▲ Leuze electronic

the sensor people

LPS - Line Profile Sensor Light Section Sensors

en 06–2013/07 50113402 We reserve the right to make technical changes © 2013

Leuze electronic GmbH + Co. KG In der Braike 1 D-73277 Owen / Germany Phone: +49 7021 573-0 Fax: +49 7021 573-199 http://www.leuze.com info@leuze.de

	Figures and tables	6
1	General information	8
1.1	Explanation of symbols	8
1.2	Declaration of conformity	8
2	Safety notices	9
2.1	General safety notices Documentation. Safety regulations Repair.	9 9
2.2	Safety standards	9
2.3	Approved purpose	9
2.4	Working safely	0
3	Operating principle	3
3.1	Generation of 2D profiles 1	3
3.2 3.2.1 3.2.2	Limits of light section sensors 1 Occlusion 1 Possible measure against laser occlusion 1 Possible measures against receiver occlusion 1 Resolution 1	14 15 15
4	Device description 1	7
4.1 4.1.1 4.1.2 4.1.3	Overview of light section sensors 1 Mechanical design 1 General performance characteristics 1 Line Profile Sensor - LPS 1 Specific performance characteristics 1 Typical areas of application 1	17 17 17 18 18
4.2 4.2.1	Operating the sensor 1 Connection to PC / process control 1 Configuration 1 Measurement operation 1	19 19
4.2.2 4.2.3 4.2.4	Activation - laser on/off. 1 Triggering - Free Running. 2 Cascading. 2 Trigger settings 2	19 20 21 21
4.3	Cascading settings	

5	Installation and mounting23
5.1	Storage, transportation 23 Unpacking 23
5.2 5.2.1	Mounting the LPS24BT 56 mounting device
5.2.2	BT 59 mounting device
5.3 5.3.1	Device arrangement
5.3.2	Aligning the sensor
5.4	Attach laser warning sign
5.5	Cleaning
6	Electrical connection
6.1	Safety notices
6.2	Shielding and line lengths
	Shielding: 31 General shielding information: 32
	Connect the ground potential to the light section sensors
	Connecting the cable shield to the PLC
6.3	Connecting
6.3.1	Connection X1 - logic and power
	Activation input InAct
	Trigger input InTrig. 34 Cascading output OutCas 35
	Output "ready" OutReady
6.3.2	Connection X2 - Ethernet
6.3.3	X3 - incremental encoder connection
	Two-channel incremental encoder with open collector outputs
	Two-channel incremental encoder, single-ended 38 Two-channel incremental encoder, differential 39
	Single-channel incremental encoder (beginning with firmware V01.20)
7	Display and control panel41
7.1	Indicator and operating elements of the
7.1.1	LED status displays
7.1.2	Control buttons
7.1.3	Displays
	Alignment aid 42 Status display 42 Command mode 42
7.2	Menu description
7.2.1	Structure

7.2.2	Operation/navigation Menu navigation. Selecting values or selection parameters for editing. Editing value parameters Editing selection parameters	45 45 45
7.3	Reset to factory settings	46
8	Commissioning and configuration4	17
8.1	Switching on	47
8.2	Establish connection to PC	
8.3	Commissioning	49
9	LPSsoft configuration software	50
9.1	System requirements	50
9.2 9.2.1	Installation Possible error message	
9.3	Starting LPSsoft/Communication tab	57
9.4 9.4.1	Parameter settings/Parameters tab Standard tab - Task Parameters panel. Inspection Task Selection . Operation Mode. Activation . Trigger Output Mode . Light Exposure. Field of View. Apply Settings	59 59 60 60 60 60 61
9.4.2	Encoder tab - Encoder Parameters area Encoder Type Evaluation Mode Counter Value Overflow	61 62
9.5 9.5.1	Measurement function/Visualization tab Evaluating saved measurement data	
9.6 9.6.1 9.6.2 9.6.3 9.6.4	Menu commands	65 65 65 66
9.7	Definition of inspection tasks	

10	Integrating the LPS in the process control	3
10.1	General information68	3
10.2	Protocol structure	3
	Protocol structure	
	Header	
10.2.1	User data	
10.2.2	Packet number	
10.2.3	Transaction number	
10.2.4	Status	
10.2.5	Encoder High / Low	
10.2.6	Scan number	
10.2.7	Туре71	
10.2.8	Number of user data	
10.2.9	User data	I
10.3	Commands	
10.3.1	Elementary commands	
10.3.1	Commands in command mode	
10.3.2	User data in command mode (command parameters)	
10.3.3	Set Laser Gate	
	Set Encoder Value	7
	Set Actual Inspection Task	
	Set Scan Number	
	Set Single Inspection Task Parameter (beginning with firmware V01.40!)	
	Get Single Inspection Task Parameter (beginning with firmware V01.40!)	
	Set Single User Parameter (beginning with firmware V01.40!)	3
10.0.4	Get Single User parameter (beginning with firmware V01.20 !)	
10.3.4	Commands in measure mode	
10.4	Working with the protocol88	
	Command without user data	
	Command with user data	
10.5	Operation with LxS_Lib.dll	
	Access	
10.6	Operating with HALCON® image processing software90	
	Benefits	
	Access	
10.7	Additional support when integrating sensors90)
11	Diagnostics and troubleshooting	I
11.1	General causes of errors91	I
11.2	Interface error	2
11.3	Error messages in display (starting from firmware V01.40)93	3

12	Maintenance
12.1	General maintenance information
12.2	Repairs, servicing
12.3	Disassembling, packing, disposing
13	Specifications
13.1	General specifications
13.2	Typical measurement range 98
13.3	Dimensioned drawing
14	Type overview and accessories
14.1 14.1.1 14.1.2 14.1.3	Type overview 100 LPS 100 LRS 100 LES 100
14.2	Accessories
14.2.1	Fastening 101 Mounting devices. 101
14.2.2	Accessory ready-made cables for voltage supply X1
14.2.3	Accessories for Ethernet interface X2. 102 Ready-made cables with M12 plug/open cable end. 102 Ready-made cables with M12 plug/RJ-45 plug 103 Ready-made cables with M12 plug/M12 plug 103 Connectors 104
14.2.4	Accessory ready-made cables for X3
14.2.5	Configuration software
15	Appendix
15.1	Glossary
15.2 15.2.1 15.2.2	Revision History / Feature list 106 Firmware 106 Configuration software 107
	Index

Figures and tables

Figure 2.1:	Name plate and warning notices	11
Figure 3.1:	Light section sensor design	13
Figure 3.2:	Occlusion	14
Figure 3.3:	Typical resolution LPS 36	16
Figure 3.4:	Typical resolution LPS 36HI	16
Figure 4.1:	Mechanical design of Leuze light section sensors	17
Figure 4.2:	Activation input signal sequence	19
Figure 4.3:	Trigger input signal sequence	20
Figure 4.4:	Signal sequence for cascading.	21
Figure 4.5:	Cascading application example	21
Figure 5.1:	Device name plate LPS	23
Figure 5.2:	Fastening options.	24
Figure 5.3:	Mounting example LPS	24
Figure 5.4:	BT 56 mounting device	25
Figure 5.5:	BT 59 mounting device	26
Figure 5.6:	Alignment to the measuring plane	28
Figure 6.1:	Location of the electrical connections	29
Figure 6.2:	Connections of the LPS	29
Table 6.1:	Interface version of X3 and X4	30
Table 6.2:	Line lengths and shielding	31
Figure 6.3:	Connecting the ground potential to the light section sensor	32
Figure 6.4:	Connecting the cable shield in the switch cabinet	
Figure 6.5:	Connecting the cable shield to the PLC	33
Table 6.3:	Pin assignment X1	34
Figure 6.6:	Internal wiring at X1	34
Table 6.4:	Pin assignment X2	35
Figure 6.7:	HOST / BUS IN cable assignments on RJ-45	35
Table 6.5:	Pin assignment X3	36
Figure 6.8:	Two-channel incremental encoder connection: example with NPN/PNP open collector	38
Figure 6.9:	Two-channel incremental encoder connection: single-ended example	38
Figure 6.10:	Two-channel incremental encoder connection: differential - RS 422 example	39
Figure 6.11:	Single-channel incremental encoder connection: single-ended example (schematic illustration) .	40
Figure 7.1:	Indicator and operating elements of the LPS	
Table 7.1:	LED function indicator	41
Table 7.2:	Menu structure	43
Table 8.1:	Address allocation in the Ethernet	47
Figure 9.1:	Initial screen LPSsoft	
Figure 9.2:	Parameter settings in LPSsoft when LPS 36Hi is connected	59
Figure 9.3:	Encoder settings	
Figure 9.4:	3D Visualization with LPSsoft	63
Figure 9.5:	Evaluating saved 3D data.	64
Figure 9.6:	Zoom function	66
Table 10.1:	Connection commands	73
Table 10.2:	Connection commands	
Table 10.3:	Command mode control commands	74
Table 10.4:	Sensor control commands	75

Commands in measure mode	. 86
General causes of errors	. 91
Interface error	. 92
Error messages in display	. 93
Typical measurement range LPS 36	
Typical measurement range LPS 36HI	. 98
Dimensioned drawing LPS	. 99
Type overview LPS	100
Type overview LRS	100
Type overview LES	100
Mounting devices for the LPS	101
K-D M12A-8P cable assignments	101
X1 cables for the LPS	102
Pin assignments KB ETSA.	102
Ethernet connection cables featuring M12 plug/open cable end	102
Pin assignments KB ETSA-RJ45	103
Ethernet connection cables M12 connector/RJ-45.	103
Pin assignments KB ETSSA.	103
Ethernet connection cables featuring M12 plug/M12 plug	103
Connectors for the LPS	104
Pin assignments KB M12/8SA	
X3 cables for the LPS 36/6	104
Configuration software for the LPS.	104
Revision History - Firmware	106
Revision History - Configuration software	107
	General causes of errors

1 General information

1.1 Explanation of symbols

The symbols used in this technical description are explained below.

Attention!

This symbol precedes text messages which must strictly be observed. Failure to comply with this information results in injuries to personnel or damage to the equipment.

Attention Laser!

This symbol warns of possible danger caused by hazardous laser radiation. The light section sensors of the LPS series use a class 2M laser: Viewing the laser output with certain optical instruments, e.g. magnifying glasses, microscopes or binoculars, may result in eye damage.

Notice!

This symbol indicates text passages containing important information.

1.2 Declaration of conformity

The laser light section sensors of the 36 and 36HI series have been developed and manufactured in accordance with the applicable European standards and directives. They comply with the safety standards UL508 and CSA C22.2 No. 14 (Industrial Control Equipment).

Notice!

The CE Declaration of Conformity for these devices can be requested from the manufacturer.

The manufacturer of the product, Leuze electronic GmbH & Co. KG in D-73277 Owen, possesses a certified quality assurance system in accordance with ISO 9001.

2 Safety notices

2.1 General safety notices

Documentation

All entries in this technical description must be heeded, in particular the present chapter "Safety notices". Keep this technical description in a safe place. It should be available at all times.

Safety regulations

Observe the locally applicable regulations and the rules of the employer's liability insurance association.

Repair

Repairs must only be carried out by the manufacturer or an authorized representative.

2.2 Safety standards

The LPS series light section sensors were developed, manufactured and tested in accordance with the applicable safety standards. They correspond to the state of the art.

2.3 Approved purpose

Attention!

The protection of personnel and the device cannot be guaranteed if the device is operated in a manner not complying with its intended use.

The light section sensors of the LPS series are laser distance sensors to determine 2D profiles.

In particular, unauthorized use includes:

- rooms with explosive atmospheres
- · operation for medical purposes

Areas of application

The LPS series light section sensors are especially designed for the following areas of application:

- 3D Measurement of moving objects
- Gripper control
- Measurement of free formed surfaces
- · Case picking

2.4 Working safely

Attention!

Access to or changes on the device, except where expressly described in this operating manual, are not authorized.

Safety regulations

Observe the locally applicable legal regulations and the rules of the employer's liability insurance association.

Qualified personnel

Mounting, commissioning and maintenance of the device must only be carried out by qualified personnel. Electrical work must be carried out by a certified electrician.

Attention, laser radiation!

If you look into the beam path over a longer time period, the retina of your eye may be damaged!

Never look directly into the beam path!

Do not point the laser beam of the light section sensors at persons!

When mounting and aligning the light section sensors, avoid reflections of the laser beam off reflective surfaces!

Viewing the laser output with certain optical instruments, e.g. magnifying glasses, microscopes or binoculars, may result in eye damage!

The light section sensors comply with the safety standard EN 60825-1:2007 for a Laser class 2M product, and with US Regulation 21 CFR 1040.10 with the deviations pursuant to "Laser Notice No. 50", dated 24th June 2007.

Radiant Energy: The light section sensors use a laser diode. The emitted wavelength is 658 nm. The maximum laser power, which is determined with measurement condition 3 acc. to EN 60825-1: 2007 (7mm measuring diaphragm at a distance of 100mm from the virtual source), is 8.7mW.

Adjustments: Do not attempt any adjustments to or alterations of this product. Do not open the protective housing of the light section sensor. There are no user-serviceable parts inside.

The glass optics cover is the only aperture through which laser light may be observed on this product.

CAUTION: Use of controls or adjustments or performance of procedures other than specified herein may result in hazardous light exposure.

The use of optical instruments or devices in combination with the light section sensor increases the danger of eye damage!

Operation notice in accordance with UL certification: CAUTION – Use of controls or adjustments or performance of procedures other than specified herein may result in hazardous light exposure.

The light section sensors are provided with warning notices on the housing and below the reading window as shown in the following figure:

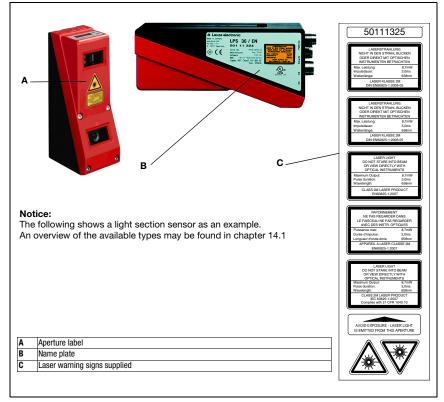


Figure 2.1: Name plate and warning notices

Safety notices

Notice!

It is essential that you attach the stick-on labels (C in figure 2.1) to the device with which they are supplied! If the signs would be concealed as a result of the mounting situation of the device, attach the signs in the vicinity of the light section sensor such that reading the signs cannot lead to looking into the laser beam!

3 Operating principle

3.1 Generation of 2D profiles

Light section sensors work according to the triangulation principle. Using transmission optics a laser beam is expanded to a line and aimed at an object. The light remitted by the object is received by a camera, which consists of receiver optics and the CMOS area detector.

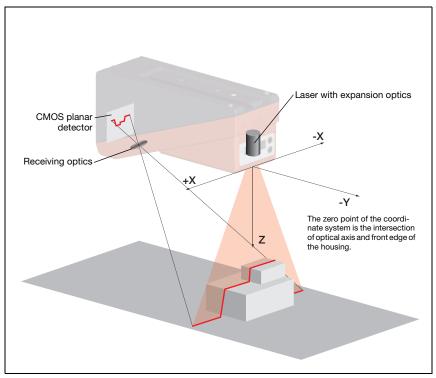


Figure 3.1: Light section sensor design

Depending on the distance of the object the laser line is projected to a different position on the CMOS planar detector as shown in figure 3.1. By means of this position the distance of the object can be calculated.

3.2 Limits of light section sensors

3.2.1 Occlusion

The detection of high and wide objects from just one point poses the particular problem that depending on the object contour, parts of the object may be obscured by others. This effect is called occlusion.

The figure 3.2 illustrates the problem:

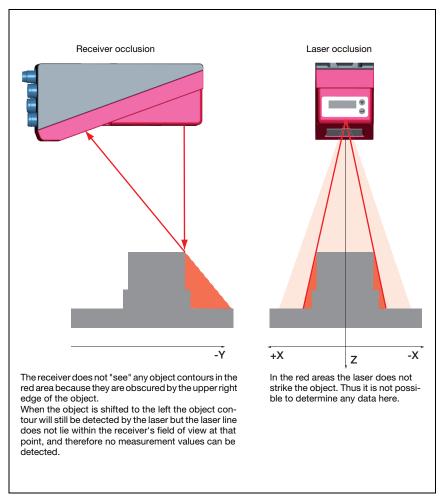
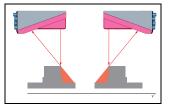


Figure 3.2: Occlusion


Possible measure against laser occlusion

 Using multiple light section sensors with rotated viewing direction. In the application example on the right you can clearly see that the fields of vision of the three sensors complement each other and merge. The first of the sensors is operated as a master, the two others are cascaded (see "Cascading" on page 21). This reliably prevents mutual interference of the sensors.

Possible measures against receiver occlusion

- Alignment of the measurement objects so that all profile data to be measured can be seen by the receiver. Or:
- Installing a second sensor featuring a viewing direction rotated by 180° about the z-axis so that the objects can be viewed from 2 sides. In the example to the right, the left sensor detects the profile data on the left side of the product, and the right sensor the profile data on the right side. In this situation the second sensor is then cascaded. See "Cascading" on page 21.

3.2.2 Resolution

In this context resolution means the smallest possible change in distance of the measurement object, which causes a unique change of the output signal. Resolution is higher in the short range than in the distant range. Small objects can be recognized better in the short range.

The length of the laser line in the X-direction is dependent on the distance Z of the measurement object from the sensor . Always the same number of measurement points is measured. From this it follows that the resolution in X-direction decreases with increasing distance in Z-direction.

The following illustration shows this relation:

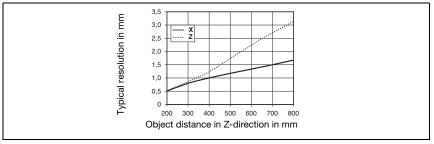


Figure 3.3: Typical resolution LPS 36...

The output resolution of the measurement values on the process interface is 1/10mm with Standard-Connect, 1/100mm with HI-Connect (only with LPS 36HI/EN).

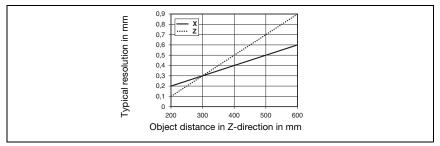


Figure 3.4: Typical resolution LPS 36HI...

