# Setting up Automatic Switchover

# Automatic switchover for incoming feeders

#### The company

The customer is a petrochemical company. The company's critical control processes are characterized by high energy consumption and high operating reliability requirements.

# The starting situation

The project objective was to implement load transfer between busbars A and B in a switchgear unit. The customer requested automatic switchover without interruption, with the following characteristics:

- In the event of undervoltage on busbar A, circuit-breaker CB–QA trips, automatically disconnecting the bus sectionalizer CB–QC. This restores the power on bus A after a finite interruption time.
- In the event of undervoltage on busbar B, automatic transfer is performed in the same way as described above.
- When the power is restored to the tripped incoming feeder, the associated circuit-breaker (e.g. –QA) has to be closed manually. This is only permitted through the synchro-check relay. The bus sectionalizer CB (-QC) then automatically trips, provided the selector switch –S100 is in position –QC.

The requirements of the customer also included manual transfer without interruption in the following cases:

- In the initial status, incoming feeders A (-QA) and B (-QB) are closed and bus sectionalizer (-QC) is open.
- Undervoltage is detected on one of the two incoming feeders. The bus sectionalizer can be closed only when a release command is provided by the associated synchro-check relay.
- After the bus sectionalizer has been closed for a certain definite time, one of the circuit-breakers opens automatically, depending on the position of the selector switch.



Fig. 1

#### The concept

The solution involves control of each circuitbreaker by a SIPROTEC 4 relay. Undervoltage detection is implemented as a function inside the incoming feeder relays. Communication between the relays is hardwired via the relay inputs and outputs. The information from the selector switch -S100 is forwarded to the relay of the bus sectionalizer.

Each relay has been programmed to control its connected circuit-breaker and to output command signals to the two other SIPROTEC 4 relays. The automated system also accepts manual commands and can operate with a separate synchrocheck relay.

### Conclusion

This solution was installed in 2002 and has been functioning correctly ever since. The same solution has also been implemented for 33 kV, 6.6 kV, and 400 V switchgear with SIPROTEC 7SJ63 and 7SJ62 relays





Fig. 2 33 kV 8DB GIS, with CBs protected and controlled by 7SJ63



Fig. 3 6.6 kV 8BK AIS, with CBs protected and controlled by 7SJ63



Fig. 4 400 V SIVACON, with CBs protected and controlled by 7SJ62

Siemens PTD EA · Case Studies · 2005 SIEMENS siemens-russia.com