Academy TD course catalog

Books and publications

Books on protection

A textbook and standard work in one, these books cover all topics, which have to be paid attention to for planning, designing, configuring and applying differential and distance protection systems. The books are aimed at students and engineers who wish to familiarize themselves with the subject of differential/distance substation protection, as well as the experienced user, entering the area of numerical differential/distance protection. Furthermore, they serve as a reference guide for solving application problems.

Motor Protection and IEC Standard Application Brochures for SIPROTEC Protection Relays

On 76 pages the "Motor protection brochure" describes the principles of asynchronous and synchronous motors, gives an overview of relay protection functions for motors and details on protection of low-, medium- and high-power motors.

If you wish to know more about efficient energy automation in accordance with the IEC 61850 standard, then our "IEC 61850 brochure" is the right source to turn to.

Topics covered comprise, among others, switchgear interlocking with IEC 61850 GOOSE, reverse interlocking, innovative solutions for substation control with IEC 61850.

Please contact your Siemens representative for free copies by indicating the Order No.

Multimedia CD ROMs/DVDs

Useful information on selection and application for the SIPROTEC protection relays is provided for the user.

The following subject matters are available on one DVD:

- SIPROTEC relay features
- SIPROTEC application hints
- Communication based on IEC 61850
- DIGSI Software operating program
- SIGRA Software evaluation of fault records

Computer-based interactive training: Study, practice, check your knowledge

Ask your Siemens representative for the CDs/DVDs free of charge.

Siemens Order No. A19100-L531-B107-X-7600 ISBN 978-3-89578-351-7

Siemens Order No. A19100-L531-B972-X-7600 ISBN 978-3-89578-318-0

Order No. E50001-K4454-A101-A1-7600

Efficient Energy Automation with the IEC #1850 Standard Application Examples	
144 2012 CONTROL OF	SIEMEN

Order No. E50001-K4455-A101-A2-7600

List of available multimedia CD ROMs/DVDs		
Title	Order No.	
SIPROTEC 4 Tutorial	E50001-U310-D21-X-7100	

Legal notice

Indication of conformity

This product complies with the directive of the Council of the European Communities on harmonization of the laws of the Member States relating to electromagnetic compability (EMC Council Directive 2004/108/EC) and concerning

electrical equipment for use within specified voltage limits (Low Voltage Directive 2006/95/EC).

This conformity has been proved by tests performed according to the Council Directive in accordance with the generic standards EN 61000-6-2 and EN 61000-6-4 (for EMC directive) and with the standard EN 60255-27 (for Low Voltage Directive) by Siemens AG.

The device is designed and manufactured for application in an industrial environment.

The product conforms with the international standard of IEC 60255 and the German standard VDE 0435.

Disclaimer of liability

This document has been subjected to rigorous technical review before being published. It is revised at regular intervals, and any modifications and amendments are included in the subsequent issues. The content of this document has been compiled for information purposes only. Although Siemens AG has made best efforts to keep the document as precise and up-to-date as possible, Siemens AG shall not assume any liability for defects and damage which result through use of the information contained herein.

This content does not form part of a contract or of business relations; nor does it change these. All obligations of Siemens AG are stated in the relevant contractual agreements.

Siemens AG reservers the right to revise this document from time to time.

Document version: 06

Release status: 12.2011

Copyright

Copyright © Siemens AG 2012. All rights reserved.

The disclosure, duplication, distribution and editing of this document, or utilization and communication of the content are not permitted, unless authorized in writing. All rights, including rights created by patent grant or registration of a utility model or a design, are reserved.

Registered trademarks

SIPROTEC and DIGSI are registered trademarks of Siemens AG. Any unauthorized use is illegal. All other designations in this document can be trademarks whose use by third parties for their own purposes can infringe the rights of the owner.

Published by and copyright © 2012: Siemens AG Infrastructure & Cities Sector Smart Grid Division Humboldtstr. 59 90459 Nuremberg, Germany

Siemens AG Infrastructure & Cities Sector Smart Grid Division Energy Automation Humboldtstr. 59 90459 Nuremberg, Germany www.siemens.com/protection

Printed on elementary chlorine-free bleached paper.

All rights reserved.

If not stated otherwise on the individual pages of this catalog, we reserve the r ight to include modifications, especially regarding the stated values, dimensions and weights. Drawings are not binding.

All product designations used are trademarks or product names of Siemens AG or other suppliers. If not stated otherwise, all dimensions in this catalog are given in mm.

Subject to change without prior notice. The information in this document contains general descriptions of the technical options available, which may not apply in all cases. The required technical options should therefore be specified in the contract.

For more information, please contact our Customer Support Center. Tel.: +49 180 524 84 37 Fax: +49 180 524 24 71 (Charges depending on provider) E-mail: support.ic@siemens.com Order No.: E50001-K4400-A101-A6-7600 Printed in Germany Dispo 06200, c4bs 7442 KG 12.11 1.0 878 EN 3600/35522 WÜ