4 Device description

4.1 Overview of light section sensors

4.1.1 Mechanical design

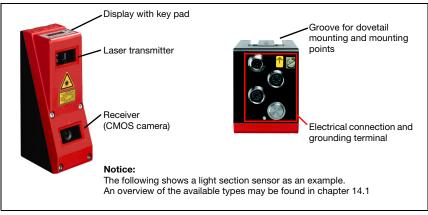


Figure 4.1: Mechanical design of Leuze light section sensors

4.1.2 General performance characteristics

- · Light section sensor for object/contour measurement
- Measurement time/response time: 10ms
- Measurement range/detection area: 200 ... 800mm
- Measurement range/detection area: LPS 36...: 200 to 800mm, LPS 36HI...: 200 to 600mm
- Length of laser line: max. 600mm
- Length of the laser line: LPS 36...: max. 600mm, LPS 36HI...: max. 140mm
- · Configuration and transmission of process data via Fast Ethernet
- · OLED display with key pad
- · Measurement value display in mm on OLED display as an alignment aid
- Up to 16 inspection tasks
- Compact construction
- Robust design and easy operation
- · Activation input, trigger input, cascading output

4.1.3 Line Profile Sensor - LPS

Wherever stationary or moving objects of various sizes and positions are to be measured or detected, the LPS sensor is used. 3D data are provided reliably due to precise 2D profile measurements in connection with mobile scanning. Thus numerous application possibilities are available to determine positions, surfaces and contents.

Specific performance characteristics

- Measurement data transfer via Ethernet
- Configuration software LPSsoft
- Optional: Interface for incremental encoder

Typical areas of application

- Case picking
- Gripper control
- · Measurement of free formed surfaces
- 3D Measurement of moving objects

Measurement of free formed surfaces

Gripper control

4.2 Operating the sensor

4.2.1 Connection to PC / process control

Configuration

For commissioning the light section sensors are connected to a PC via the Ethernet interface (see "Connection X2 - Ethernet" on page 35) and are then set using the configuration software supplied LPSsoft.

Measurement operation

In measurement operation the light section sensors are connected to a process control via the same X2 interface, and communicate with it via Ethernet (UDP), see chapter 10 "Integrating the LPS in the process control".

4.2.2 Activation - laser on/off

The laser and the data transmission can selectively be switched on and off via the activation input **InAct** (pin 2 at X1) or via the 'Ethernet Trigger' command. Thus possible glares due to laser radiation can be prevented during time periods when no measurements are performed.

0]]

Notice!

The sensor is delivered ex works with the Activation Input Disregard setting. The possible activation sources (activation input and Ethernet activation) are ignored - the measurement function of the sensor is enabled.

The activation function can be switched on via the configuration software. To do this, the Activation Input parameter must be set to Regard. The sensor then only measures if one of the activation sources is activated. If the sensor is waiting for activation, it displays !Act in the display.

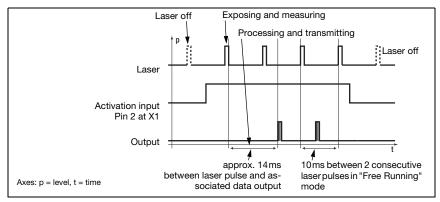


Figure 4.2: Activation input signal sequence

The figure 4.2 shows the effect of the activation on laser and measurement value output in "Free Running" mode.

4.2.3 Triggering - Free Running

The light section sensors can measure in two modes:

- In "Free Running" operation the light section sensor determines measurement results with a frequency of 100 Hz and outputs these continuously via the interface X2.
- Alternatively, single measurements can also be carried out. For this purpose, the light section sensor requires either a trigger signal at the trigger input (pin 5 on X1) or the Ethernet Trigger command in measure mode (see chapter 10.3.4 "Commands in measure mode" on page 86).

When triggering via pin 5 at X1, note:

- Triggering occurs on the rising edge.
- The trigger pulse must be at least 100 µs long.
- Before the next trigger, the trigger cable must be on low-level for at least 1 ms.
- Activation must occur at least 100µs before the trigger edge.
- The shortest possible time interval between two successive trigger edges is 10 ms.

Notice!

Ex works, the LPS is set to Free Running (shown on display: fRun). In order for it to respond to signals on the trigger input, the operating mode must be set via the LPSsoft configuration software to Input Triggered (shown on display: Trig).

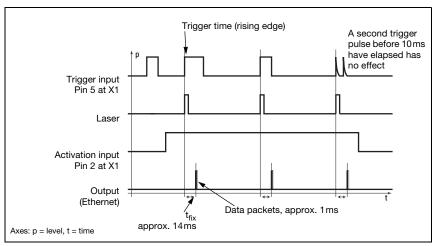


Figure 4.3: Trigger input signal sequence

4.2.4 Cascading

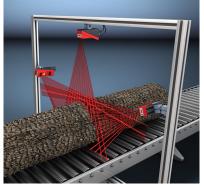
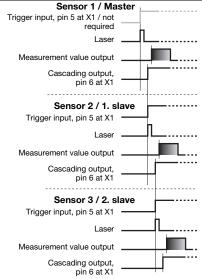



Figure 4.5: Cascading application example

If several light section sensors are operated, there is the risk of mutual interference if the reflected laser beam of one sensor can be received by the receiver of another sensor at the time of reading.

This can easily be seen in figure 4.5. Here Figure 4.4: three light section sensors are used to determine the log thickness reliably from all sides.

To prevent mutual interference the light section sensors can be operated cascaded:

the exposure by the second sensor will be initiated following completion of the exposure by the first sensor. To achieve this, the cascading output of the first sensor must be connected to the trigger input of the second sensor. Up to 6 sensors can thus be operated cascaded.

Trigger settings

Sensor 1, or the master, can be operated in this case both triggered as well as continuously. All other sensors must be operated triggered.

Cascading settings

For all sensors except the last slave, the cascading output must be enabled via configuration software: Cascading Output: Enable.

igure 4.4: Signal sequence for cascading

4.3 Inspection Task

The LPS supports up to 16 individual inspection tasks. Grouped together in an inspection task are all parameter settings relevant for an application:

- Operation Mode (Free Running, Input Triggered)
- Activation Input (switch laser on and off)
- · Cascading Output
- Light Exposure (exposure duration of the laser)
- Field of View (sensor detection range)

The selection of the inspection tasks is carried out:

- via LPSsoft (on a PC connected via X2)
- via Ethernet (on a process control connected via X2)
- via the control panel of the sensor beginning with firmware V01.40

5 Installation and mounting

5.1 Storage, transportation

Attention!

When transporting or storing, package the light section sensor so that it is protected against collision and humidity. Optimum protection is achieved when using the original packaging. Heed the required environmental conditions specified in the technical data.

Unpacking

- Check the packaging for any damage. If damage is found, notify the post office or shipping agent as well as the supplier.
- Scheck the delivery contents using your order and the delivery papers:
 - Delivered quantity
 - · Device variant and model as indicated on the nameplate
 - Laser warning signs
 - Brief manual

The name plate provides information as to what light section sensor type your device is. For specific information, please refer to chapter 14.

Figure 5.1: Device name plate LPS

Save the original packaging for later storage or shipping.

If you have any questions concerning your shipment, please contact your supplier or your local Leuze electronic sales office.

♦ Observe the local regulations regarding disposal of packaging material.

5.2 Mounting the LPS

The light section sensors can be mounted in different ways:

- By means of two M4x6 screws on the back of the device
- Using a BT 56 mounting device on the two fastening grooves.
- Using a BT 59 mounting device on the two fastening grooves.

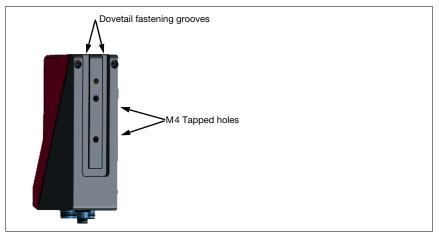


Figure 5.2: Fastening options



Figure 5.3: Mounting example LPS

5.2.1 BT 56 mounting device

The BT 56 mounting device is available for mounting the LPS using the fastening grooves. It is designed for rod installation (Ø 16mm to 20mm). For ordering instructions, please refer to chapter "Type overview and accessories" on page 100.

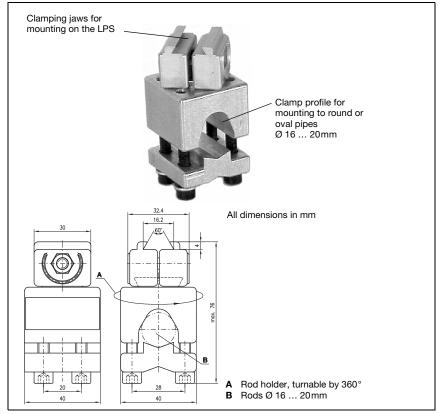


Figure 5.4: BT 56 mounting device

5.2.2 BT 59 mounting device

The BT 59 mounting device is available for mounting the LPS on ITEM profiles using the fastening grooves. For ordering instructions, please refer to chapter "Type overview and accessories" on page 100.

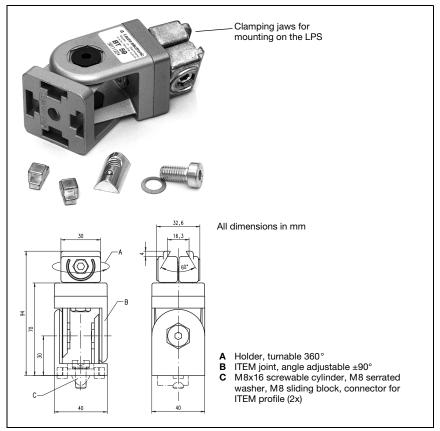


Figure 5.5: BT 59 mounting device

5.3 Device arrangement

5.3.1 Selecting a mounting location

In order to select the right mounting location, several factors must be considered:

- The required resolution. This is a result of the distance and the resulting line length.
- The permissible cable lengths between the LPS and the host system depending on which interface is used.
- The display and control panel should be very visible and accessible.
- 𝔅 When selecting a mounting location, pay further attention to:
 - Maintaining the required environmental conditions (temperature, humidity).
 - Possible soiling of the optics covers on transmitter and receiver by discharged liquids, abrasion from cartons or packaging residues.
 - Lowest possible chance of damage to the LPS by mechanical collision or jammed parts.
 - Possible extraneous light (no direct sunlight or sunlight reflected by the measurement object).
 - The optimal perspective for detecting the relevant contours of objects, see chapter 3.2.1 "Occlusion".

Attention, laser radiation!

When mounting and aligning the LPS, avoid reflections of the laser beam off reflective surfaces!

Notice!

The prevention of ambient light due to shielding of the sensor for example, ensures stable and precise measurement values. Secondary reflections of the laser line on reflective objects must be avoided as these can result in faulty measurements. The best measurement results are obtained when:

- You adapt the operating mode (light/dark) to the application.
- You do not measure high-gloss objects.
- There is no direct sunlight.

5.3.2 Aligning the sensor

The zero point of the sensor coordinate system is the intersection of optical axis and front edge of the housing. The general principle is that the light section sensor should be aligned so that the back of the sensor is aligned parallel to the conveying belt or measuring plane. A rotation about the y-axis is undesirable as this then necessitates a coordinate transformation of the measurement values.

The figure 5.6 illustrates the problem:

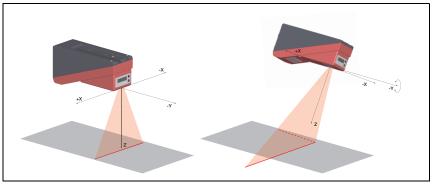


Figure 5.6: Alignment to the measuring plane

A rotation of the sensor about the y-axis distorts the entire coordinate system, which the measurement values relate to. The sensor measures along the solid line in the right picture, however the measuring plane is located on the dotted line, and a measurement towards the conveying belt shown in gray would result in a tilted plane.

A conversion into correct X/Z-coordinates is possible but to achieve this the user has to carry out a coordinate transformation in the process control. The light section sensor does not offer a conversion option internally.

When setting up an application it is therefore very important to ensure correct alignment and that the integrated alignment aid on the display is used.

5.4 Attach laser warning sign

Attention Laser!

Observe the safety notices in chapter 2.

It is essential that you attach the stick-on label (laser warning signs and laser beam exit symbol) supplied with the light section sensor to the light section sensor! If the signs would be concealed as a result of the mounting situation of the LPS, attach the signs in the vicinity of the LPS such that reading the signs cannot lead to looking into the laser beam!

When installing the LPS in North America, also attach the stick-on label saying "Complies with 21 CFR 1040.10"

5.5 Cleaning

Clean the optics cover of the LPS with a soft cloth after mounting. Remove all packaging remains, e.g. carton fibers or styrofoam balls. In doing so, avoid leaving fingerprints on the optics cover of the LPS.

Attention!

Do not use aggressive cleaning agents such as thinner or acetone for cleaning the device.

6 Electrical connection

The light section sensors are connected using variously coded M12 connectors. This ensures unique connection assignments.

For the locations of the individual device connections, please refer to the device detail shown below.

Notice!

The corresponding mating connectors and ready-made cables are available as accessories for all connections. For additional information, refer to chapter 14.

Figure 6.1: Location of the electrical connections

All the light section sensors are equipped with three M12 plugs / sockets which are A- and D-coded.

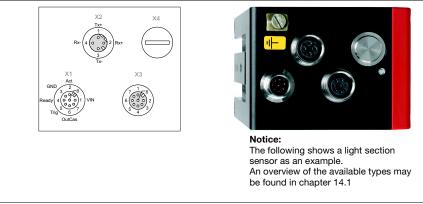


Figure 6.2: Connections of the LPS

The pin assignment of X1 and X2 is identical for all light section sensors; X3 and X4 differ depending on device type.

Using the name plate check the exact type designation. The version of X3/X4 is contained in the following table:

Type designation	Х3	X4	Relevant chapter
LPS 36/EN	Encoder	not used	chapter 6.3.3
LPS 36HI/EN	Encoder	not used	chapter 6.3.3
LPS 36	Not used	not used	-

Table 6.1: Interface version of X3 and X4

6.1 Safety notices

Attention!

Do not open the light section sensor yourself under any circumstances! There is otherwise a risk of uncontrolled emission of laser radiation from the light section sensor. The housing of the LPS contains no parts that need to be adjusted or maintained by the user.

Before connecting the device please ensure that the supply voltage matches the value printed on the nameplate.

Connection of the device and cleaning must only be carried out by a qualified electrician.

If faults cannot be cleared, the LPS should be switched off from operation and protected against accidental use.

The LPS light section sensors are designed in accordance with safety class III for supply by PELV (protective extra-low voltage with reliable disconnection).

Notice!

Protection class IP 67 is achieved only if the connectors and caps are screwed into place! The connectors used must be equipped with O-ring seals. Therefore, preferably, please use the ready-made cables by Leuze electronic.

6.2 Shielding and line lengths

The light section sensors of the 36/36HI series are equipped with modern electronics developed for industrial applications. In industrial environments, a number of sources of interference may affect the sensors. In the following, information is provided on EMC-compliant wiring of the sensors and of the other components in the switch cabinet and on the machine.

Solution Observe the following maximum line lengths:

Connection to the sensor	Interface	Max. line length	Shielding
Power supply unit	X1	50 m	required
Activation / cascading / trigger	X1	50 m	required
PC/Host	X2	50 m	required
Encoder	Х3	50 m	required

Table 6.2:Line lengths and shielding

Shielding:

1. Ground the LPS housing:

Connect the housing of the LPS via the functional earth (FE) screw provided for this purpose (see figure 6.3, devices produced after April 2011) with the protective conductor on the machine star point. The cable should have an impedance as low as possible for high-frequency signals, i.e., be as short as possible and have a large cross-sectional area (grounding strip, ...).

If the LPS does not yet have an FE screw of its own, please use one of the M4 holes on the dovetail.

Important: Place a lock washer underneath and check the penetration of the anodized coating of the LPS housing by measuring the electrical connection from FE star point to the connector sleeves without connected sensor cables so that other FE interruptions can be detected on the machine base and profile rails as well.

2. Shield all connection cables to the LPS:

Apply the shield to FE on both sides. On the LPS end, this is ensured if the LPS housing is connected to FE (PE) as described under 1. (shield fitted over the connector sleeves to the housing).

In the switch cabinet, clamp the shield flat to FE. To do this, use special **shielding clamps** (e.g., Wago, Weidmüller, ...).

Keep the length of the shieldless end of the cable as short as possible.

The shield should not be connected at a terminal in a twisted fashion (no "RF braid"). **Disconnect power and control cables**:

Lay the cables for the power components (motor cables, lifting magnets, frequency inverters, ...) as far from the sensor cables as possible (distance > 30 cm). Avoid laying power and sensor cables parallel to one another.

Cable crossings should be laid as perpendicular as possible.

4. Lay cables close to grounded metal surfaces:

This measure reduces interference coupling in the cables.

3.

5. Avoid leakage currents in the cable shield:

Leakage currents arise from incorrectly implemented equipotential bonding. Therefore, carefully ground all parts of the machine.

Notice: You can measure leakage currents with a clip-on ammeter.
Star-shaped cable connections: To avoid interference between various consumers, ensure that the devices are connected in a star shape. This will prevent cable loops.

General shielding information:

Avoid spurious emissions when using power components (frequency inverters, ...). The technical descriptions of the power components provide the necessary specifications according to which the respective power component satisfies its CE conformity.

In practical work, the following measures have proven effective:

- Screw the mains filter, frequency inverter flat on the galvanized mounting plate.
- Mounting plate in the switch cabinet made of galvanized sheet steel, thickness ≥ 3 mm
- Keep cable between mains filter and inverter as short as possible and twist cables.
- Shield both ends of the motor cable.
- Ground the entire system well.

Carefully ground all parts of the machine and of the switch cabinet using copper strips, ground rails or grounding cables with large cross section.

Below, the EMC-compliant connection of the light section sensors LPS is described in practical use with images.

Connect the ground potential to the light section sensors

Devices produced after April 2011 are equipped with an additional ground-ing terminal.

Attention! Place lock washer underneath and check the penetration of the anodized coating!

All devices can also be connected to ground potential at the M4 threaded hole on the dovetail.

Figure 6.3: Connecting the ground potential to the light section sensor

Connecting the cable shield in the switch cabinet

- · Shield connected flat to PE
- · Connect PE star point with short cables
- Galvanized mounting sheet steel

Comment:

Depicted shield components from Wago, series 790 ...:

- 790-108 Shield clamping bracket 11 mm
- 790-300 Busbar holder for TS35

Figure 6.4: Connecting the cable shield in the switch cabinet

Connecting the cable shield to the PLC

Figure 6.5: Connecting the cable shield to the PLC

- Where possible, use shielded sensor cables
- Connect shield flat to PE using shield clamping system
- Mounting rails must be well grounded

Comment:

Depicted shield components from Wago, series 790 ...:

- 790-108 Shield clamping bracket 11 mm
- 790-112 Carrier with grounding foot for TS35

6.3 Connecting

6.3.1 Connection X1 - logic and power

Attention!

All cables must be shielded!

X1 (8-pin plug, A-coded)						
X1	Pin	Name	Core color	Remark		
InAct	1	VIN	WH	+24VDC supply voltage		
GND 2	2	InAct	BN	Activation input		
$\begin{pmatrix} 3 \\ 6 \\ 7 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8$	3	GND	GN	Ground		
OutReady 4(000)1 VIN	4	OutReady	YE	"Ready" output		
	5	InTrig	GY	Trigger input		
InTrig 6	6	OutCas	PK	Cascading output		
OutCas	7		BU	Do not connect		
M 12 plug (A-coded)	8		RD	Do not connect		

Table 6.3: Pin assignment X1

♦ Preferably, please use the ready-made cables "K-D M12A-8P...", see chapter 14.2.2.

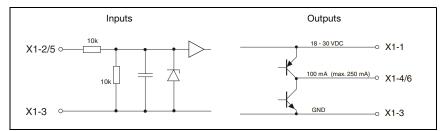


Figure 6.6: Internal wiring at X1

Power supply

For power supply specifications please refer to chapter 13.

Activation input InAct

The activation input is used to switch the laser on and off via the process control. The sensor stops outputting data and does not respond to trigger commands or the trigger input. The equivalent circuit of the inputs at X1 is shown in figure 6.6.

Trigger input InTrig

The trigger input is used for synchronizing the measurement with the process and for synchronizing cascaded sensors. Detailed information on this topic can be found in chapter 4.2.3 and chapter 4.2.4. The internal equivalent circuit is shown in figure 6.6.

Cascading output OutCas

In order to operate several light section sensors cascaded this output must be connected directly to the trigger input of the following sensor. Detailed information on this topic can be found in chapter 4.2.4. The internal equivalent circuit is shown in figure 6.6.

Output "ready" OutReady

This output indicates operational readiness of the sensor. The state of the output corresponds to the state of the green LED (see "LED status displays" on page 41).

6.3.2 Connection X2 - Ethernet

Attention!

All cables must be shielded!

The LPS makes either the Ethernet interface available as host interface.

X2 (4-pin socket, D-coded)				
X2	Pin	Name	Core color	Remark
Tx+	1	Tx+	YE	Transmit Data +
1	2	Rx+	WH	Receive Data +
	3	Tx-	OR	Transmit Data -
$Rx - \begin{pmatrix} 4 & 0 & 0 \end{pmatrix} 2 Rx +$	4	Rx-	BU	Receive Data -
3 Tx- M12 socket (D-coded)	Thread	FE	-	Functional earth (housing)

Table 6.4: Pin assignment X2

Section 2.3. Preferably, please use the ready-made cables "KB ET-...-SA...", see chapter 14.2.3.

Ethernet cable assignment

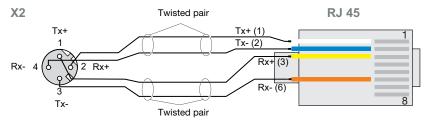


Figure 6.7: HOST / BUS IN cable assignments on RJ-45

Notice for connecting the Ethernet interface!

Ensure adequate shielding. The entire connection cable must be shielded and earthed. The Rx+/Rx- and Tx+/Tx- wires must be stranded in pairs. Use CAT 5 cables for the connection.

6.3.3 X3 - incremental encoder connection

The LPS 36/EN and LPS 36HI/EN are equipped with an interface for an incremental encoder. Differential signals (5V) or 24V signals against GND can be processed. For reasons of interference rejection, differential connection is recommended.

Attention!

All cables must be shielded!

Notice!

The X3 connection is assigned only at the LxS 36/EN!

X3 (8-pin socket, A-coded)				
	Pin	Name	Core color	Remark
X3	1	Enc. +24VDC	WH	+24VDC supply voltage for incremental encoder
Enc. +24 V DC	2	(GND)	BN	Ground
Enc. B- $7 - 1 - 2 +5$ V DC Out	3	GND	GN	Ground
	4	Enc. A+	YE	Incremental encoder connection
Enc. B+ $6(\circ \circ \circ) 2$ (GND)				A+
5003	5	Enc. A-	GY	Incremental encoder connection
Enc. A- 4 GND				A-
Enc. A+	6	Enc. B+	PK	Incremental encoder connection
M12 socket				B+
(A-coded)	7	Enc. B-	BU	Incremental encoder connection
				В-
	8	+5VDC Out	RD	+5VDC supply voltage for
				incremental encoder

Table 6.5: Pin assignment X3

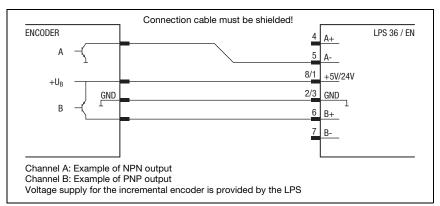
The maximum permissible current consumption of connected encoders is 140mA. The maximum pulse frequency is 300kHz.

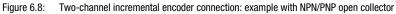
Notice!

New with firmware V01.20:

- Support of single-channel and two-channel encoders.
- Single mode (no pulse duplication), i.e., "single evaluation", or Double Mode (pulse doubling)
- Quadruple mode (pulse quadrupling) is no longer supported
- Overflow value 0xFFFF FFF, 0xFEFF FFFF or 0x7FFF FfFF

Attention!


Up to firmware V01.20, encoder evaluation was permanently set to Quadruple Mode (count all 4 edges on both encoder channels). This mode is no longer supported beginning with firmware V01.20.


Notice!

New factory settings beginning with firmware V01.20 and with configuration software LPSsoft V1.3. Together with the new functions, encoder devices with the following factory settings are shipped:

- Encoder type: 2 Channel Encoder
- Evaluation mode: Double Mode Previously: Quadruple Mode, this mode is no longer supported beginning with firmware V01.20. Up to firmware V01.20, encoder evaluation was permanently set to Quadruple Mode (count all four edges on both encoder channels).
- Counter Value Overflow: ØxFFFF FFFF Previously: ØxFEFF FFFF, the new Counter Overflow value ØxFFFF FFFF permits distance calculation in Double Mode with 32-bit values without manual correction.

Two-channel incremental encoder with open collector outputs

Two-channel incremental encoder, single-ended

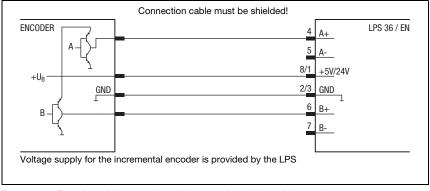
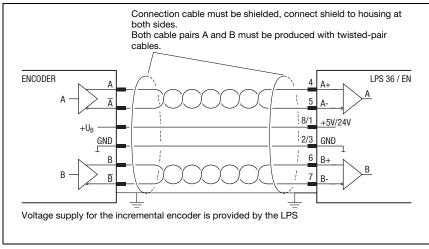
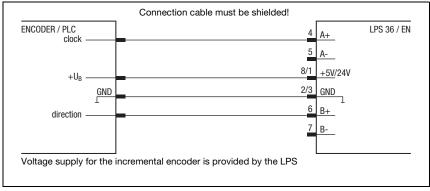



Figure 6.9: Two-channel incremental encoder connection: single-ended example

Two-channel incremental encoder, differential


In general, it is recommended to use incremental encoders with RS 422 interface and 24V supply. That way, signals can be transmitted safely even across larger distances (depending on the pulse frequency to 50m).

Single-channel incremental encoder (beginning with firmware V01.20)

In this setting, pulses of an initiator or of a PLC output can be counted. In addition, the count direction can be toggled, e.g., via a control.

New beginning with firmware V01.20 and with configuration software LPSsoft V1.3:

- The counting direction of the encoder pulse counter can be reversed with LPSsoft.
- When operating single-channel encoders, the pulses are counted on the A-channel. The counting direction can be changed by means of an additional direction signal on channel B:
 - Low level on pins 6/7 of X3 = upward pulse counting.
 - High level on pins 6/7 of X3 = downward pulse counting.

Single-channel encoders have only one output channel (here clock - channel A). As a result, it is generally only possible to detect the movement, not, however, the direction of movement (counting).

The count/movement direction can be preset by applying a signal (here direction) at channel B:

- 0 upward counting (default, if no signal is connected to channel B)
- 1 downward counting

7 Display and control panel

7.1 Indicator and operating elements of the

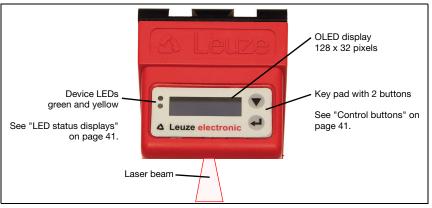


Figure 7.1: Indicator and operating elements of the LPS

After switching on the supply voltage $+U_B$ and following error-free initialization of the device, the green LED illuminates continuously: the LPS is in measure mode. The OLED display shows the alignment aid and the status display.

7.1.1 LED status displays

LED	State	Display during measurement operation
Green	continuous light	Sensor ready
	off	Sensor not ready
Yellow	continuous light	Ethernet connection established
	flashing	Ethernet data transmission active
	off	No Ethernet connection

Table 7.1: LED function indicator

7.1.2 Control buttons

The LPS is operated using the \blacktriangledown and \longleftarrow buttons, which are located next to the OLED display.

7.1.3 Displays

The display changes depending on the current operating mode. There are the following three display modes:

- Alignment aid and status display
- Command mode
- Menu display

The menu display is accessed by pressing one of the two control buttons. Operation of the LPS via the menu is described in chapter 7.2.2.

Alignment aid

As an alignment aid, the current measurement value at the left edge (Lxxx), in the middle (Mxxx) and at the right edge (Rxxx) of the detection range is displayed in the OLED display in units of millimeters. If no object

is detected or if the distance is too small, distance value 000 (mm) appears in the display.

Align the light section sensor by rotating it about the y-axis in such a way that the same value is indicated for L, M, R.

Status display

Displayed on the second line of the display is the selected inspection task (Txx) as well as the current sensor state (see chapter 4.2 "Operating the sensor").

The indication of the sensor state in the display has the following meaning:

- fRun = Free Running
- Tria = Triggering
- !ACt = Activation (laser on/off)

T12 means that Inspection Task 12 is currently active, for example. Value range: T00 to T15.

The following options are available for the sensor status: fRun means Free Running, Tria means triggered (see chapter 4.2.3 "Triggering - Free Running") and !ACK means that the sensor is deactivated (no laser line, see chapter 4.2.2 "Activation - laser on/off").

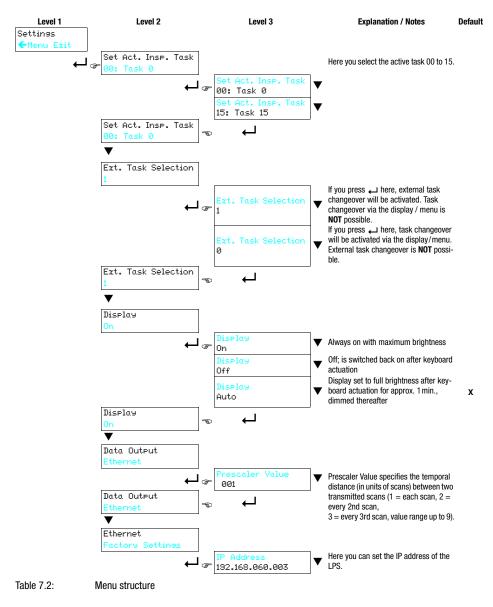
Command mode

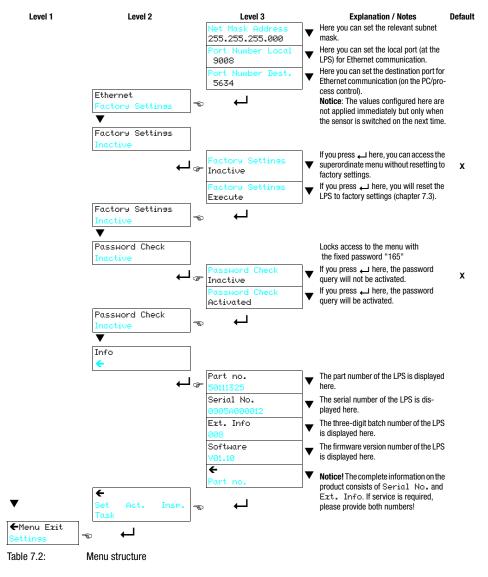
If the LPS is connected to a control, the control can put the LPS into a command mode in which it receives and executes commands (see chapter 10.3 "Commands"). In command mode, the OLED display has one line.

Command Mode appears on the first line of the display.

Notice!

If errors occur during operation, these are shown on the display. Notices can be found in chapter 11.3.

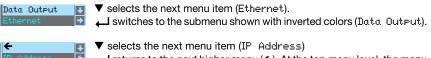




7.2 Menu description

7.2.1 Structure

If no button is pressed for three minutes, the LPS exits menu mode and switches to measure mode. The OLED display again displays the alignment aid and the sensor status display.


 \cap

7.2.2 Operation/navigation

In menu view, the OLED display has two lines. The currently active menu item is displayed with black text on a light-blue background. The \checkmark and \checkmark buttons both have different functions depending on the operating situation. These functions are represented via icons on the right edge of the display – i.e. to the immediate left of the buttons.

The following displays may appear:

Menu navigation

 \leftarrow returns to the next higher menu (\leftarrow). At the top menu level, the menu can be exited here (Menu Exit). The number of bars at the left edge indicates the current menu level:

Selecting values or selection parameters for editing

IF	Add	ress		÷
18	2.16	9.060	.003	Ø

▼ selects the next menu item (-> Net Mask Addr.). ← selects edit mode for IP Address.

Editing value parameters

 $\mathbf{\nabla}$ decrements the value of the currently selected digit (1).

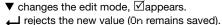
 \leftarrow selects the next digit to the right (\exists) for editing. After having clicked through all the digits using \leftarrow a checkmark (\boxdot) appears at the bottom right of the display. If an impermissible value was entered, the \circlearrowright symbol (new entry) appears and no checkmark is offered for selection.

- ▼ changes the edit mode, ひ appears.
- L saves the new value (192.168.001.111).

lacksim changes the edit mode, oxtimesappears.

selects the first digit (1) for renewed editing.

 \checkmark changes the edit mode, \heartsuit 🗹 appears.


Left rejects the new value(in this example, the factory setting 192.168.060.003 remains saved).

Editing selection parameters

	▼ displays the next option for Display (Off).
On 💽	← returns to the next-higher menu level and retains 0n.

Off	→
Display Off	
Display Off	H

- ▼ displays the next option for Display (Auto).
 ↓ selects the new value Off and displays the menu for confirmation:
- ▼ changes the edit mode, ⊠appears.
 ↓ saves the new value (0ff).

Notice

To ensure that values that were changed via the menu are also applied, you should disconnect the sensor from its power supply for a brief period after a change of values.

7.3 Reset to factory settings

The factory settings can be reset in three different ways:

- Hold down the 🖵 button while connecting the supply voltage
- Factory Setting menu item
- · By means of the LPSsoft configuration software

As an example, the first of the methods mentioned above is described below:

When applying the supply voltage, press the button to reset the configuration of the LPS to factory settings.

The display shown next to here appears.

Interrupting a reset

Pressing ▼ causes the adjacent display to appear. If you now press the ↓ button, you will exit the menu without resetting the LPS to factory settings.

Executing a reset

Pressing the \leftarrow button while the checkmark (\boxdot) is displayed causes the adjacent safety prompt to appear.

Pressing ▼ interrupts the reset process; reset_canceled appears in the display for approx. 2s. Afterward, the LPS returns to measure mode.

Pressing — resets all parameters to the factory settings. All settings made previously are permanently lost. reset done appears in the display for approx. 2s; the LPS then returns to measure mode.

You can select the resetting to factory settings also via LPSsoft.

& In the Configuration menu select the entry Reset to Factory Settings.

8 Commissioning and configuration

8.1 Switching on

After switching on the supply voltage $+U_B$ and following error-free initialization of the device, the green LED illuminates continuously: the LPS is in measure mode.

Notice

After a warmup time of 30 min., the light section sensor has reached the operating temperature required for an optimum measurement.

8.2 Establish connection to PC

The LPS is configured via a PC using the LPSsoft program before it is integrated into the process control.

In order to be able to establish an UDP communication with the PC, the IP address of your PC and the IP address of the LPS must lie in the same address range. The LPS has no builtin DHCP client, so that you need to set the address manually. This is done the easiest way via the PC.

Notice!

If you use a desktop firewall, please make certain that the PC can communicate with the LPS via the Ethernet interface by means of UDP on ports 9008 and 5634 (these ports are preset at the factory, but may have been changed by the user, see chapter 7.2 "Menu description"). Furthermore, the firewall must allow ICMP echo messages to pass through for the connection test (ping).

If the PC is usually connected to a network using DHCP address allocation, the easiest way to access the LPS is by applying an alternative configuration in the TCP/IP settings of the PC and connecting the LPS to the PC.

 ♦ Check the network address of the LPS by pressing the → button during measure mode of the LPS twice in succession, then by pressing ▼ twice and followed by pressing the → button again.

This will take you to the Ethernet submenu and enable you to read the current settings of the LPS consecutively when pressing ▼ repeatedly.

♦ Make a note of the values for IP-Address and Net Mask Addr...

The value in Net Mask Addr. specifies which digits of the IP address of the PC and LPS must match so that they can communicate with each other.

Address of the LPS	Net mask	Address of the PC
192.168.060.003	255.255.255.0	192.168.060.xxx
192.168.060.003	255.255.0.0	192.168.xxx.xxx

Table 8.1: Address allocation in the Ethernet

Instead of **xxx** you can now allocate any numbers between 000 and 255 to your PC, but NOT THE SAME numbers as contained in the address of the LPS.

For example 192.168.060.110 (but not 192.168.060.003!). If LPS and PC have the same IP address, they cannot communicate with each other.

Setting an alternative IP address on the PC

- ♦ Log into your PC as administrator.
- Using Start->System control go to the Network connections (Windows XP) menu or to the Network center and release center (Windows Vista) menu.
- There, select LAN Connection and right-click to open the corresponding properties page.
- Select the Internet Protocol (TCP/IP) (by scrolling down, if necessary) and click on Properties.
- In the Internet Protocol (TCP/IP) Properties window select the Alternate configuration tab.
- Set the IP address of the PC in the address range of the LPS. Attention: do not use the same as for the LPS!
- Set the subnet mask of the PC to the same value as on the LPS.
- Solution Close the configuration dialog by confirming all windows using OK.
- Connect the interface X2 of the LPS directly to the LAN port of your PC. Use a KB ET-...-SA-RJ45 cable for the connection, see table 14.10

The PC first tries to establish a network connection via the automatic configuration. This takes a few seconds, after which the alternate configuration, which you just set, is activated. The PC can now communicate with the LPS.

Information about configuring with the LPSsoft can be found in chapter 9.

Local Area Co	nnection Prope	? 🗙
General Advanced		
Connect using:		
NVIDIA nForce Net	vorking Controller Configu	re
This connection uses the fi	plowing items:	
🗹 📕 QoS Packet Sche		
Internet Protocol ((CEVIP)	×
lostal	Uninstal Properti	
	Internet Protocol	(TCP/IP) Properties ?X
across diverse intercon	General Atemate Configurati	n dautomatically if your network supports
Notify me when this co	this capability. Otherwise, you the appropriate IP settings.	need to ask your network administrator for
	Obtain an IP address au	tomatically,
	Uge the following IP add	ress:
	IP address:	and the second second
	Sybnet mask:	and the second second
	Default gateway:	
	Obtain DNS server addr	ess automatically
	Use the following DNS	verver addresses:
	Preferred DNS server:	and the second second
	Atemate DNS server:	
		Advanced
		OK Cancel

8.3 Commissioning

For the commissioning and integration of the sensor in the process control the following steps are necessary:

- 1. LPS configuration see chapter 9.
- 2. Programming process control see chapter 10.
- 3. When connecting in the Ethernet process controls, the IP configuration of the LPS is to be adjusted so that the LPS can communicate with the process control. The values corresponding to the following screenshot are preset in the LPS at the factory. If you would like to set different values, you must change the values via the display of the LPS in menu item Ethernet (see "Menu description" on page 43). You can test the changed values by entering them in the Configuration area in LPSsoft and then clicking the Check Connectivity button.

Configuration — Sensor —		Client / PC	
IP Address:	192.168.60.3	Port:	5634
Port:	9008		
Subnet Mask:	255.255.255.0		
Accept		heck Connectivity	Use Presets

- 4. Connect LPS to process control via the Ethernet interface.
- 5. Establish connections for activation, triggering and cascading, if necessary.

Notice on connecting multiple light section sensors via Ethernet

If several sensors are to be activated, all sensors as well as the control must receive **different** *IP* **addresses** on the same subnet. For all sensors **different ports** must be configured in the Sensor area as well as in the Client/PC area.

9 LPSsoft configuration software

9.1 System requirements

The PC used should meet the following requirements:

- Pentium[®] or faster Intel[®] processor > 1.5 GHz (Pentium 4, Celeron, Xeon) or compatible models by AMD[®] (Athlon 64, Opteron, Sempron) The processor must support the SSE2 instruction set.
- At least 512 MB free main memory (RAM), 1024 MB recommended
- CD-ROM drive
- · Hard disk with at least 1 GB available memory
- Ethernet port
- Microsoft[®] Windows XP from Service Pack 2 / Windows 7

9.2 Installation

Notice!

If present, uninstall Matlab Runtime before beginning with the installation of the LXSsoft Suite.

The **LXSsoft_Suite_Setup.exe** installation program is located on the supplied CD. Alternatively, you can download the program in the Internet at **www.leuze.com**.

Notice!

Copy this file from the CD to an appropriate folder on your hard drive. **Administrator privileges are necessary** for this purpose.

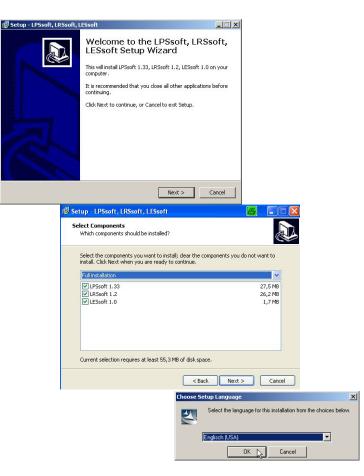
Please note that the standard text size setting is used. For Windows XP, the necessary DPI setting is 96 DPI, for Windows 7, the display is to be set to "Smaller - 100%".

♦ To start the installation process, double-click on file LXSsoft_Suite_Setup.exe.

♦ In the first window, click on Next.

In the next window, you can select which configuration software you would like to install.

You will need LPSsoft for configuring light section sensors of the LPS series.


You will need LRSsoft for configuring light section sensors of the LRS series.

You will need LESsoft for configuring light section sensors of the LES series.

& Select the desired options and click on Next and, in the next window, click on Install.

The installation routine starts. After a few seconds, the window for selecting the installation language for the Matlab Compiler Runtime (MCR) appears. The MCR is used for the configuration in LPSsoft. It is only available in English or Japanese.

 Therefore keep in the Choose Setup Language window the selection English and click on OK.

Depending on the configuration of your Windows system, the dialog shown below may then appear (missing component VCREDIST_X86).

& Click on Install.

Two additional installation windows will appear, which do not require any further entry.

InstallShield Wizard MATLAB(R) Compiler Runtime 7.9 requires that the following requirements be installed on requirements: Status Requirement: Pending VCREDIST_X86	
Install N Cancel	1
Installshield Wizard MATLABIS Complex Runtime 7.9 requires that its requirement: Status Requirement Installing VCREDIST_X86 Installing VCREDIST_X86 Instal	lick OK to begin installing these
	Extracting: MATLAB(R) Compiler Runtime 7.9.msi

After some time (up to several minutes depending on the system configuration) the start screen of the MCR installer will appear.

& Click on Next.

Windows Installer	付 MATLAB(R) Compiler Runt	ime 7.9 - InstallShield Wizard
Installation wird vorbereitet	MATLAB Compiler Runtime	Welcome to the InstallShield Wizard for MATLAB(R) Compiler Runtime 7.9 The InstallShield(R) Wizard will instal MATLAB(R) Compiler Runtime 7.9 on your computer. To continue, click Next. MATLAB and Sumlik are registered trademarks of The MathWorks, Inc. Please see www.mathworks.com/trademarks for a list of other trademarks owned by the MathWorks, Inc. Other product or brand names are trademarks or registered tradmarks of their respective owners. WARNING: This program is protected by copyright law and international treaters. Copyright 1984-2006, The MathWorks, Inc.
	📣 The MathWorks	
		< Back Next > 1

The window for entering user data appears.

& Enter your name and the company name and then click on Next.

MATLAB(R) Compiler Runtime 7.9 - Ins	tallShield	Wizard		
Eustomer Information Please enter your information.				
∐ser Name:				
Stefan Weimar				
Organization:				
PRODOC Translations GmbH				
talishield				
	< Back	N	ext > 📐	Cancel

It is essential that you retain the default folder in the window for the selection of the installation path (Destination Folder).

The standard path is C:\Programs\MATLAB\MATLAB Compiler Runtime\.

& Click on Next and in the next window click on Install.

The installation will start and a status window will be displayed. This can again take several minutes.

Following successful MCR installation, the InstallShield Wizard Completed window appears.

& Click on Finish to end the MCR-installation.

The window for selecting the installation path for LPSsoft/LPSsoft/LRSsoft now appears (provided you selected this option).

& Keep the default folder and click on Next.

The installation of **LPSsoft** starts. If you also selected **LRSsoft** and **LESsoft** for installation, upon completion of the **LPSsoft** installation, the same window then reappears for entering the installation path for **LRSsoft** and **LESsoft**.

♦ Keep the default folder in this case as well and click on Next.

Upon completion of the installation process, the window shown above appears.

The installation routine added a new Leuze electronic program group in your Start menu that contains the installed programs LPSsoft/LPSsoft/LRSsoft.

& Click on Finish and then start the desired program from the Start menu.

9.2.1 Possible error message

Depending on the setting of the display, the "Width and Height must be >0" error message may be output. The cause is an incompatible setting of the display.

Notice!

For Windows XP, the necessary DPI setting is 96 DPI. For Windows 7, the display is to be set to "Smaller - 100% (default)".

The setting can be adjusted as follows.

- Adjust the display for Windows XP by selecting the value "96 DPI" under Properties -> Display -> Settings -> Extended -> Display -> DPI setting.
- & For Windows 7, adjust the display via Control Panel -> Display by setting the display to "Smaller - 100% (default)".

Depending on the system configuration the adjacent error message can appear at this point.

LPS_Visu	Julization.exe - Komponente nicht gefunden
8	Die Anwendung konnte nicht gestartet werden, well milmornt?9.dl nicht gefunden wurde. Neuinstallation der Anwendung könnte das Problem beheben.
	ок

The cause of this error message is a bug in the MCR installation routine, which does not set the environment variable Path correctly in some systems.

That, however, can easily be corrected without reinstallation of the MCR.


- Open the System properties window located in the System control of Windows under System.
- Go to the Advanced tab and click on Environment variables.

The	Environment	variables	window
oper	ns.		

- Scroll down in the System variables area until you find the Path entry.
- ♦ *Click on* Path *and then on* Edit.

```
The Edit system variable window opens.
```

There in the Variable value field you will find the ; C: \Programs \MATLAB \MATLAB

Compiler Runtime\v79\runtime\win32 entry right at the end.

- If this entry is missing, copy the entry from this document and insert it together with the preceding semicolon.
- Solution Then click on OK and close also all further windows using OK.
- ♦ Shut Windows down, restart Windows and then start LPSsoft by double-clicking on it.

Now the start screen of LPSsoft appears, as described in chapter 9.3.

9.3 Starting LPSsoft/Communication tab

Start LPSsoft via the respective entry in the Windows Start menu.

The following screen appears:

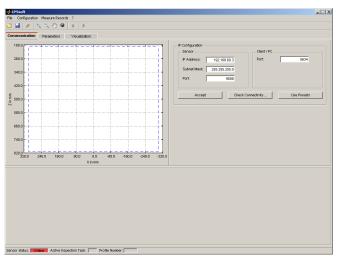


Figure 9.1: Initial screen LPSsoft

& In the IP Configuration area, enter the settings for the LPS and click on Accept.

You had already determined this data in chapter 8.2.

& *Click on* Check Connectivity to test the connection to the LPS.

If the following message appears, the Ethernet connection to the LPS is correctly configured: The connection attempt to sensor ... was successful.

Connectivity check to 192.168.60.3:9008	_ ×
The connection attempt to sensor with identifier 83288-24 was succe	ssful.
OK N	

Click on the button Connect to sensor:

If the connected sensor type does not correspond with the standard type stored in **LPSsoft**, an inquiry appears asking whether the current parameter set should be saved in **LPSsoft**.

The type of the corrected server differs from the type of the corrected server differs from the type of the corrected server differs from the type of the corrected server and the corrected server and the correct server s

As a result **LPSsoft** establishes a connection and displays the currently measured 2D profile. In the status line at the bottom left of the display you will now find Online highlighted in green instead of Offline highlighted in red.

Sensor status: Online Active Inspection Task: O Profile Number: 45835 Encoder Value: 4294967292 Sensor Type: LPS 36/EN Hi

0]]

Notice!

The following additional information is displayed in the status line:

- Sensor connection status (Sensor status)
- Number of the Active Inspection Task
- Scan number (Profile Number)
- Encoder value dependent on the sensor type (Encoder Value)
- Connected sensor type
- Analog output status (Analog Output)

9.4 Parameter settings/Parameters tab

& Click on the Parameters tab to access the parameter settings:

munication Parameters Visualization					
		ard Encoder and Parameters sure Profile Postprocessing			
	ম _	Apply Median Filter on Measure Profiles			
10 0					
2009 2009 1000 009 009 1000 100					
Xis me. sk Parameters					
Orack 0 Free Bunning	Trigger Cutput Mode Otsable	C Bright Diects (97us)	- Field of View (dimensions in mm)		
C input Triggered	C Cascading	C Normal (261µs)	Maximum X Value: 300		
None: Activition		C Dark Objects (655µs) C High Dynamic Bange	Minimum Z Value: 190 Maximum Z Value: 810		
Accept (* Disregard Act. Sources		Manual Setting Manual Setting Exposure Time tust	Apply Settings		

Figure 9.2: Parameter settings in LPSsoft when LPS 36Hi is connected

In the Standard tab, a median-3-filter can be activated in the Standard Parameters area. By activating the median filter in the checkbox, the Z-coordinates of the measurement values are smoothed out, while occurring edges are retained.

9.4.1 Standard tab - Task Parameters panel

Inspection Task Selection

In the Inspection Task Selection panel, you can select inspection tasks.

The inspection task is selected either in this field or via Ethernet commands.

The upper drop-down menu Inspection Task Selection lets you select one of the 16 possible inspection tasks. After the selection of the inspection task, the associated parameters are loaded and displayed. You can edit these parameters and save the edited parameters under the same name.

In the Name field, you can assign a meaningful name (max. 12 characters) to the inspection task selected above and save it by clicking on Accept.

By saving via the button Apply Settings, **the currently displayed** inspection task is temporarily stored in the sensor. When switched off, the data/settings are lost.

By saving via Configuration -> Transmit to Sensor menu command all inspection tasks created are transmitted to the sensor, where they are permanently stored.

Notice!

If an inspection task was changed, permanent storage in the sensor should be performed with Configuration -> Transmit to Sensor.

The common procedure for creating and storing inspection tasks is described in chapter 9.7, "Definition of inspection tasks" on page 67.

Operation Mode

In Operation Mode you can configure using Free Running that the LPS continuously detects and outputs measurement data (factory setting). With Input Triggered, the LPS captures measurement data only if a rising edge is present at the trigger input or the "Ethernet Trigger" command (chapter 10.3.4) is used. Detailed information on this topic can be found in chapter 4.2.3.

Activation

Under Activation the Regard setting has the effect that the laser is switched on and off according to the level at the activation input. Detailed information on this topic can be found in chapter 4.2.2.

When the Disregard setting has been selected, the laser always remains switched on, independent from the level at the activation input (factory setting).

Trigger Output Mode

Under Trigger Output Mode you can activate the cascading output using Cascading. Detailed information on this topic can be found in chapter 4.2.4. When the Disable setting has been selected, the cascading output will not be set (factory setting).

Light Exposure

Using Light Exposure you can control the exposure duration of the laser during measurement value detection and adapt it to the reflective properties of the objects to be detected.

Select an exposure setting that displays a continuous line around the object contour.
 Then try to achieve a line on a flat surface that is as continuous as possible.

Field of View

Using Field of View you can restrict the measurement range of the LPS. The same happens if you click on the square handles of the measurement range framed in blue with the mouse and then pull.

	LPS 36	LPS 36HI
Min X	-300	-70
Max. X	300	70
Min. Y	190	190
Max. Y	810	610

Factory settings for Field of View:

By restricting to the necessary detection range, ambient light or undesired reflections can be suppressed.

Apply Settings

The Apply Settings button temporarily transmits the settings for the current inspection task to the sensor. When switched off, the data/settings are lost.

Notice!

If an inspection task was changed, permanent storage in the sensor should be performed with Configuration -> Transmit to Sensor.

9.4.2 Encoder tab - Encoder Parameters area

With the LPS 36/EN and LPS 36HI/EN, you can configure the model and the characteristics of the connected encoder in the Encoder tab.

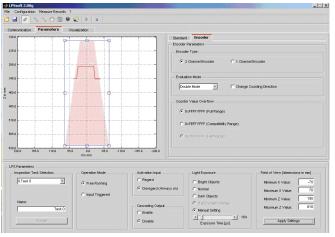


Figure 9.3: Encoder settings

Encoder Type

Specify whether the encoder is a single-channel encoder (1 Channel Encoder) or twochannel encoder (2 Channel Encoder) here.

Two-channel encoders have an A and a B channel whose signals are shifted 90° with respect to one another. This allows the direction of movement to be detected (forward/backward).

Notice!

Up to firmware V01.10, only two-channel encoders were supported.

Single-channel encoders have only an A-channel. If necessary, the counting direction can be changed by means of an additional direction signal on channel B (see chapter 6.3.3 "X3 - incremental encoder connection"):

- Low level on pins 6/7 of X3 = upward pulse counting.
- High level on pins 6/7 of X3 = downward pulse counting.

If channel B is not connected, counting is upward (factory setting).

Evaluation Mode

The selection box can be used to select two count modes for the encoder pulse counter (see structure of the protocol header in chapter 10.2 on page 68, Encoder_H/Encoder_L data words):

- Single Mode (for single- and two-channel encoders) Each encoder pulse on channel A increases the encoder counter value by +1. Only one edge of the pulse is counted.
- Double Mode (for single- and two-channel encoders) Each encoder pulse on channel A increases the encoder counter value by +2. Both edges of the pulse are counted.

The Change Counting Direction check box can be used to reverse the upward/downward counting direction of the encoder pulse counter.

Notice!

For two-channel encoders, the counting direction can also be reversed by exchanging the connections of channels A and B.

Counter Value Overflow

Use the check boxes in the Counter Value Overflow area to select the maximum value of the encoder pulse counter above which an overflow occurs (the counter restarts with 0x0000 0000):

- 0xFFFF FFFF (Full Range): for Double Mode only
- 0xFEFF FFFF (Compatibility Range): for Double Mode only

(compatible up to firmware V01.10)

for Single Mode only

Factory settings:

- Encoder type: 2 Channel Encoder
- Evaluation Mode: Double Mode

• 0x7FFFF FFFF (Half range):

Previously: Quadruple Mode, this mode is not supported beginning with firmware V01.20. Up to firmware V01.20, encoder evaluation was permanently set to Quadruple Mode (count all 4 edges on both encoder channels).

• Counter Value Overflow: 0xFFFF FFFF Previously: 0xFEFF FFFF, the new Counter Overflow value 0xFFFF FFFF permits distance calculation in Double Mode with 32-bit values without manual correction.

9.5 Measurement function/Visualization tab

& Click on the Visualization tab to view a 3D visualization of your measurement data:

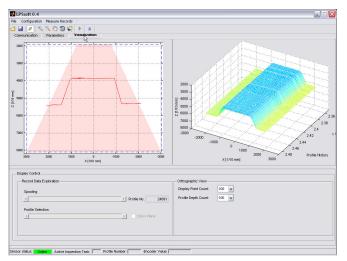
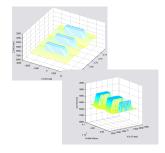
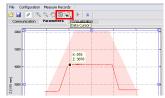
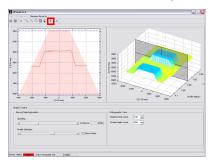



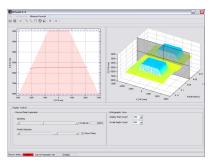
Figure 9.4: 3D Visualization with LPSsoft


The left image shows the familiar 2D-view; displayed at the right are the measurement values in chronological order.

You can adapt the 3D view:

- Display Point Count specifies how many of the 376 single measurement values in total will be displayed along the laser line.
- Profile Depth Count specifies how many consecutive single measurements will be displayed in the 3D diagram in chronological order.
- The Rotate 3D tool on the toolbar enables free and arbitrary rotation of the 3D view.


In the 2D view you can view precise measurement values at individual points of the laser line using the Data Cursor tool.



9.5.1 Evaluating saved measurement data

To evaluate a measurement data set, you can record/store measurement data and reopen as described in chapter 9.6.3. After opening the file, the data are initially continuously fed into the 3D-view. To stop this continuous display and to be able to examine individual profiles and again restart the display, click on the arrow in the toolbar.

The sliders in the Display Control area are used for evaluation; the function of these sliders is described in the following.

Figure 9.5: Evaluating saved 3D data

Spooling enables scrolling through all single data sets from the first to the last one within the measurement data set.

You can configure how many data sets are displayed in the 3D view by using Profile Depth Count.

Using the Profile Selection slider you can configure which of the displayed single data sets (profiles) from the 3D view will be shown in 2D view. The associated data set number is displayed under Profile No. The Show Plane option displays this single data set also in 3D view.

9.6 Menu commands

9.6.1 Saving parameter settings/File menu

The File menu is used to save parameter data to the PC. In this way, settings for various detection tasks can be defined within the scope of commissioning and stored on data carriers and parameter files. During operation, the LPS is reconfigured via **Inspection Tasks**. A parameter file stored on a data carrier can only be used with LPSsoft configuration software!

File	Configuration	Measure	Reco	rds ?
N	ew		2 🕤) 📦 🖌
0	pen		ers	Visu
S	ave	Strg+S	-	¥150
S	ave As			
S	ave As Default			
E:	(port	Þ	2D	View
C	lose		ЗD	View

- New creates a new configuration file.
- Open opens a configuration file from the data carrier.
- Save saves the open configuration file with the same name.
- Save as saves the open configuration file under a different name.
- Save as default saves the open configuration as the default setting which is always loaded when LPSsoft is opened.

In addition, the File menu offers the possibility to export the following views format to data carriers (available formats: *.png, *.jpg, *.bmp, *.tif):

- 2D View: the current 2D view
- 3D View: the current 3D view

9.6.2 Transmitting parameter settings/Configuration menu

The Configuration menu is used to exchange parameter data with the connected LPS.

- Load from Sensor loads all parameter settings for all defined inspection tasks from the LPS and displays them in the software.
- File
 Configuration
 Recording
 ?

 Cor
 Load from Sensor
 Transmit to Sensor

 Cor
 Reset to Factory Settings
- Transmit to Sensor permanently stores all parameter settings of all defined inspection tasks from the configuration software in the LPS.
- Reset to factory settings resets the LPS to factory settings.

9.6.3 Saving measurement data/Measure Records menu

The Measure Records menu is used for saving measurement data (including the encoder values) on the PC in *.csv format.

- New... creates a new measurement data set.
 Following a file name query dialog, another dialog appears. It requires you to enter how many single measurements (profiles) are to be saved in the file.
- Archive -> Open Record opens a saved measurement data set.
- Archive -> Close record closes the opened measurement data set.
- File
 Configuration
 Measure Records
 ?

 Image: Second second

Notice!

With measurement data open, LPSsoft cannot establish a connection to the sensor. A connection with the sensor is only possible after closing the measurement data set.

9.6.4 Zoom and Pan/toolbar

The Zoom in / Zoom out and Pan buttons of the toolbar allow individual areas of the view to be enlarged for better visual evaluation:

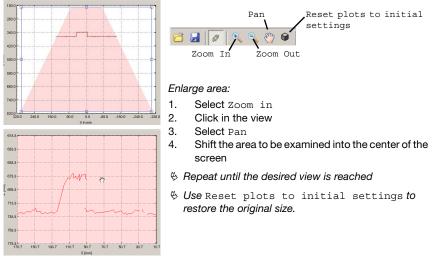


Figure 9.6: Zoom function

After activating the magnifying glass, each click on the view enlarges the displayed section. The enlarged section can then be shifted with the activated hand function to display the area of interest.

Notice!

The click-and-drag method for zooming known from other programs is not possible here. Before LPSsoft is operated further, the tool buttons (Zoom, Pan, ...) must be activated.

9.7 Definition of inspection tasks

Typical procedure

 Start LPSsoft and connect the sensor: Click on the Connect to sensor button: If the connected sensor type does not correspond with the standard type stored in LPSsoft, an inquiry appears asking whether the current parameter set should be saved in LPSsoft.

- 2. Fetch the configuration from the sensor via Load from Sensor or load it from the data carrier with Open.
- 3. Use Inspection Task Selection to select the inspection task to be modified.
- 4. Display and, if necessary, enlarge 2D view of the detection range in the Parameters tab.
- 5. Set LPS parameters (see "Standard tab Task Parameters panel" on page 59).
- 6. Assign a name (Name) to the inspection task and confirm with Accept.
- 7. Temporarily transfer the inspection task with Apply Settings.
- 8. Where applicable: define further inspection tasks with steps 4.-6.
- 9. Tick Enable Selection Inputs again.
- 10. Permanently transfer the configuration including all inspection tasks to the sensor with Transmit to Sensor.
- 11. Where applicable: save the configuration to data carrier with Save As...
- 12. Finally, disconnect the connection to the sensor: click on the button Disconnect from sensor:

10 Integrating the LPS in the process control

10.1 General information

The LPS communicates with the process control via UDP/IP using the protocol described in chapter 10.2. The protocol operates in two different modes:

- Measure Mode
- Command Mode

In measure mode the LPS transmits measurement data. In the "Free Running" measurement operating mode, measurements are performed continuously with a maximum measurement frequency of 100Hz and the measurement data are sent without an additional request being made. In triggered mode, measurement is performed after a rising edge on the trigger input or as a response to the "**Ethernet Trigger**" command (see chapter 10.3.4 "Commands in measure mode").

In command mode the LPS reacts to commands from the control. The commands available are described in chapter 10.3.

Notice!

If you use a firewall, please make certain that the control can communicate with the LPS via the Ethernet interface by means of UDP on ports 9008 and 5634 (these ports are preset at the factory, but may have been changed by the user, see chapter 7.2 "Menu description"). Furthermore, the firewall must allow ICMP echo messages to pass through for the connection test (ping).

10.2 Protocol structure

Notice!

The sequence in which the individual bytes are saved varies depending on the operating system. The commands in chapter 10.3 and the protocol description are represented in "bigendian" format, i.e., the high-byte first followed by the low-byte (0x... hexadecimal).

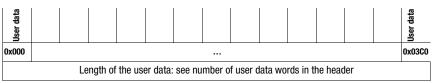
Windows PCs (and many controls, such as the Siemens S7), however, store data in the "little endian" format, i.e. the low byte first followed by the high byte.

If, in your process environment, the LPS does not respond to commands from the control even though communication with LPSsoft functions properly, check whether the problem lies with the byte order.

Example: for command 0x434E (Connect to Sensor) a Windows PC must transmit 0x4E and 0x43 in order for it to be understood by the LPS. In the transaction number of the answer from LPS there is then also 0x4E43 (byte sequence 0x43, 0x4E). The LPS sends data as "little endian", i.e., first the low byte and then the high byte.

The possible values of individual bytes and their meaning are described below.

Protocol structure


The protocol consists of the **Header** (30 bytes) followed by the **User data**. The protocol is used both in command mode when transmitting commands and when acknowledging sensor commands as well as in measure mode.

Header

Startseq. 1	Startseq. 2	0000x0 Fill character	Command no. Command no.	Fill character 0000x0	Packet no. 0000x0	Fill character 0000x0	Transaction no.	Status 0000x0	Encoder H 0000x0	Encoder L 0000x0	Fill character 0000x0	Scan no. 0000x0	84 AL 0x0010	Number of user data words
Length 4 bytes, fixed value:	OXFFFF OXFFFF	Length 2 bytes, fixed value: 0x0000	Length 2 bytes, possible values: see chapter 10.3	Length 2 bytes, fixed value: 0x0000	Length 2 bytes, value range: 0x0000 0xFFFF	Length 2 bytes, fixed value: 0x0000	Length 2 bytes, value range: 0x0000 0xFFFF	Length 2 bytes, value range: 0x0000 0xFEFF	Length 4 bytes, value range:	OXFFFF FFFF	Length 2 bytes, fixed value: 0x0000	Length 2 bytes, value range: 0x0000 0xFFFF	Length 2 bytes, fixed value: 0x0010	Length 2 bytes, possible values: 0x0000 / 0x0001 / 0x0002 / 0x0003 / 0x0178
	Length of the header: 30 bytes													

 The maximum value is determined here by the setting for the encoder type, see "Counter Value Overflow" on page 62.

User data

10.2.1 Command number

The command number specifies both the command from the control to the sensor as well as the command from the sensor to the control (see chapter 10.3). In measure mode, a differentiation is made between 2 varieties of measurement data transfer:

- Standard-Connect: Command number 0x5858 signalizes that the data packet of the sensor contains X-coordinates. Command number 0x5A5A signalizes that the data packet contains Z-coordinates.
- HI-Connect (only with LPS 36HI/EN): Command number 0x5A58 signalizes that the data packet contains X- and Z-coordinates.

10.2.2 Packet number

The packet number serves internal maintenance purposes of the manufacturer.

10.2.3 Transaction number

In measure mode, 0x0000 is always displayed here.

1

In **command mode**, the command acknowledgment of the sensor contains the command number of the command that is answered.

10.2.4 Status

I.

MS	В	I	High	1-By	te	I	LSB	MS	В		Low	-Ву	te	LSB		Meaning of the bits
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	Sensor not connected via Ethernet
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	Sensor connected via Ethernet
-	-	-	-	-	-	-	-	0	0	0	1	-	-	-	-	Measure mode
-	-	-	-	-	-	-	-	0	0	1	0	-	-	-	-	Menu mode
-	-	-	-	-	-	-	-	0	1	0	0	-	-	-	-	Command mode
-	-	-	-	-	-	-	-	1	0	0	0	-	-	-	-	Error mode
-	-	-	-	-	-	-	0	-	-	-	-	-	-	-	-	Sensor deactivated via activation function
-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	Sensor activated via activation function
-	-	-	-	-	-	0		-	-	-	-	-	-	-	-	No warning
-	-	-	-	-	-	1		-	-	-	-	-	-	-	-	Warning, temporary sensor malfunction
-	-	-	-	-	0	-	-	-	-	-	-	-	-	-	-	Free Running measure mode
-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	Triggered measure mode
-	-	0	-	-	-	-	-	-	-	-	-	-	-	-	-	No error
-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	Error detected, measurement data are still sent if applicable, the sensor then switches into error mode

Indicates the state of the sensor. The state is coded as follows:

The LSB of the high byte is always set to 1 as long as the parameter Activation Input has been set to Disregard (Always on) in LPSsoft.

If parameter Activation Input is set to Regard, the state of the bit corresponds to the state of the signal of an activation source (input, Ethernet activation).

Notice!

Independent of the mode that is currently active, the sensor switches to menu mode if a button if the display is touched and then neither responds to commands nor does it transmit measurement data. Menu mode automatically ends after 3 minutes if no buttons are pressed. Alternatively, the user can end menu mode with the Exit menu item.

10.2.5 Encoder High / Low

The encoder counter is implemented in sensor models with encoder input. All other sensors permanently display 0x00000000.

The **4 bytes** in **Encoder High** and **Encoder Low** specify the encoder counter value for light section sensors with encoder interface. The maximum value is 0xFFFF FFFF. Beyond that an overflow to 0x0000 0000 occurs (see chapter 9.4.2 "Encoder tab - Encoder Parameters area"). Beyond that an overflow to 0x0000 0000 occurs.

10.2.6 Scan number

The **2 bytes** of the **scan number** indicate the number of single measurements in chronological order. After each measured profile, this number increases by 1. The maximum value is 0xFFFF. Beyond that an overflow to 0x0000 occurs. The Z- and X-data belonging to a measurement are identified via the same scan number.

10.2.7 Type

Specifies how the data are to be interpreted. The fixed default value is 0x0010. That equates to 16 bit data.

10.2.8 Number of user data

Number of user data specifies how many data words of the data type defined in the previous field are contained in the packet.

The user data have a variable length of 0, 1, 2, 3 or 376 or 480 data words (0, 2, 4, 6 or 752 or 960 bytes).

10.2.9 User data

In command mode, the commands can contain user data. These are then described in more detail in the corresponding command description.

In measure mode, the measurement values of the sensor are transmitted to the user data. These are differentiated according to the type of establishment of connection to the sensor (Standard-Connect or HI-Connect).

All variants of the LPS 36 and the LPS 36HI/EN support Standard-Connect:

For each measurement, a packet of Z-data (command number 0x5A5A) and then a packet of X-data (command number 0x5858), each with 376 values of 2 bytes, are transmitted. With the LPS 36HI/EN, values 241 ... 376 are set to 0 (compatibility). The resolution is 1/10mm. The Z- and X-data packets have the same scan number; this should be checked in the control.

The Z-data has a value range of 0 ... 8100.

The X-data is transferred as signed values in two's complement. 0 ... 32767 are positive X-values, 32768 ... 65535 are negative X-values (where 65535 corresponds to the value -1). For negative values (>32768), the process control must therefore subtract 65536 from the transferred X-values to obtain the actual X-values. The LPS 36HI/EN also supports HI-Connect:

The Z- and X-data is transmitted in one packet (command number 0x5A58) with 480 values of 2 bytes. The resolution is 1/100 mm.

User data words 1 ... 240 contain Z-data, value range 0 ... 61000. The X-data follow as signed values in the -7000 ... +7000 range.

Invalid measurement values have a Z- and X-value of 0.

If an LPS 36HI/EN is used in a system instead of an LPS 36 without the establishment of connection being changed (Standard-Connect), it behaves compatibly to the standard LPS 36. Whether the application profits from the higher resolution of the LPS 36HI/EN can also be easily tested this way.

Notice!

If the detection range has previously been limited using LPSsoft, the measuring points, which were not detected, will be transferred with 0 value. Invalid measurement values (e.g. due to occlusion, object reflectivity too low, ...) are also transmitted with a Z- and X-value of 0.

10.3 Commands

Notice!

The sequence in which the individual bytes of the commands and of the protocol must be transmitted in order to be processed by the LPS corresponds to the "little-endian" byte sequence. The response of the LPS also corresponds to the "little-endian" standard. For further information, see the notice in chapter 10.2.

0]]

Ο

 \cap

Notice!

If the LPS is operated in command mode, the LPS transmits no data (useful for operation with PLC controls).

In measure mode, commands Connect to Sensor, Disconnect from Sensor, Enter Command mode, Ethernet Trisser and Ethernet Activation can be processed (is acknowledged with 'Ack'=0x4141). All other commands are acknowledged with 'Not Ack'=0x414E; the command is not processed.

Additional commands are available in command mode.

10.3.1 Elementary commands

Using the Connect to sensor and Disconnect from sensor commands, a connection between control and sensor is established or terminated. The communication with the LPS is carried out via the ports previously configured in LPSsoft.

Comn	nand from control to LPS	Ansv	wer from LPS to control
Command no.	Meaning	Command no.	Meaning
0x434E	Connect to Sensor	0x4141	Connection established, the sensor is permanently connected. The sensor status (bytes 17 and 18) can be used to detect whether the sensor is connected.
		0x414E	The transmitted command was not processed (possible sensor status: sensor is already connected or in menu mode, detailed info see chap- ter 10.2.4 "Status").
0x4443	Disconnect from Sensor	0x4141	Connection terminated.
		0x414E	The transmitted command was not processed (possible sensor status: sensor was already disconnected or in menu mode, detailed info see chapter 10.2.4 "Status").

Table 10.1:Connection commands

When first connecting after switching on, the sensor is always in measure mode and continuously transmits measurement data ("Free Running") or waits for a trigger signal for transmitting measurement data. If the LPS 36HI is connected with the Connect to Sensor command and a user data value of 0x0001, then the sensor is connected via HI-Connect.

Comn	nand from control to LPS	Ans	ver from LPS to control					
Command no.	Meaning	Command no.	Meaning					
0x434E	Connect to Sensor	0x4141	Connection established, the sensor is permanently connected. The sensor status (bytes 17 and 18) can be used to detect whether the sensor is connected.					
		0x414E	The transmitted command was not processed (possible sensor status: sensor is already connected or in menu mode, detailed info see chapter 10.2.4 "Status").					

Table 10.2:Connection commands

Byte	MSB	MSB High-Byte LSB MSB Low-Byte		LSB	Meaning of the bits		
3132							SF = 0: Standard-Connect 2 separate data packets for Z- and X-coordinates with 782 bytes each SF = 1 HI-Connect, only LPS 36HI/EN 1 common data packet for Z- and X-coordinates with 990 bytes

To switch between measure mode and command mode the Enter Command Mode and Exit Command Mode commands are available.

Comr	nand from control to LPS	Ans	wer from LPS to control			
Command no.	Meaning	Command no.	Meaning			
0x3132	Enter Command Mode	0x4141	Sensor in command mode.			
		0x414E	The transmitted command was not processed (possible sensor status: sensor currently in menu mode and cannot execute any commands. Sensor is already in command mode) ¹⁾ .			
0x3133	Exit Command Mode	0x4141	Sensor back to measure mode.			
		0x414E	The transmitted command was not			
			processed because the sensor was			
			not in command mode.			

Table 10.3: Command mode control commands

 Detailed info on possible sensor states see chapter 10.2.4 "Status". You can determine whether the sensor is in menu mode with a quick glance at the display. Menu mode can be ended with the Exit menu item.

10.3.2 Commands in command mode

C	ommand from control to LPS		4	Answer from LPS to control	1	
Command no.	Meaning	User data words	Command no.	Meaning	User data words	
0x0001	Set Laser Gate		0x4141	Command carried out.	0	
	laser activation and deactivation (toggle), see chapter 10.3.3.	1	0x414E	Command was not executed.	0	
0x0003 ¹⁾	Trigger Single Measurement	0	0x4141	Single measurement carried out.	0	
		0	0x414E	Single measurement not carried out.	0	
0x0011 ²⁾	Get X Coordinates Query X-coordinates of the previously triggered single measurement. Repeated queries yield always the same values without retriggering.	0	0x0012	In the user data area 376 values are always transferred. The X-coordinates are transferred as "signed" values. If the LPS 36HI has been connected with HI-Connect (see chapter 10.3.1), the measurement values are transmitted in the 1/100 mm unit.	376	
0x0013 ²⁾	Get Z Coordinates Query Z-coordinates of the previously triggered single measurement. Repeated queries yield always the same values without retriggering.	0	0x0014	In the user data area 376 values are always transferred. If the LPS 36HI has been connected with HI-Connect (see chapter 10.3.1), the measurement values are transmitted in the 1/100 mm unit.	376	
0x005F	Get ZX Coordinates Only for LPS 36HI which is connected with HI-Connect. X- and Z-coordinates are transferred in one packet. Repeated queries yield always the same values without retrig- gering.	0	0x0060	In the user data area 480 values are always transferred. The user data structure corre- sponds to that of HI-Connect.	376	
0x0029 ⁵⁾	Set Encoder Value		0x4141	Encoder counter value set.	0	
	Set encoder counter value <i>(see chapter 10.3.3).</i>	2	0x414E	The transmitted command was not processed.	0	
0x0049	Get Actual Inspection Task Get number of the current inspection task.	0	0x004A	In the user data area the task number is transferred. (0 = Task0, up to 15 = Task15).		

The following commands are available in command mode:

Table 10.4: Sensor control commands

C	ommand from control to LPS		4	Answer from LPS to control	
Command no.	Meaning	User data words	Command no.	Meaning	User data words
0x004B	Set Actual Inspection Task Set number of the current	2	0x4141 ³⁾	The inspection task has been set.	0
	<i>inspection task, see chapter 10.3.3.</i>	2	0x414E ⁴⁾	The transmitted command was not processed.	0
0x0053	Set Scan Number		0x4141	Scan number set.	0
	Set scan number, see chapter 10.3.3. Ensure identical scan numbers with multiple sensors; for description, see "Set Scan Number" on page 78.	1	0x414E	The transmitted command was not processed.	0
0x0059	Set Single User Parameter		0x4141	Parameter was set.	0
5)6)	Writes specific LPS parame- ters in the sensor, e.g., deacti- vate output of X-coordinates deactivate.	3	0x414E	The transmitted command was not processed.	0
0x005B	Get Single User Parameter		0x005C	Parameter is output.	1
5) 6)	Reads specific LPS parame- ters, e.g., whether the output of X-coordinates is deacti- vated.	1	0x414E	The transmitted command was not processed.	0

- Table 10.4: Sensor control commands
 - Command cannot be processed up to firmware V01.26 if the LPS is set to "Input Triggered" Operation Mode (see chapter 9.4.1 "Standard tab - Task Parameters panel", Operation Mode on page 59).
 - Commands 0x0011 and 0x0013 can be transmitted no sooner than 30ms after command 0x0003 in order to obtain valid measurement data.
 - 3) 0x4141 = Acknowledge: Execution of the command is confirmed
 - 4) 0x414E = Not Acknowledge or Error: Command has not been executed
 - 5) Beginning with firmware V01.20
 - 6) The command acts globally on all inspection tasks.

Attention!

If the command is used to deactivate the output of X-coordinates, only Z-coordinates are transmitted. LPSsoft can be used to depict 2D- and 3D-views. The sensor can only be reset to again transmit X- and Z-coordinates by means of command number 0x0059 when using parameter ID 0x07D4. The sensor can also be reset to factory settings via the keyboard and display, but all other sensor settings are lost as well.

10.3.3 User data in command mode (command parameters)

Set Laser Gate

For sensor control command 0x0001, one word of user data is transmitted to the sensor:

Byte	MS	B		High-Byte				.SB			I	.ow	-By	te	I	SB	Meaning of the bits
3132	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LF	LF = Laser Flag

LF=0 switches the Laser off, LF=1 switches the laser on.

Set Encoder Value

For sensor control command 0x0029, two words of user data are transmitted to the sensor:

Byte	MS	В		Hig	jh-B	yte	L	.SB	MS	В	Low-Byte LSB N				L	.SB	Meaning of the bits
3132	L16	L15	L14	L13	L12	L11	L10	L9	L8	L7	L6	L5	L4	L3	L2		Encoder value LowWord (value range: 0x0000 0xFFFF)
3334	H16	H15	H14	H13	H12	H11	H10	H9	H8	H7	H6	H5	H4	H3	H2		Encoder value HighWord (value range: 0x0000 0xFFFF)

Notice!

Please note that the transmitted encoder values must not exceed the maximum value of the encoder pulse counter (see parameter Counter Value Overflow in LPSsoft, chapter 9.4.2)

Set Actual Inspection Task

For sensor control command 0x004B, two words of user data are transmitted to the sensor:

Byte	MS	В		Hig	jh-E	Byte	L	.SB	MS	В	I	Low-Byte		L	.SB	Meaning of the bits	
3132	-	-	-	-	-	-	-	-	-	-	-	-	N4	N3	N2		Number of the inspection task to be configured $(0 = Task0 \dots 15 = Task 15)$
3334	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	SF	SF = SaveFlag

If SF=0 then the inspection task is changed only temporarily.

If SF=1 then the newly set inspection task is retained even after a restart of the LPS.

Get Actual Inspection Task

The LPS responds to sensor control command 0x0049 with 0x004A and one word of user data:

Byte	MS	В		Hig	jh-B	Byte	L	.SB	MS	В	I	Low	-By	te	I	LSB	Meaning of the bits
3132	-	-	-	-	-	-	-	-	-	-	-	-	N4	N3	N2		Number of the configured inspection task $(0 = Task0 \dots 15 = Task 15)$

Set Scan Number

For sensor control command 0x0053, one word of user data is transmitted to the sensor:

Byte						MS	3	I	Low-	Byte)	I	LSB	Meaning of the bits			
3132	S16 S15 S14 S13 S12 S1			S11	S11 S10 S9 S8 S				S6 S5 S4 S3			S3	S2	S1	New scan number that is to be set		
											-						

With the sensor control command Set Scan Number, it is possible to set a uniform scan number for the transmission protocol for multiple sensors operated in cascaded operation. A description of cascaded operation can be found in chapter 4.2.4.

Notice!

- 1. Switch the master (sensor 1) to command mode. Continuous measurement is stopped as a result. In command mode, the cascading output is not active!
- 2. Set an arbitrary scan number with command 0x0053 for the master.
- 3. Successively switch all slaves (sensor 2, 3, ...) to command mode and set the same scan number for each individual slave that you set previously under item 2 for the master.
- 4. Switch the slaves back to measure mode.
- 5. Switch the master to measure mode.

Set Single Inspection Task Parameter (beginning with firmware V01.40!)

Individual parameters of the active inspection task can be changed with sensor control command 0x006D. The following parameters can be changed:

- Name of an inspection task,
- Operation Mode: Free Running or Input Triggered,
- Enabling of activation (Activation Input: Regard or Disregard),
- Cascading Output: Enable or Disable,
- Exposure duration of the laser (Light Exposure),
- Detection range of the LPS (Field of View).

Command syntax from control to sensor:

Startseq. 1	Startseq. 2	Fill character	Command no.	Fill character	Packet no.	Fill character	Transaction no.	Status	Encoder H	Encoder L	Fill character	Scan no.	Type	Number of pieces of data
0xFFFF	0xFFFF	0x0000	0x006D	0x0000	0x0000	0x0000	0x0000	0x0000	0x0000	0x0000	0x0000	0x0000	0x0010	0x0003- 0x000E

Byte	MS	В	Hig	jh-B	lyte	L	.SB	MS	В	I	_ow	-By	te	L	.SB	Meaning of the bits
3132															SF	SF = SaveFlag
3334																Parameter ID for parameter selection
3558																Parameter value[s] dependent on parameter ID

Parameters and settings:

If SF=0, then the parameter is changed only temporarily.

If SF=1, the parameter is retained even following a restart of the LPS.

Parameter ID	Parameter meaning	Valid parameter values	Parameter data type	Number of parameter values
0x0BB9	Name of the active inspection task	Maximum length: 12 ASCII characters, each character is saved as a 16-bit word	CHAR	12
0x0BBA	Operating mode	0=Operation Mode: Free Running; 1=Operation Mode Input Triggered	UINT8	1
0x0BBB	Enabling of activation	0=Activation Input: Disregard; 1=Activation Input: Regard	UINT8	1
0x0BBC	Enabling of the cascading output	0=Cascading Output: Disable; 1=Cascading Output: Enable	UINT8	1
0x0BBD	Exposure duration of the laser	0 = Normal (approx. 261 µs) 1 = Bright Objects (approx. 97 µs) 2 = Dark Objects (approx. 655 µs) 3 = Normal to Bright Objects (approx. 328 µs) 4 = Manual Setting (the exposure time is set using parameter ID 0x0BBE)	UINT8	1
0x0BBE	Manual adjusting of the exposure duration	Permissible value range LPS 36HI/EN: 73913109; LPS 36, LPS 36/EN: 97313109 (exposure time unit in 1/10µs). The duration of exposure is set incrementally in the sensor. The actual duration of exposure can deviate slightly from the parameter value transmitted. The exposure duration set can be accessed with the "Get Single Inspection Task Parameter" (0x006F) command in combination with parameter ID 0x08BD.	UINT16	1
0x0BBF	X-coordinate detection range	2 signed X-values for Field of View, value 1: Minimum X Value, value 2: Maximum X Value, permissible value range LPS 36HI/EN: -700700; LPS 36, LPS 36/EN: -30003000 (unit in 1/10mm)	SINT16	2
0x0BC0	Z-coordinate detection range	2 non-signed Z-values for Field of View, value 1: Minimum Z Value, value 2: Maximum Z Value, permissible value range LPS 36HI/EN: 19506100; LPS 36, LPS 36/EN: 19008100 (unit in 1/10mm)	UINT16	2

Sensor response:

Command number	Meaning	User data words
0x4141	"Ack": the command has been successfully executed.	0
0x414E	"Not Ack": the command has not been executed.	0

Get Single Inspection Task Parameter (beginning with firmware V01.40!)

Individual parameters of the active inspection task can be output with sensor control command 0x006F. The following parameters can be accessed:

- Name of the active inspection task,
- Number of the active inspection task,
- Operation Mode: Free Running or Input Triggered,
- Setting of activation (Activation Input: Regard or Disregard),
- Setting of cascading output (Cascading Output: Enable or Disable),
- Exposure duration of the laser (Light Exposure),
- Detection range of the LPS (Field of View).

Command syntax from control to sensor:

Startseq. 1	Startseq. 2	Fill character	Command no.	Fill character	Packet no.	Fill character	Transaction no.	Status	Encoder H	Encoder L	Fill character	Scan no.	Type	Number of pieces of data
0xFFFF	0xFFFF	0x0000	0x006F	0x0000	0x0000	0x0000	0x0000	0x0000	0x0000	0x0000	0x0000	0x0000	0x0010	0x0001

Byte	MS	B	Hig	jh-B	yte	L	.SB	MS	В	I	low	-By	te	L	SB	Meaning of the bits
3132																Parameter ID which can be accessed

Parameters and settings:

Parameter ID	Parameter meaning
0x0BB8	Number of the active inspection task
0x0BB9	Name of an inspection task
0x0BBA	Operating mode
0x0BBB	Enabling of activation
0x0BBC	Enabling of the cascading output
0x0BBD	Exposure duration of the laser
0x0BBE	Manual adjusting of the exposure duration
0x0BBF	X-coordinate detection range
0x0BC0	Z-coordinate detection range

Answer from sensor to control:

Startseq. 1	Startseq. 2	Fill character	Command no.	Fill character	Packet no.	Fill character	Transaction no.	Status	Encoder H	Encoder L	Fill character	Scan no.	Type	Number of pieces of data
0xFFFF	0xFFFF	0x0000	0x0070	0x0000	0x0000	0x0000	0x006F	0x0000	0x0000	0x0000	0x0000	0x0000	0x0010	0x0009- 0x0014

Byte	MSE	;	Hi	gh-Byte	e LSB	MSB	I	low	-Byte)	LSB	Meaning of the bits
3132												Parameter ID for parameter selection
3334												Data type: 1 = UINT8; 2 = UINT16, 5 = SINT16, 7 = CHAR
3536												Number of parameter values (byte 47 and following)
3738												Lower limit of parameter value (HighWord)
3940												Lower limit of parameter value (LowWord)
4142												Upper limit of parameter value (HighWord)
4344												Upper limit of parameter value (LowWord)
4546												No meaning
4770												Parameter value(s) of accessed parameter ID

Meaning of the bits:

Parameter ID	Parameter meaning	Valid parameter values	Parameter data type	Number of parameter values
0x0BB8	Number of the active inspection task	0-15	UINT8	1
0x0BB9	Name of the active inspection task	Maximum length: 12 ASCII characters, each character is saved as a 16-bit word	CHAR	12
0x0BBA	Operating mode	0=Operation Mode: Free Running; 1=Operation Mode Input Triggered	UINT8	1
0x0BBB	Enabling of activation	0=Activation Input: Disregard; 1=Activation Input: Regard	UINT8	1
0x0BBC	Enabling of the cascading output	0=Cascading Output: Disable; 1=Cascading Output: Enable	UINT8	1
0x0BBD	Exposure duration of the laser	0 = Normal (approx. 261 μs) 1 = Bright Objects (approx. 97 μs) 2 = Dark Objects (approx. 655 μs) 3 = Normal to Bright Objects (approx. 328 μs) 4 = Manual Setting (the exposure time is set using parameter ID 0x0BBE)	UINT8	1

Integrating the LPS in the process control

Parameter ID	Parameter meaning	Valid parameter values	Parameter data type	Number of parameter values
0x0BBE	Manual adjusting of the exposure duration	Permissible value ranges LPS 36H/EN: 73913109; LPS 36, LPS 36/EN: 97313109 (exposure time unit in 1/10µs), The duration of exposure is set incrementally in the sensor. The actual duration of exposure can deviate slightly from the parameter value transmitted. The exposure duration set can be accessed with the "Get Single Inspection Task Parameter" (0x006F) com- mand in combination with parameter ID 0x0BBD.	UINT16	1
0x0BBF	X-coordinate detection range	2 signed X-values for Field of View, value 1: Minimum X Value, value 2: Maximum X Value, permissible value range LPS 36HI/EN: -700700; LPS 36, LPS 36/EN: -30003000, (unit in 1/10mm)	SINT16	2
0x0BC0	Z-coordinate detection range	2 non-signed Z-values for Field of View, value 1: Minimum Z Value, value 2: Maximum Z Value (unit in mm), permissible value range LPS 36HI/EN: 19506100; LPS 36, LPS 36/EN: 19008100, (unit in 1/10mm)	UINT16	2

Set Single User parameter (beginning with firmware V01.20!)

When used with parameter ID 0x07D4, sensor control command 0x0059 can switch the transmission of X-coordinates in measure mode on and off. The quantity of data transmitted in measure mode can thereby be reduced by one half (useful for applications that only require Z-coordinates and for controls with small Ethernet receive buffer).

Command syntax from control to LPS:

Startseq. 1	Startseq. 2	Fill character	Command no.	Fill character	Packet no.	Fill character	Trans. no.	Status	Encoder H	Encoder L	Fill character	Scan no.	Type	No. of data
0xFFFF	0xFFFF	0x0000	0x0059	0x0000	0x0000	0x0000	0x0000	0x0000	0x0000	0x0000	0x0000	0x0000	0x0010	0x0003

When using sensor control command 0x0059 with parameter ID 0x07D4, three words of user data are transmitted to the sensor:

Byte	MS	В		Hig	jh-B	yte	L	.SB	MS	В	I	Low	-By	te	I	SB	Meaning of the bits
3132	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	SF	SF = SaveFlag
3334	0	0	0	0	0	1	1	1	1	1	0	1	0	1	0	0	Parameter ID for Disable x-Output = 0x07D4
3536	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0F	OF = Output Flag

If SF=0 then the output of X-coordinates is changed only temporarily.

If SF=1 then the output of X-coordinates is retained even after a restart of the LPS.

If OF=0, then X- and Z-coordinates are transmitted.

If OF=1, then only Z-coordinates are transmitted (X-coordinates are deactivated).

When used with parameter ID 0x07D8, sensor control command 0x0059 can be used to extend the transmission pause between the Z- and X-data packets from 0.1 ms (factory setting) to up to 1 ms (useful in applications with controls with slow, small Ethernet receive buffer).

When using sensor control command 0x0059 with parameter ID 0x07D8, three words of user data are transmitted to the sensor:

Byte	MS	В		Hig	jh-B	lyte	L	.SB	MS	В	I	_ow	-By	te	L	_SB	Meaning of the bits
3132	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	SF	SF = SaveFlag
3334	0	0	0	0	0	1	1	1	1	1	0	1	1	0	0	0	Parameter ID for Disable x-Output = 0x07D4
3536	-	-	-	-	-	-	-	-	-	-	-	-	P4	P3	P2		Duration of the transmission pause between the Z- and X-data packets in 0.1 ms increments $(0 = 0.1 \text{ ms} \dots 9 = 1.0 \text{ ms})$

If SF=0, the duration of the transmission pause is changed only temporarily.

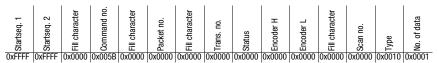
If SF=1, the duration of the transmission pause is retained even following a restart of the LPS.

Notice!

If the transfer of X-coordinates is switched off in measure mode, no visualization of measurement data can be performed in the 2D- and 3D-views in LPSsoft.

Set Single User Parameter (beginning with firmware V01.40!)

When using parameter ID 0x07DB, sensor control command 0x0059 can be used to activate a median filter for the Z-coordinates. By activating the median filter, the Z-coordinates of the measurement values are smoothed out, while occurring edges are retained. If the median filter is activated, small interferences and structures can be suppressed.


When using sensor control command 0x0059 with parameter ID 0x07DB, three words of user data are transmitted to the sensor:

Byte	MS	В		Hig	jh-B	lyte	L	.SB	MS	В	I	Low	-By	te	I	LSB	Meaning of the bits
3132	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	SF	SF = SaveFlag
3334						1	1	1	1	1	0	1	1	0	1	1	Parameter ID for median filter = 0x07DB
3536	-	-	-	-	-	-	-	-	-	-	-	-				1	1= median filter active 0= median filter inactive

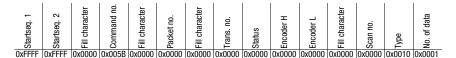
Get Single User parameter (beginning with firmware V01.20 !)

When using parameter ID 0x07D4, sensor control command 0x005B can be used to check whether X-coordinates are output.

Command syntax:

When using sensor control command 0x005B with parameter ID 0x07D4, one word of user data is transmitted to the sensor:

Byte	MS				,				MS				-By				Meaning of the bits
3132	0	0	0	0	0	1	1	1	1	1	0	1	0	1	0	0	Parameter ID for Disable x-Output = 0x07D4
	The								.	001							


The sensor responds with 0x005C and returns one word of user data.

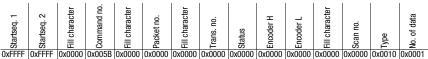
Byte	MS	В		Hig	jh-E	syte	L	.SB	MS	В	I	Low	-By	te	L	.SB	Meaning of the bits
3132	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0F	OF = Output Flag

If OF=0 then X- and Z-coordinates are transmitted.

If OF=1 then only Z-coordinates are transmitted (X-coordinates are deactivated).

When using parameter 0x07D8, sensor control command 0x005B can be used to query the duration of the transmission pause between the Z- and X-data packets. Command syntax:

When using sensor control command 0x005B with parameter ID 0x07D8, one word of user data is transmitted to the sensor:


Byte	MS	В		Hig	jh-E	Byte	I	LSB	MS	В	I	_ow	-By	te	I	.SB	Meaning of the bits
3132	0	0	0	0	0	1	1	1	1	1	0	1	1	0	0	0	Parameter ID for transmission pause = 0x07D8

The sensor responds with 0x005C and returns one word of user data.

Byte	MS	B		Hig	jh-E	Byte	L	.SB	MS	В	I	Low	-By	te	L	.SB	Meaning of the bits
3132	-	-	1	-	-	-	-	-	-	-	-	-	P4	P3	P2		Duration of the transmission pause between the Z- and X-data packets in 0.1 ms increments $(0 = 0.1 \text{ ms} \dots 9 = 1.0 \text{ ms})$

When using parameter ID 0x07DB, sensor control command 0x005B can be used to check whether the median filter is activated.

Command syntax:

מאדרד ומאדרד ומאחסה ומאחסה אימיסה ומאחסה האסהה ומאחסה ומאחסה ומאחסה ומאחסה ומאחסה ומאחסה ומאחסה ומאחסה ומאחסם באדרד ומאדרד ומאחסה ומאחסם ומאחסם ו

When using sensor control command 0x005B with parameter ID 0x07DB, one word of user data is transmitted to the sensor:

△ Leuze electronic

Byte	MS	B		Hig	yh-E	syte	L	.SB	MS	В	I	Low	-By	te	L	.SB	Meaning of the bits	
3132						1	1	1	1	1	0	1	1	0	1	1	Parameter ID for median filter = 0x07DB	
	The	e se	nso	or re	esp	ond	ls v	vith	0x	005	iC a	and	ret	urn	S OI	ne	word of user data.	
Byte	MS	В		Hig	jh-E	lyte	L	.SB	MS	В	I	Low	-By	te	L	.SB	Meaning of the bits	
3132																1	1= median filter active 0= median filter ina	ctive

Leuze electronic	Leuze	ele	ect	ror	nic
------------------	-------	-----	-----	-----	-----

10.3.4 Commands in measure mode

Co	ommand from control to LPS	1		Answer from LPS to control	
Command no.	Meaning	User data words	Command no.	Meaning	User data words
0x4554	Ethernet Trigger With the Ethernet Trigger com- mand, a single measurement is triggered in measure mode, similar to triggering via the trigger input Prerequisite is that the LPS be configured with LPSsoft under Operation Mode to Input Triggered. A connection to the sensor		0x5A5A and 0x5858	With activated output of X-coordinates: A response follows first with command number 0x5A5A. In the user data area, a data packet with Z-coordinates is output. A response then fol- lows with command number 0x5858 and a data packet containing X-coordinates is output in the user data area.	2 packets @ 376
	must exist before the Ethernet Trigger command can be used.	0	0x5A5A	With deactivated output of X-coordinates : A response follows with command number 0x5A5A. In the user data area, a data packet with Z-coordinates is output.	1 packet @ 376
			0x5A58	Only with LPS 36HI, when HI-Connect is activated. In the user data area, a data packet with Z- and X-coordi- nates is output.	1 packet @ 480
			0x414E	The transmitted command was not processed.	0

The following commands are available in measure mode:

Table 10.5:

Commands in measure mode

Co	ommand from control to LPS			Answer from LPS to control	
Command no.	Meaning	User data words	Command no.	Meaning	User data words
0x4541	Ethernet Activation The Ethernet Activation com- mand is used in measure mode to switch the laser on and off corresponding to the user data word. Prerequisite is that the LPS be configured with LPSsoft under Activation Input Mode to Regard. A connection to the sensor		0x5A5A and 0x5858	With activated output of X-coordinates: A response follows first with command number 0x5A5A. In the user data area, a data packet with Z-coordinates is output. A response then fol- lows with command number 0x5858 and a data packet containing X-coordinates is output in the user data area.	2 packets @ 376
	must exist before the com- mand can be used.	0	0x5A5A	With deactivated output of X-coordinates : A response follows with command number 0x5A5A. In the user data area, a data packet with Z-coordinates is output.	1 packet @ 376
			0x5A58 0x414E	Only with LPS 36HI, when HI-Connect is activated. In the user data area, a data packet with Z- and X-coordi- nates is output. The transmitted command was not processed.	1 packet @ 480 0

Table 10.5:

Commands in measure mode

10.4 Working with the protocol

о]]

Notice!

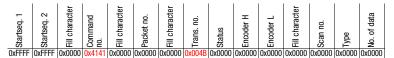
The values are displayed in hexadecimal representation (0x...). The values are only transmitted in "Little-Endian" format. For further information, see the notice in chapter 10.2.

Command without user data

Connect to Sensor PC to LPS:

LPS to PC (command executed):

Startseq. 1	Startseq. 2	Fill character	Command no.	Fill character	Packet no.	Fill character	Trans. no.	Status	Encoder H	Encoder L	Fill character	Scan no.	Type	No. of data
0xFFFF	0xFFFF	0x0000	0x4141	0x0000	0x0000	0x0000	0x434E	0x0000	0x0000	0x0000	0x0000	0x0000	0x0000	0x0000


Command with user data

Set Actual Inspection Task (LPS in command mode, activate Task 15 and do not store in volatile memory)

PC to LPS:

LPS to PC (command executed):

10.5 Operation with LxS_Lib.dll

The LxS_Lib.dll is a .NET 2.0-compatible collection of functions which considerably facilitates the integration of all Leuze light section sensors (LPS, LRS and LES) into PC environments. The LxS_Lib.dll can be used in a variety of programming languages, such as C#, Visual Basic, etc. The integration into MatLab is also possible.

The DLL can control several light section sensors via Ethernet.

The LxS_Lib.dll supports the following functions, among others:

- Establishment/deactivation of sensor connection
- Evaluation of sensor state
- Triggering, activation via Ethernet
- Activation of individual inspection tasks
- Loading and saving all created inspection tasks
- Activation of inspection tasks
- · Parameter changes of the active inspection task

In addition, the LxS_Lib.dll enables the evaluation of specific user data of the LPS, LES or LRS. With the LRS and LES, all sensor information and intermediate results are available so that much more complicated evaluations can be realized in the process control.

Access

The library is contained on the supplied product CD. Alternatively, you can download the program in the Internet at **www.leuze.com**.

10.6 Operating with HALCON® image processing software

Benefits

The HALCON[®] image processing library from MVtec Software GmbH[®] (http://www.mvtec.com) can be used to evaluate the recorded 2D profiles.

To simplify the data import step for the user, an **Image Acquisition Interface** is available that directly controls the LPS sensors and can read the measurement data (X, Z-coordinates and encoder values).

Access

The Image Acquisition Interface is contained on the supplied product CD. Alternatively, you can download the program in the Internet at **www.leuze.com**.

C)
ſ	

Notice!

For error-free operation of LPS 36/EN (encoder devices) in combination with the HALCON[®] Vision Acquisition Interface, use the following settings:

• Encoder overflow on 0xFEFF FFFF (corresponds to the factory settings of firmware V01.10, see chapter 9.4.2).

10.7 Additional support when integrating sensors

Additional tools (e.g. MatLab example, function modules S7, protocol plain-text decoding, UDP terminal) are available. Please contact your Leuze distributor or service organization to acquire these.

11 Diagnostics and troubleshooting

11.1 General causes of errors

Error	Possible error cause	Measures	
Control receives no	Ethernet connection	Check connection with LPSsoft.	
measurement data	interrupted	See "Commissioning" on page 49.	
	Control not connected to	Use "To sensor" command.	
	sensor		
Object contours not	Occlusion	See "Occlusion" on page 14.	
detected	Soiling of the	Clean optics covers,	
	optics covers	see "Cleaning" on page 95.	
	Ambient light	Prevent ambient light, shield sensor, see "Selecting a mounting location" on page 27.	
		Limit detection range with LPSsoft, see "Field of	
		View" on page 60.	
	Reflections	Avoid reflections.	
		Limit detection range with LPSsoft, see "Field of	
		View" on page 60.	
	Unsuitable exposure	Adapt exposure duration to the reflective properties of	
	setting	the objects to be detected. See "Light Exposure" on	
		page 60.	
	Object not in	Visual assessment with LPSsoft,	
	measurement range	reduce working distance/position of the sensor to the	
		object. See "Standard tab - Task Parameters panel" on page 59.	
	Detection range selected	Configure detection range with LPSsoft.	
	too small	See "Field of View" on page 60.	
	Wrong inspection task	Change inspection task with LPSsoft or use Ethernet	
	selected	command "Set Actual Inspection Task". See "Set	
		Actual Inspection Task" on page 77.	
Sensor does not respond to	Sensor in measure/menu	Exit menu view on OLED display.	
commands	mode	Connect sensor to control. Switch sensor to command	
		mode if necessary.	
	Sensor not connected	Check settings of the Ethernet interface. Connect	
		sensor to control.	
	Sensor not activated	Activate sensor via PIN 2 on X1.	
		Switch off activation input. See "Activation" on	
		page 60.	

Table 11.1: General causes of errors

Error	Possible error cause	Measures
No laser line	Sensor not activated	Activate sensor via PIN 2 on X1.
	Laser was deactivated in	Switch on laser.
	command mode with the	See "Set Laser Gate" on page 77.
	"Set Laser Gate"	
	command	
	Sensor in trigger mode	Activate single measurement by means of Ethernet
		trigger or via PIN 5 on X1.
Sensor does not respond to	Sensor in command	Exit command mode with the "Exit Command Mode"
trigger	mode.	command.
	Triggering too fast	Reduce trigger rate. The shortest possible interval
		between two successive trigger signals is 10 ms.See
		"Triggering - Free Running" on page 20.
Sensor cannot be deacti-	Activation Input set to	Use LPSsoft to configure the activation input to
vated via the activation	"Disregard"	"Regard". See "Activation" on page 60.
input		

Table 11.1: General causes of errors

11.2 Interface error

Error	Possible error cause	Measures
No connection	Wiring error	Check Ethernet cable.
Yellow LED not illuminated		
No connection	DHCP activated in	Assign alternate IP address, see "Establish connec-
Yellow LED not illuminated	network, no fixed or	tion to PC" on page 47.
	alternate network	
	address assigned	
	Incorrect IP address/sub-	Check IP address/subnet mask, IP addresses of LPS
	net mask set on LPS	and control must be different, subnet mask however
		must be the same, see table 8.1 "Address allocation
		in the Ethernet" on page 47.
	Incorrect port assigned to	Using ping command check whether the sensor
	LPS / control	responds. If so, check port assignment to LPS and
		control. The set ports must match.
	Firewall blocks ports	Switch off firewall temporarily and repeat connection
		test.

Table 11.2:

Interface error

11.3 Error messages in display (starting from firmware V01.40)

Only 1 error can be shown in the display. In the event of an error, the first line of the display shows an error message and the second line displays a plain-text message.

Error: 01001 Supply. Volt.

Error	Possible error cause	Measures
Error: 001xx, 005xx, 006xx	EMC interference	Check wiring, shield sensor.
Error: 00302, 00309,	Ambient temperature too	Select installation space with a lower temperature.
00402, 00403	high	
Error: 01000	Supply voltage when	Check supply voltage.
	switching on too high	
Error: 01001	Supply voltage when	Check supply voltage.
	switching on too low	
Output Overload	Short-circuit on output,	Check wiring, shield sensor.
	EMC interference	

Table 11.3: Error messages in display

0]]

Notice!

If deviating error messages occur, contact your Leuze distributor or service organization.

♦ Please disconnect the sensor from the supply voltage and eliminate the cause of the error.

If a short-circuit occurs on the output, the following is displayed:

Output Overload Reset -> Enter

♦ Please eliminate the cause of the error.

Notice!

Acknowledging the error with the "Enter" button on the membrane keyboard causes a software reset of the sensor. During this time, the sensor is not ready - this can be seen at: X1 pin 4: Out Ready and Ethernet protocol: "Status".

The sensor starts automatically and is then ready again. An Ethernet connection must be re-established.

Notice!

Please use chapter 11 as a master copy should servicing be required.

Please cross the items in the "Measures" column that you have already examined, fill out the following address field, and fax the pages together with your service contract to the fax number listed below or send the information via e-mail.

Customer data (please complete)

Device type:	
Serial number:	
Firmware version:	
Configuration software version:	
Display on OLED display:	
Company:	
Contact partner / department:	
E-mail address:	
Phone (direct):	
Fax:	
Street / No:	
ZIP code/City:	
Country:	

Have the following information ready for the service department:

- File: LPSsoft.log (located in the installation directory of LPSsoft)

- Parameter file *.1ss; if applicable, screenshots, images, stored measurement data *.csv, etc.

Leuze Service fax number: +49 7021 573 - 199

Leuze Service e-mail for the LOS product unit: service.detect@leuze.de

12 Maintenance

12.1 General maintenance information

Usually, the light section sensor does not require any maintenance by the operator.

Cleaning

In the event of dust buildup, clean the LPS with a soft cloth; use a cleaning agent (commercially available glass cleaner) if necessary.

Notice!

Do not use aggressive cleaning agents such as thinner or acetone for cleaning the light section sensors. Use of improper cleaning agents can damage the optical window.

12.2 Repairs, servicing

Repairs to the device must only be carried out by the manufacturer.

Contact your Leuze distributor or service organization should repairs be required. The addresses can be found on the inside of the cover and on the back.

Notice!

When sending light section sensors to Leuze electronic for repair, please provide an accurate description of the error.

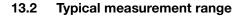
12.3 Disassembling, packing, disposing

Repacking

For later reuse, the device is to be packed so that it is protected.

Notice!

Electrical scrap is a special waste product! Observe the locally applicable regulations regarding disposal of the product.


13 Specifications

13.1 General specifications

Optical data	LPS 36	LPS 36HI	
Measurement range 1)			
in X direction	200 600mm	46 140mm	
	200 800mm	200 600mm	
Light source	laser		
Wavelength	658nm (visible red light)		
Max. output power	< 8mW		
Pulse duration	3ms		
Laser line	600 x 3mm	approx. 170 x 1.5mm	
	at 800mm	at 600mm	
Error limits (relative to measurement	nt distance)		
Resolution ^{2) 3)}			
in X direction	1 1.7mm	0.2 0.6mm	
in Z direction	1 3mm	0.1 0.9mm	
Linearity in Z -direction ³⁾	≤ ±1%	≤ ±0.5%	
Repeatability in Z -direction ³⁾	≤ 0.5 %	≤ ±0.25%	
B/w detection thresholds	≤1%	$\leq \pm 0.5\%$	
	(6 90% diffuse reflection)	
Timing	1	·	
Measurement time	10ms		
Delay before start-up	approx. 1.5s		
Electrical data	·		
Operating voltage U _B ⁴⁾	18 30VDC		
	(incl. residual ripple)		
Residual ripple	≤ 15 % of U _B		
Open-circuit current	≤ 200mA		
Ethernet interface	UDP		
Switching outputs	1 (ready) / 100mA / push-pull on X1 ⁵⁾		
	1 (cascading) / 100mA / push-pull on X1 ⁵⁾		
Inputs	1 (trigger) on X1		
	1 (activation) on X1		
Signal voltage high/low	≥ (U _B -2V)/≤ 2V		
Indicators			
Green LED continuous light	ready		
	no voltage		
	Ethernet connection availa	ble	
	Ethernet data transmission		
Ţ	no Ethernet connection ava		

Mechanical data	
Housing	aluminum frame with plastic cover
Optics cover	glass
Weight	620g
Connection type	M12 connector
Environmental data	
Ambient temp.	-30°C +50°C/-30°C +70°C
(operation/storage)	
Protective circuit 6)	1, 2, 3
VDE safety class	III, protective extra-low voltage
Protection class	IP 67 ⁷)
Laser class	2M (according to EN 60825-1 and 21 CFR 1040.10
	with Laser Notice No. 50)
Standards applied	IEC/EN 60947-5-2, UL 508

- 1) Luminosity coefficient 6 % ... 90 %
- Minimum and maximum value dependent on the measurement distance, at 20°C after 30min. warmup time, average range U_B, z-resolution at factory setting median "3"
- 3) Reflectivity 90%, identical object, identical environment conditions, measurement object $\geq 20x20mm^2$
- 4) For UL applications: for use in class 2 circuits according to NEC only
- 5) The push-pull switching outputs must not be connected in parallel
- 1=transient protection, 2=polarity reversal protection, 3=short circuit protection for all outputs
- 7) Only if the connectors and caps are screwed into place



Figure 13.1: Typical measurement range LPS 36

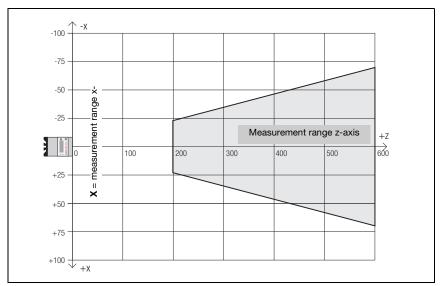
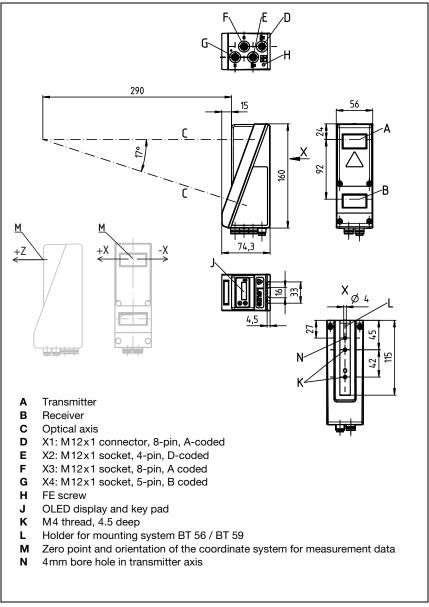
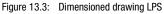




Figure 13.2: Typical measurement range LPS 36HI

13.3 Dimensioned drawing

14 Type overview and accessories

14.1 Type overview

14.1.1 LPS

Type designation	Description	Part no.
LPS 36/EN	Line profile sensor for profile generation, measurement range 200 800 mm, line length 600 mm with Ethernet interface, incremental encoder connection	50111324
LPS 36	Line profile sensor for profile generation, measurement range 200 800 mm, line length 600 mm with Ethernet interface	50111325
LPS 36 HI/EN	Line profile sensor for profile generation, measurement range 200 600 mm, line length 140 mm with Ethernet interface, incremental encoder connection	50111334
Table 14.1:	Type overview LPS	

14.1.2 LRS

Type designation	Description	Part no.
LRS 36/6	Line profile sensor for product detection (also multi-track), detection range 200 800mm, line length 600mm, Ethernet interface, 4 switching outputs for detection information, 3 switching inputs for selection of the inspection task	50111330
LRS 36/6.10	Line profile sensor for product detection (also multi-track), detection range 200 800mm, line length 600mm, Ethernet interface, 4 switching outputs for detection information, 3 switching inputs for selection of the inspection task, model with plastic screen	50115418
LRS 36/PB	Line profile sensor for product detection (also multi-track), detection range 200 800mm, line length 600mm, Ethernet interface, PROFIBUS DP	50111332

Table 14.2: Type overview LRS

14.1.3 LES

Type designation	Description	Part no.
LES 36/VC	Line profile sensor for edge detection and object measurement (also multi-track), detection range 200 800mm, line length 600mm, Ethernet interface, analog current or voltage output	50111326
LES 36/PB	Line profile sensor for product detection (also multi-track), detection range 200 800mm, line length 600mm, Ethernet interface, PROFIBUS DP	50111327

Table 14.3: Type overview LES

Type designation	Description	Part no.
LES 36/VC6	Line profile sensor for edge detection and object measurement (also multi-track), detection range 200 800mm, line length 600mm, Ethernet interface, analog current or voltage output, 4 switching outputs for detection information, 3 switching inputs for selection of the inspection task	50111333
LES 36HI/VC6	Line profile sensor for edge detection and object measurement (also multi-track), detection range 200 600mm, line length 140mm, Ethernet interface, analog current or voltage output, 4 switching outputs for detection information, 3 switching inputs for selection of the inspection task	50111329

Table 14.3: Type overview LES

14.2 Accessories

14.2.1 Fastening

Mounting devices

Type designation	Description	Part no.	
BT 56	Mounting device featuring dovetail for rod	500 27375	
BT 59	Mounting device featuring dovetail for ITEM profile	50111224	

Table 14.4: Mounting devices for the LPS

14.2.2 Accessory ready-made cables for voltage supply X1

Contact assignment for connection cable X1

Connection cable X1 (8-pin socket, A-coded)					
X1	Pin	Name	Core color		
InAct	1	VIN	WH		
2 GND	2	InAct	BN		
8 00 3	3	GND	GN		
VIN $\left(1\left(\overset{\circ}{\circ}\overset{\circ}{\circ}\overset{\circ}{\circ}\right)4\right)$ OutReady	4	OutReady	YE		
	5	InTrig	GY		
6 InTrig	6	OutCas	PK		
OutCas	7	Do not connect!	BU		
M12 socket (A-coded)	8	Do not connect!	RD		

Table 14.5: K-D M12A-8P... cable assignments

Type designation	Description	Part no.
M12 socket for X1, axial c	onnector, open cable end	
K-D M12A-8P-2m-PUR	Cable length 2m	50104591
K-D M12A-8P-5m-PUR	Cable length 5m	50104590
K-D M12A-8P-10m-PUR	Cable length 10 m	50106882
CB-M12-15000E-8G	Cable length 15m	678062
CB-M12-25000E-8G	Cable length 25m	678063
CB-M12-50000E-8G	Cable length 50m	678064

Order codes of the cables for voltage supply

Table 14.6: X1 cables for the LPS

14.2.3 Accessories for Ethernet interface X2

Ready-made cables with M12 plug/open cable end

M12 Ethernet connection cables (4-pin plug, D-coded, open cable end)					
X2	Name	Pin (M12)	Core color		
Rx+	Tx+	1	YE		
2	Rx+	2	WH		
	Tx-	3	OR		
Tx - (3(0, 0)) 1 Tx +	Rx-	4	BU		
	SH	shield (thread)	-		
SH 4 Rx -					
M 12 plug (D-coded)					

Table 14.7: Pin assignments KB ET-...-SA

Type designation	Description	Part no.	
M12 plug for X2, axial connector, open cable end			
KB ET - 2000 - SA	Cable length 2m	50106739	
KB ET - 5000 - SA	Cable length 5 m	50106740	
KB ET - 10000 - SA	Cable length 10 m	50106741	
KB ET - 15000 - SA	Cable length 15 m	50106742	
KB ET - 30000 - SA	Cable length 30 m	50106746	

Table 14.8: Ethernet connection cables featuring M12 plug/open cable end

M12 Ethernet connection cables (4-pin plug, D-coded, M12 to RJ-45)					
X2	Name	Pin (M12)	Core color	Pin (RJ-45)	
Rx+	Tx+	1	YE	1	
2	Rx+	2	WH	3	
	Tx-	3	OR	2	
$Tx - (3(\circ \circ) 1)Tx +$	Rx-	4	BU	6	
	SH	shield (thread)	-		
SH Rx -					
M12 plug (D-coded)					

Ready-made cables with M12 plug/RJ-45 plug

Table 14.9: Pin assignments KB ET-...-SA-RJ45

Type designation	Description	Part no.
M12 plug for X2 to RJ-45 plug		
KB ET - 2000 - SA-RJ45	Cable length 2 m	50109880
KB ET - 5000 - SA-RJ45	Cable length 5 m	50109881
KB ET - 10000 - SA-RJ45	Cable length 10 m	50109882
KB ET - 15000 - SA-RJ45	Cable length 15 m	50109883
KB ET - 30000 - SA-RJ45	Cable length 30 m	50109886

Table 14.10: Ethernet connection cables M12 connector/RJ-45

Ready-made cables with M12 plug/M12 plug

M12 Ethernet connection cables (4-pin plug, D-coded, on both sides)					
X2	Name	Pin (M12)	Core color	Pin (M12)	
Rx+	Tx+	1	YE	1	
2	Rx+	2	WH	2	
	Tx-	3	OR	3	
Tx - (3(0 0) 1)Tx +	Rx-	4	BU	4	
	SH	shield (thread)	-	shield (thread)	
SH 4					
Rx -					
M12 plug (D-coded)					

Table 14.11: Pin assignments KB ET-...-SSA

Type designation	Description	Part no.
M12 plug + M12 plug for	X2	
KB ET - 2000 - SSA	Cable length 2 m	50106899
KB ET - 5000 - SSA	Cable length 5 m	50106900
KB ET - 10000 - SSA	Cable length 10 m	50106901
KB ET - 15000 - SSA	Cable length 15 m	50106902
KB ET - 30000 - SSA	Cable length 30 m	50106905

Table 14.12: Ethernet connection cables featuring M12 plug/M12 plug

Connectors

Type designation	Description	Part no.
D-ET1	RJ45 plug for user-configuration	50108991
KDS ET M12 / RJ 45 W - 4P	Converter from M12 D-coded to RJ 45 socket	50109832

Table 14.13: Connectors for the LPS

14.2.4 Accessory ready-made cables for X3

Contact assignment for X3 connection cables

X3 (8-pin plug, A-coded)					
X3	Pin	Name	Core color		
(GND)	1	Enc. +24VDC	WH		
GND 2 - +5VDC Out	2	(GND)	BN		
	3	GND	GN		
Enc. A+(4(0 0 0)1)Enc. +24VDC	4	Enc. A+	YE		
5 0 0 7	5	Enc. A-	GY		
Enc. A- 6 Enc. B-	6	Enc. B+	РК		
Enc. B+	7	Enc. B-	BU		
M12 plug (A-coded)	8	+5VDC Out	RD		
(*******)					

Table 14.14: Pin assignments KB M12/8-...-SA

Order code of X3 connection cables

Type designation	Description	Part no.
M12 plug for X3, axial connector, open cable end, shielded up to 10m		
KB M12/8-2000-SA	Cable length 2m	50110179
KB M12/8-5000-SA	Cable length 5 m	50110180
KB M12/8-10000-SA	Cable length 10 m	50110181

Table 14.15: X3 cables for the LPS 36/6

14.2.5 Configuration software

Type designation	Description	Part no.
CD TD LPS 36	CD with configuration software for light section sensors	50111933
-		

Table 14.16: Configuration software for the LPS

Notice!

The current version of the configuration software can be found on the Leuze website.

15 Appendix

15.1 Glossary

Activation input	Input for switching the laser beam on/off. There is no exact time allocation between the application/removal of the signal and the switch-on/off time.
Alignment aid	Visualization of the Z-coordinates on the display: the measurement values at the left edge, in the center and at the right edge of the laser line extending along the X-axis are displayed. It is designed to align the light emission area of the laser parallel to the conveying belt.
Exposure	Time span of light striking the CMOS receiver, while being reflected off the object to be detected.
File	Task set, which can be stored or accessed via the user interface of the PC or the control.
Data reduction	Reduction of the measurement rate by: • Setting the value for Prescaler Value in the display menu. • Triggering the sensor • Deactivating X-values in command mode • Measurement value query in command mode
Display	Display/Control panel directly at the sensor.
Detection range (Field of view - FOV)	The detection range is defined via configuration software. Without changing the predefined range it extends trapezoidally according to the maximum detection range specifications. If the maximum detection range is not required to solve the application task, it is recommended to reduce the detection range to a minimum.
Inspection task	All settings for the application are made in the configuration software and are stored in up to 16 inspection tasks. It is possible to easily adapt to different tasks by changing over the inspection task.
IP address	Address in network.
Cascading	Triggered series connection of several sensors. A master sensor takes over the control (synchronization) of up to 9 slaves.
Measurement time	Time between two individual measurements.
Object	Medium to be detected by sensor.
Offline	LPSsoft is operated without sensor.
Online	LPSsoft is operated with sensor.
Profile Profile data	Distance and position progression of one or more measurements, coordinates of the respective X/Z-values when passing through the laser beam along the x-axis.
2D view	Graphical presentation of the X/Z-coordinate values of an object within the detec- tion range.

3D view	Graphical presentation of chronologically arranged 2D data.
Trigger	Triggering one or more measurement processes with precise time allocation.
UDP	Standardized connectionless Ethernet protocol, Layer 4.

15.2 Revision History / Feature list

15.2.1 Firmware

Firmware	Function range	Meaning	Required configuration software
Beginning	Multiple inspection tasks	Up to 16 different configurations	LxSsoft V1.20 (LPSsoft V1.20,
with V01.10	for the LPS 36	can be stored in the sensor;	LRSsoft V1.04)
		switch between configurations by means of a command	
Beginning	Optimized encoder	LPS 36/EN:	LxSsoft V1.20 (LPSsoft V1.20,
with V01.20	interface	single-channel encoders are also supported, encoder options, new factory settings	LRSsoft V1.10)
	Deactivation of data	LPS 36:	
	output - X-coordinates	reduction of data quantity (useful	
		for PLC evaluation)	
	Extension of the transmis-	LPS 36:	
	sion pause between the	improved reading of data pack-	
	Z- and X-data packets	ets (useful for PLC evaluation)	
	Ethernet trigger	Reduction of data quantity (use-	*
		ful for PLC evaluation), reduction in cabling	
Beginning	PROFIBUS	other LRS 36/PB device types	LxSsoft V1.30 (LPSsoft V1.30,
with V01.25	support	with PROFIBUS	LRSsoft V1.20)
	Ethernet sensor activation	Activation now possible via Ethernet Reduction in cabling	Ť
	Factory setting - analysis	LRS 36: the maximum detection	
	depth 1 for LRS 36	rate can be achieved with this setting.	
Beginning	Supports	Additional device types	LxSsoft V1.40 (LPSsoft V1.33,
with V01.30	LES 36	LES 36/PB with PROFIBUS and LES 36/VC with analog output	LESsoft V1.10, LRSsoft V1.20)

Table 15.1: Revision History - Firmware

Beginning	Support of LPS 36HI/EN	Additional device types	LxSsoft V2.00 (LPSsoft V2.00,
with V01.40		LPS 36HI/EN	LESsoft V1.10, LRSsoft V1.20)
	New "Ethernet	Switching on laser via Ethernet	*
	Activation" command	command	
	New "Get/Set Single	Parameter adjustment via	
	Inspection Task	Ethernet commands without	
	Parameter" commands	LPSsoft	
	Display of error numbers	Fast detection of the cause of the	*
	on display	error	
	Extension of the	Maximum cable length 50 m	
	maximum cable lengths		
Beginning	Additional operator	Inspection task selection via the	LxSsoft V2.30 (LPSsoft V2.20,
with V01.41	control possibility at the	control panel of the sensor	LESsoft V2.30, LRSsoft V2.20)
	sensor		
	Supports LES 36/VC6,	Additional device types	
	LES 36HI/VC6	LES 36/VC6, LES 36HI/VC6	
	Relative window		
	positioning of LES		

Table 15.1: Revision History - Firmware

15.2.2 Configuration software

Version	Function range	Meaning
LxSsoft V1.20 (LPSsoft V1.20,	Installer for LPSsoft and LRSsoft	Simple installation,
LRSsoft V1.04)		"Accept" button in LRSsoft
LPSsoft V1.30, LRSsoft V1.10	Trigger operation is also	LRS 36, LPS 36:
	supported while configuration	optimized diagnosis in trigger operation
	software is running	
	Display of encoder counter value	LRS 36/EN: visualization encoder
	New: Encoder parameters	LRS 36/EN:
		encoder interface configuration:
		single-/multi-channel encoder, overflow
		values, reversal of direction of rotation
LxSsoft V1.30 (LPSsoft V1.30,	Support of the other LRS 36/PB	Configuration of PROFIBUS settings and
LRSsoft V1.20)	device types with PROFIBUS	LRS 36/PB
LxSsoft V1.40 (LPSsoft V1.33,	Support of the additional device	Configuration of LES 36 device variants
LESsoft V1.10, LRSsoft V1.20)	types LES 36/PB with PROFIBUS	
	and LES 36/VC with analog out-	
	put	
LxSsoft V1.41 (LPSsoft V1.33,	Installer for Windows 7	Software runs with the 32 and 64 bit
LESsoft V1.10, LRSsoft V1.20)		version of Windows 7

 Table 15.2:
 Revision History - Configuration software

LxSsoft V2.00 (LPSsoft V2.00,	Support of additional	Configuration of LPS 36Hi/EN
LESsoft V1.10, LRSsoft V1.20)	LPS 36Hi/EN device types	
LxSsoft V2.30 (LPSsoft V2.20,	Import Inspection Task	Settings of individual inspection tasks
LESsoft V2.30, LRSsoft V2.20)		can be imported from a saved LPS
		project
LxSsoft V2.31 (LPSsoft V2.31,	Documentation updated	
LESsoft V2.31, LRSsoft V2.31)		

 Table 15.2:
 Revision History - Configuration software

Index

Nume-rics

2D profile data

A

Activation	20
Activation input	19, 34, 60
Alignment	27
Alignment aid	28, 42
Approved purpose	9
Areas of application	9

С

Cables for encoder connection	104
Cables for voltage supply	101
Cascading output	35,60
Case picking	18
CAT 5 cable	35
Causes of errors	91
Cleaning	28,95
Command mode	68
Commissioning	19,49
Connectors	104
Coordinate system	28
Coordinate transformation	27

D

Disposal of packaging material	23
Disposing	95

Ε

Electrical connection	29
Electrical data	96
Encoder	36
Encoder count	71
Environment variable	56
Environmental data	97
Error limits	96
Error message	56
Ethernet cable assignment	35
Ethernet connection	57
Ethernet interface	102
Evaluating measurement data	64
Exposure duration	60
Exposure setting	60

26

F

13

Factory setting	46
Fastening groove	24
Firewall	68
G	
Glare	19
Gripper control	18
1	
- Indicators	96
Interface version	30
IP address	48
	40

L

ITEM profile

Laser class 2M10Laser exit opening11Laser occlusion14, 15Laser Radiation10, 27Line Profile Sensor19Local Area Connection48		
Laser occlusion14, 15Laser Radiation10, 27Line Profile Sensor19	Laser class 2M	10
Laser Radiation10, 27Line Profile Sensor19	Laser exit opening	11
Line Profile Sensor 19	Laser occlusion	14,15
	Laser Radiation	10,27
Local Area Connection 48	Line Profile Sensor	19
	Local Area Connection	48

Μ

Maintenance	95
Measure mode	68
Measurement range	60,98
Mechanical data	97
Mechanical design	19
Menu navigation	45
Menu structure	43
Mounting devices	101
Mounting location	27
Mutual interference	21

Ν

Name plate 11, 23

0

•	
Occlusion	14
OLED display	41
Optical data	96

Ρ

Performance features	17
Pin assignment	29
Pin assignment X1	34
Pin assignment X2	35
Pin assignment X3	36
Port 9008	47
Power supply	34

R

Receiver occlusion	14, 15
Receiving optics	13
Repair	9,95
Resolution	16
Rod installation	25

S

Safety standard	10
Saving measurement data	65
Servicing	95
Shielding	31,35
System requirements	50
System variable	56

т

Timing	96
Triangulation principle	13
Trigger input	34,60
Trigger time	20
Troubleshooting	91
Type overview	100

U

UDP			

W

Warmup	time
--------	------

47

47